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Abstract

Background: Term clustering, by measuring the string similarities between terms, is known within the natural
language processing community to be an effective method for improving the quality of texts and dictionaries.
However, we have observed that chemical names are difficult to cluster using string similarity measures. In order to
clearly demonstrate this difficulty, we compared the string similarities determined using the edit distance, the Monge-
Elkan score, SoftTFIDF, and the bigram Dice coefficient for chemical names with those for non-chemical names.

Results: Our experimental results revealed the following: (1) The edit distance had the best performance in the
matching of full forms, whereas Cohen et al. reported that SoftTFIDF with the Jaro-Winkler distance would yield
the best measure for matching pairs of terms for their experiments. (2) For each of the string similarity measures
above, the best threshold for term matching differs for chemical names and for non-chemical names; the
difference is especially large for the edit distance. (3) Although the matching results obtained for chemical names
using the edit distance, Monge-Elkan scores, or the bigram Dice coefficients are better than the result obtained for
non-chemical names, the results were contrary when using SoftTFIDF. (4) A suitable weight for chemical names
varies substantially from one for non-chemical names. In particular, a weight vector that has been optimized for
non-chemical names is not suitable for chemical names. (5) The matching results using the edit distances improve
further by dividing a set of full forms into two subsets, according to whether a full form is a chemical name or not.
These results show that our hypothesis is acceptable, and that we can significantly improve the performance of
abbreviation-full form clustering by computing chemical names and non-chemical names separately.

Conclusions: In conclusion, the discriminative application of string similarity methods to chemical and non-
chemical names may be a simple yet effective way to improve the performance of term clustering.

Background
Clustering terms based on string similarity is a common
task in text processing and is used to abstract varying of
representations of the same concept in natural language
texts. To address the task, several string similarity meth-
ods have been developed and have been successfully
applied [1].
When we apply similarity methods, at least two pro-

blems arise: (1) the choice of a good similarity method,

and (2) the choice of an optimal threshold. For example,
Cohen et al. [2] reported that SoftTFIDF generally works
the best for the term clustering of entity names, and
Okazaki et al. [3] reported that the use of a hybrid distance
with 0.2 as the optimal threshold was the best setup for
the problem of abbreviation-full form clustering.
The work presented in this paper was carried out as a

part of a dictionary-building project for abbreviations in
life science. The project was motivated by the observation
that abbreviated terms are abundant in life science litera-
ture and that there is a significant need for a dictionary
lookup service for such abbreviated terms.
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It has been reported that a new abbreviation appears in
every five to ten abstracts in PubMed [4], and [5] showed
that the number of MEDLINE entries increased by
approximately 650 000 entries per year on average from
2004 to 2009. These facts indicate the necessity for an
abbreviation dictionary to be continuously updated, thus
implicating the necessity for an automated process to
extract abbreviations from texts in MEDLINE and inte-
grate them into the existing dictionary entries. There have
been several studies in which such systems were developed
[4,6-9]. These systems typically employ two processes: (1)
the extraction of abbreviation-full form terms, and (2) the
clustering of these terms per their meanings. Our focus in
this paper is the clustering problem.
We have been developing and maintaining the Allie

database, in addition to an online service that provides
abbreviation-full form information, by referencing
PubMed entries and the subject domains in which they
appear. Allie is updated monthly to include new abbre-
viated terms that are found in PubMed. Because new
abbreviations are constantly added to the database, the
clustering of abbreviation-full forms also needs to be
updated. Therefore, we have been developing an automatic
term-clustering method. There have been several works
sharing this same goal [3,10,11].
We have tested several similarity methods. We observed

a significant difference in the distribution of string simila-
rities between terms according to the semantic classes of
those terms. In particular, we focused on chemical names
that seldom allow even small variations in spelling to qua-
lify as a matching. For example, although both diethylene
glycol monoethyl ether and diethylene glycol monomethyl
ether are abbreviated as DGME in MEDLINE abstracts
and the difference between these terms is only the inser-
tion of a single character, m, these terms denote different
chemical compounds. The motivation of our study
described in this paper was to solve this problem.
In this study, we proposed the following hypothesis:

“chemical names and other terms have different distribu-
tions of character sequences; thus, the computation of
their similarities should be carried out in different ways.”
To argue this hypothesis, in this study, we compared

the results of four string measures for chemical names
with the results for the other full forms. The four mea-
sures used were the edit distance, the Monge-Elkan
score, SoftTFIDF with the Jaro-Winkler distance, and
the bigram Dice coefficient.

