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Abstract

Background: Many important biological problems can be modeled as contagion diffusion processes over
interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied
to the general contagion diffusion problem. Two specific problems, computational epidemiology and human
immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within
each compute node of a cluster can effectively be used to speed-up the execution of these types of problems.

Results: We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the
entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2
GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective
techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy
in the results.

Conclusions: We show that interaction-based simulation systems can be used to model disparate and highly
relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-
based simulations can be an effective way to achieve increased intra-node efficiency.

Introduction
Network-based models are natural generalizations of
stochastic mass action models to stochastic dynamics on
arbitrary interaction networks. Consider, for example, a
typical network model for computational epidemiology:

• a network with labeled vertices and edges, repre-
senting people and possible disease transmission
paths, respectively;
• vertex labels, representing the corresponding per-
son’s state of health, i.e., susceptible (S), infectious
(I), or recovered (R);
• edge labels, representing the probability of trans-
mission from one person to another; and

• discrete-time dynamics, corresponding to percola-
tion across the graph, i.e., the label on a vertex in
state S changes to I based on independent Bernoulli
trials for each neighbor in the state I with the prob-
ability specified by the edge between them; the label
on a vertex in state I changes to R with some fixed
probability.

We have developed synthetic networks that can be
used to model diffusion processes for large numbers of
agents (106 - 109) in a variety of domains [1]. These
regional (and national scale) networks were originally
created to model the spread of infectious diseases
through large human populations [2]. They have since
been adapted to also model the spread of malware in
wireless networks [3], and the spread of information,
fads, and norms through friendship networks. Recently,

* Correspondence: kbisset@vbi.vt.edu; feng@cs.vt.edu
1Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA
Full list of author information is available at the end of the article

Bisset et al. BMC Genomics 2012, 13(Suppl 2):S3
http://www.biomedcentral.com/1471-2164/13/S2/S3

© 2012 Bisset et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:kbisset@vbi.vt.edu
mailto:feng@cs.vt.edu
http://creativecommons.org/licenses/by/2.0


we have also extended our methods to develop synthetic
human cellular networks that are useful for modeling the
human immune responses to two gastroenteric patho-
gens - these networks require simulating up to 109 indivi-
dual cells [4]. We have successfully computed the spread
of influenza on a network representing the population of
the United States (270 million people performing 1.4 bil-
lion activities) on a CPU cluster with 768 cores.
Today, computational performance improvements are

increasingly achieved through parallelism within a chip,
both in traditional multi-core architectures as well as
the many-core architectures of the graphics processing
unit (GPU). Amongst the most prominent many-core
architectures are the GPUs from NVIDIA and AMD/
ATI, which can accelerate a large variety of scientific
applications, at very affordable prices [5-7]. Our pre-
vious work on computational efficiency focused on
reducing the communication overhead and improving
the inter-node performance of our simulation systems
[8]. The work described in this paper focuses on
improving the intra-node performance through the use
of GPU accelerators.
Our agent-based models are built on rigorous mathe-

matical foundations - this is one of the unique aspects
of our work. These are called Graphical Discrete Dyna-
mical Systems [1,9-11] In the beginning, we used the
term sequential dynamical systems to describe these
mathematical objects. We now use the term graphical
dynamical systems to be consistent with other graphical
models that have been proposed in the literature, e.g.
graphical inference, graphical games, etc. The mathema-
tical model consists of two parts: (i) a co-evolving gra-
phical discrete dynamical system framework (CGDDS)
that captures the co-evolution of system dynamics,
interaction network and individual agent behavior, and
(ii) a partially observable Markov decision process that
captures various control and optimization problems for-
mulated on the phase space of this dynamical system.
Informally speaking, a CGDDS consists of the following
components: a dynamic graph Gt(Vt, Et) in which ver-
tices represents individual objects (agents) and edges
represent a causal relationship that is usually local, a set
of local state machines (automata), one for each vertex
specifying the behavior of the agents and a set of update
functions, one per edge that describes how an edge can
be modified as a function of the state of its endpoints.