Methods
Similarity measures
For the clustering of full forms that share the same
abbreviation, we chose to test four similarity measures:
the length-normalized edit distance, the Monge-Elkan
score, SoftTFIDF with the Jaro-Winkler distance, and

the Dice coefficient based on character bigrams. The
selection of these measures was motivated by their
popularity (edit distance), performance reported in [2]
(Monge-Elkan and SoftTFIDF) and simplicity (Dice
coefficient).
The edit distance, also known as the Levenshtein dis-

tance, is one of the most commonly studied string dis-
tance measures. The edit distance of two strings is
defined as the minimum number of edit operations to
transform one string into the other string, where an edit
operation is an insertion, a deletion, or the replacement
of a single character. In this study, we employed the
length-normalized edit distance, defined as follows, to
eliminate the influence of the length of the full forms:

d(s1, s2) = ed(s1, s2)
/
max{n1,n2}

where ed(s1, s2) indicates the edit distance between
two strings s1 and s2, and n1 and n2 are the lengths of s1
and s2. Because the Levenshtein distance between s1 and
s2 is computable by dynamic programming with O(n1n2)
[12], the length-normalized edit distance is computable
with the same order.
The Monge-Elkan score [13] is another alignment-based

similarity measure. This measure is defined as the mini-
mum sum of the scores for all possible alignments of two
strings. A score matrix for the Monge-Elkan is {5, 2, -5},
where the result is 5 if two characters are the same, 2 if
two characters are in one set of {d, t}, {g, j}, {l, r}, {m, n},
{b, p, v}, or {a, e, i, o, u}, and -5, otherwise. In addition, an
affine gap penalty is defined as g(k) = a + bk, with a = 5
and b = 1. Note that if you employ the score matrix {0, -1,
-1} and the gap penalty g(k) = k, the score is equal to -d
where d is the edit distance. In [2], the Monge-Elkan score
was reported to perform the best among alignment-based
measures in most cases, if the score matrix {5, 3, -3} is
used, and if the score is scaled to the interval [0, 1]. There-
fore, in our experiment, we also employed this score
matrix as the Monge-Elkan score.
The SoftTFIDF, which was introduced by [2], is a var-

iation of TFIDF, but allows approximate string match-
ings of words, instead of only allowing exact matchings.
The SoftTFIDF with a similarity measure s’ for a certain
set S of strings is defined by:

s(s1, s2) =
∑

w∈sw(s1,s2)
Vs(w, s1) × Vs(w, s2) × max

wi∈s2
s′(w,wi)

where sw(s1, s2) is set of words in string s1 such that,
for each word w in sw(s1, s2), there exists a word w’ in
string s2 such that s’(w, w’) is at least a given constant a,

Vs(w, s) =
log(TF(w, s) + 1) × log(IDFs(w))√∑
wi
(log(TF(w, s) + 1) × log(IDFs(w)))2
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where T F (w, s) is the frequency of the word w in s,
and IDFS(w) is the inverse of the fraction of strings in S
that contain the word w. Because they employed the
Jaro-Winkler score as the similarity measure s’ and 0.9
as the constant a in their experiment, we also employed
these values in our experiment.
The Jaro score is defined as follows:

sJaro(s1, s2) =
1
3

(
n′
1

n1
+
n′
2

n2
+
n′
1 − Ts1,s2
2n′

1

)

where n′
1 and n′

2 are the numbers of matching charac-
ters in s1 and s2, respectively, where a character in one
string is matching if the same character is present in the
other string, and they are not farther than min(n1, n2)/2
apart. Then, the Jaro-Winkler score is

sJW(s1, s2) = sJaro(s1, s2) +
max{p, 4}

10
(1 − sJaro(s1, s2)),

where p is the number of common prefix characters
between s1 and s2.
N-gram analysis is also frequently used as a string

similarity measure for various purposes [14-17]. Bigrams
or trigrams are mainly used as a string similarity mea-
sure for clustering terms. In our initial experiment, we
found that bigrams are better than trigrams, for our
purposes. Therefore, we employed bigrams in our
experiment. The similarity used in this paper is the Dice
coefficient, defined as follows [14]:

sn(s1, s2) = 2 × cn(s1, s2)
/
(n1 + n2)

where cn(s1, s2) indicates the number of substrings of
length n in s1 that match length n substrings in s2. Note
that the edit distance is a distance measure, whereas the
others are similarity measures. Thus, the lower the edit
distance, and the higher the other similarities, the better
the chance that the two strings will be clustered.

Term clustering
The problem we want to address is the clustering of the
full form terms corresponding to abbreviations based on
their string similarities.
We assume that every term s is assigned to be a hid-

den element in a certain set of concepts. Many methods
for clustering terms are based on predicating whether
two terms are mapped to the same concept or not.
Therefore, we cast the problem as a binary decision
task, to determine whether to cluster two given terms.
This decision was made based on a similarity measure
and a threshold as a cutoff point. A hybrid model com-
bining multiple similarity measures was not considered,
since the purpose of this work was to test the effect of

different similarity measures when applied to different
groups of terms.
With the task setting, our goal was, for a given set of

terms, to identify the similarity measure and the thresh-
old value that yielded the best set of matchings between
two terms (i.e., the set that best agreed with the set that
was obtained by matching two terms that were mapped
to the same concepts).

Data preparation
This section describes the data-set that we prepared for
the abbreviation-full form clustering experiment. We
defined the pair consisting of an abbreviation and its
full form, as an A-pair. We considered two A-pairs to
be mapped to each other when (1) they shared the same
abbreviation, and (2) the full forms belonged to the
same concept class. The goal of our experiment was, for
pairs of A-pairs with the same abbreviation, to compare
the performances of the clustering methods using a
string similarity of the full forms between chemical
names and non-chemical names.
Figure 1 illustrates the process by which we prepared

the data sets for experiments. The goal was to prepare
two sets of A-pairs, one for chemical names (set C), and
the other for non-chemical names (set D). To evaluate
the performance of automatic clustering, we needed a
gold standard for clustering.
We began with the set of A-pairs (10 193 210 entries)

obtained from the current Allie database. Among the
entries, we collected the A-pairs for which the full form
appears in the UMLS Metathesaurus [18] with CUI
(Concept Unique Identifier). The UMLS Metathesaurus
is the largest thesaurus in the biological domain, and
includes 2 404 937 concepts in the current version
(2011AA). The CUI was then used to determine the
fold clustering of the collected A-pairs (76 750 entries).
Because we wanted to compare the performances of the
similarity measures for chemical and non-chemical
names, we divided the set of A-pairs with the gold stan-
dard of clustering into two subsets: one containing che-
mical names (set C) and the other containing non-
chemical names (set D). To identify chemical names, we
used OSCAR3 [19]. In a set of A-pairs, all A-pairs shar-
ing the same abbreviation were candidates for mapping.
We found 73 992 and 250 084 pairs (of A-pairs) in the
C and D sets, respectively.
In our preliminary experiment, we confirmed that the

frequencies of each letter for chemical names and non-
chemical names were similar. Therefore, the results
should be minimally impacted by the difference of the
letter frequency distributions between chemical names
and non-chemical names.

Yamaguchi et al. BMC Genomics 2012, 13(Suppl 3):S8
http://www.biomedcentral.com/1471-2164/13/S3/S8

Page 3 of 10



Experimental setup
We experimented with the two sets X and Y of mapping
candidates. For each pair of mapping candidates (i.e., a
pair of A-pairs sharing the same abbreviation), the gold
mapping, true or false, was obtained using the CUI. If the
CUIs of the full forms of both A-pairs were the same,
then the mapping was true; otherwise, the mapping was
false. In a series of experiments, similarity measures were
used to predict the mapping, and the performance was
evaluated by comparing the predictions with the gold
mappings. We first computed the four string measures
described in the Subsection “Similarity measures” for all
the pairs, in both X and Y. After that, for each string
measure, we computed the recalls, precisions, and F-
measures of the matchings of chemical names for every
0.05 threshold from 0.0 to 1.0 or from 1.0 to 0.0.

Similarly, we computed those values for the non-chemi-
cal names. In addition, for SoftTFIDF, we computed
these values for every 0.005 threshold from 1.0 to 0.9,
since the peak F-measure for SoftTFIDF was unclear
when using the 0.05 threshold.
Furthermore, we constructed two 26-dimensional vec-

tors, each element of which indicates a weight of an edit
operation of an insertion or a deletion of a character
from ‘a’ to ‘z’ for the length-normalized edit distance.
One vector is optimized by chemical names, and the
other is optimized by non-chemical names. We com-
pared the F-measures of the matchings computed by
using these two weight vectors for chemical names and
non-chemical names.
Finally, we compared the performances of the two

methods. In the first method, all full forms were

Figure 1 Dataset preparation. The flowchart of the process used to obtain datasets X and Y for our experiment.
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matched using the edit distance with the same thresh-
old. In the second method, after dividing the set of full
forms into two subsets according to whether a full form
is a chemical name or not, the full forms were matched
using different thresholds for the two subsets.

Results and discussion
Figure 2 shows the precision, recall, and F-measure of
the mapping performance using the normalized edit dis-
tance for every 0.05 step in the threshold. The best F-
measure performance was found at the thresholds of
0.125 and 0.21428 in the experimental sets X and Y ,
respectively. These results suggest that it is more favor-
able to accept more spelling variations with non-chemi-
cal names to find a good mapping than with chemical
names; further, the optimal threshold was more flexible
with non-chemical names, whereas the performance
quickly dropped around the optimal threshold with che-
mical names. Therefore, we must be more strict in
choosing the threshold for chemical names.
Figure 3, 4, 5 and 6 show the experimental results

using the Monge-Elkan score, SoftTFIDF (two figures:
one is the chart plotted from 0.1 to 0.9 and the other is
from 0.9 to 0.995), and the bigram Dice coefficient.
Although the results from these similarity measures are
less explicit, they agree with the tendency observed with
the length-normalized edit distance. It is notable that
SoftTFIDF generally worked better for non-chemical
name terms, whereas the other similarity measures
worked better for chemical names. Thus, this result

suggests that SoftTFIDF may be suitable for flexible
matching.
Table 1 shows the thresholds, precisions, recalls and

F-measures when the F-measures are maximized to
compare the recalls, precisions and F-measures among
the four string similarity measures. The length-normal-
ized edit distance had the highest F-measure among the
four measures, for the both candidate sets X and Y. This
result is contrary to results reported in [2], which states:
the Monge-Elkan score is the best among alignment-
based measures, the Levenshtein distance is considerably
worse than the Monge-Elkan score, and SoftTFIDF is
the best overall distance measure for their dataset. How-
ever, based on the results presented in Figures 2, 3, 4, 5,
6 and Table 1 we can see that the performances of the
method using the different measures differed greatly
between their dataset and ours.
We compared the length-normalized edit distance

with the SoftTFIDF result by plotting PR curves (Figure
7). As shown in this chart, SoftTFIDF is unsuitable for
use with chemical names, whereas the length-normal-
ized edit distance is suitable for chemical names. For
non-chemical names, the difference between the two
methods was smaller: although the maximum F-measure
of the length-normalized edit distance was larger than
that of SoftTFIDF, SoftTFIDF may be better if we priori-
tize precision. As we wrote in the Subsection “Similarity
measures”, the essential difference between the edit dis-
tance and the Monge-Elkan score is the weight of the
score for an operation. Because we could obtain the best

Figure 2 The distribution of the recalls (R), precisions (P) and F-measures (F) for the matchings of the chemical names (Chemical) and
the non-chemical names (non-Chemical) obtained using the edit distance. The x-axis corresponds to the threshold used to obtain
matchings.
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F-measure for both X and Y datasets by applying the
length-normalized edit distance, we considered the
weighted version of the length-normalized edit distance.
To simplify our analysis, in this paper, we only consider
26-dimensional weight vector whose i-th element corre-
sponds to weight for an operation of an insertion or a
deletion of the i-th character among the letters ‘a’ to ‘z’.

To show the difference of weights for computing scores
between chemical names and others, we computed the
two 26-dimensional weight vectors vc and vn. To com-
pute vc, we started an initial weight vector for which all
the elements are 1:0. Then, we selected one character,
in alphabetical order. We fixed values of all the elements
of the vector, with the exception of the element

Figure 3 The distribution of the recalls (R), precisions (P) and F-measures (F) for the matchings of the chemical names (Chemical) or
the non-chemical names (non-Chemical) obtained using the Monge-Elkan score. The x-axis corresponds to the threshold used to obtain
matchings.

Figure 4 The distribution of the recalls (R), precisions (P) and F-measures (F) for the matchings of the chemical names (Chemical) or
the non-chemical names (non-Chemical) obtained using SoftTFIDF. The x-axis corresponds to the threshold used to obtain matchings.
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corresponding to the selected character, and searched
the value of the element for the selected character with
the highest F-measure for X, by changing the value of
the element in 0.1 at a time. If all the characters were
selected, and all the values with the highest F-measures
were found, we set the vector vc. In a similar way, we

computed vn for non-chemical names. Table 2 shows the
two vectors: vc and vn. For the bold characters ‘e’, ‘h’, ‘p’,
‘x’, ‘y’, and ‘z’, the weight values are very different. Figure 8
and Table 3 show that the weight vector vc improved
the F-measure for chemical names, and the weight vector
vn improved the F-measure for non-chemical names,

Figure 5 The distribution of the recalls (R), precisions (P) and F-measures (F) for the matchings of the chemical names (Chemical) or
the non-chemical names (non-Chemical) obtained using SoftTFIDF with the threshold scale of 0.005 from 0.9 to 0.995. The x-axis
corresponds to the threshold used to obtain matchings.

Figure 6 The distribution of the recalls (R), precisions (P) and F-measures (F) for the matchings of the chemical names (Chemical) or
the non-chemical names (non-Chemical) obtained using the bigram Dice coefficient. The x-axis corresponds to the threshold used to
obtain matchings.
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although vc and vn are used only for insertions and dele-
tions. However, in comparing the three F-measures for
chemical names obtained by using the non-weighted edit
distance, the edit distance weighted by vc, and the edit dis-
tance weighted by vn, the F-measure obtained by vn is the
lowest. It is slightly lower even than the F-measure
obtained by the non-weighted version. Therefore, we can
see that suitable weights are also different between chemi-
cal names and non-chemical names.
Finally, to support our hypothesis presented in the

Section “Background”, we compared the following two
results: one result was obtained by using the length-nor-
malized edit distance with the best threshold for X and
Y combined, and the other result was obtained using
the best threshold for X and the best threshold for Y.
To simplify the comparison, we fixed the recall at 0.8.
Then, we were able to compute the threshold for X by

sorting elements in X by the length-normalized edit dis-
tance, and for each i(0 ≤ i ≤ |X|), by computing the
recall when the top i elements are selected as matched.
Table 4 provides the thresholds and precisions when
recalls were the closest to 0.8: the results indicate that
we can obtain a better result by simply dividing chemi-
cal names and non-chemical names into separate sets.

Conclusions
String similarity measures are frequently used to absorb
the surface variation of terms; e.g., spelling variations,
inflections, and derivations. A typical assumption is that
the terms belong to the same language, and that the dis-
tribution of the characters is fixed. However, the distri-
butions of characters used in chemical names and those
used in non-chemical names vary significantly, because
chemical names are often generated based on particular
nomenclature systems, such as IUPAC. Based on this

Table 1 Comparison of the precisions, recalls and F-
measures among the four methods when the F-measures
were maximized

Method Data Precision Recall F-measure Threshold

Edit X 0.66857 0.61363 0.63992 <0.125

Distance Y 0.46385 0.57731 0.51440 <0.21428

Monge- X 0.25196 0.50524 0.33624 >0.88571

Elkan Y 0.19872 0.58388 0.29652 >0.8125

Soft X 0.536 0.35139 0.42449 >0.96047

TFIDF Y 0.66222 0.37300 0.47721 >0.95113

Bigram X 0.56086 0.67657 0.61331 >0.8

Dice Y 0.37227 0.67197 0.47911 >0.73170

Figure 7 PR curves for the length-normalized edit distance (ED) and SoftTFIDF (ST). We plotted recalls on the x-axis and precision on the
y-axis. Chemical and non-Chemical correspond to the two datasets, the chemical names and the non-chemical names, respectively.

Table 2 Optimized weight vectors for chemical names
and the others

character a b c d e f g h i j k l m

vc 1.0 1.0 1.0 1.0 0.4 1.0 1.0 0.1 0.8 1.0 1.0 0.6 0.6

vn 1.0 0.7 0.7 0.8 1.0 1.0 1.0 0.8 0.8 1.0 1.0 0.8 1.0

character n o p q r s t u v w x y z

vc 0.7 1.0 0.1 1.0 0.9 0.6 1.0 0.2 1.0 1.0 1.0 0.3 1.0

vn 0.7 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.8 1.0 0.0 0.8 0.0

The vector vc indicates the optimized weight vector for chemical names when
operations of insertions and deletions of edit distance are weighted from 0.0
to 1.0. Similarly, the vector vn indicates the optimized weight vector for non-
chemical names.
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observation, we proposed a hypothesis: “chemical names
and other terms have different distributions of character
sequences; thus, the computation of their similarities
should be carried out in different ways.” To test the
hypothesis, we conducted a series of experiments that
can explicate the difference. The results strongly support
this hypothesis.
We performed experimental comparisons of chemical

names and other full forms based on the length-normal-
ized edit distance, the Monge-Elkan score, SoftTFIDF
and the bigram Dice coefficient. We demonstrated that
(1) the length-normalized edit distance method performs
the best when matching full forms according to our data;
(2) for any string similarity measure above, the optimal
thresholds by which to group terms differ between che-
mical and non-chemical names; (3) the matching method
using SoftTFIDF performed better for non-chemical
names than for chemical names, whereas the opposite

results were obtained for the other three measures; (4)
the weight vectors optimized by using non-chemical
names is not suitable for chemical names; and (5) the
matching result using the edit distances further improved
by dividing a set of full forms into two subsets according
to whether a full form is a chemical name or not. These
results indicate that the distributions of the string simila-
rities of semantically similar terms are different between
chemical names and non-chemical names; thus, methods
using string similarities can be potentially improved by
dividing a set of terms into two sets: one consisting of
chemical names and the other consisting of non-chemical
names, and applying different similarity measures and
different thresholds for these two sets.
It would be benefical to expand the domains of full

forms including: gene names, protein names, disease
names, etc. To do so, some non-trivial tasks must be com-
pleted. Such tasks include: determining how to divide
appropriate domains and determining the appropriate way
to divide terms into the domains. To define term domains,
information such as the top 16 categories (“Anatomy”,
“Organisms”, “Disease, Chemicals and Drugs”, and so on)

Figure 8 F-measures for the matchings of the chemical names (Chemical) or the non-chemical names (non-Chemical) obtained using
the length-normalized edit distance (ED), weighted ED using vc (ED vc), and weighted ED using vn (ED vn).

Table 3 Comparison of the precisions, recalls and F-
measures among the length-normalized edit distance,
weighted edit distance using vc, and weighted edit
distance using vn, when the F-measures were maximized

Method Data Precision Recall F-measure Threshold

Edit X 0.66857 0.61363 0.63992 <0.125

Distance Y 0.46385 0.57731 0.51440 <0.21428

Weighted X 0.69673 0.63461 0.66422 <0.08571

ED (vc) Y 0.51077 0.53327 0.52177 <0.14117

Weighted X 0.61412 0.65384 0.63336 <0.125

ED (vc) Y 0.46225 0.60262 0.52318 <0.19473

Table 4 Comparison of the precisions with a fixed recall
(0.8) for the length-normalized edit distance

Precision Threshold

Chemical name 0.383 <0.222

The others 0.211 <0.368

All 0.25 -

Mixed 0.207 <0.333
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of MeSH (Medical Subject Headings) may be helpful. In
addition, providing suitable string similarity measures,
along with providing parameters for each domain, remains
as a task to be completed in the future.
From an engineering perspective, a hybrid model incor-

porating multiple similarity measures in combination, e.g.
support vector machines (SVMs), is more popular than
using individual models. Our plan is to implement a
hybrid model. The hypothesis confirmed in this work will
provide a guideline for designing an effective hybrid
model.
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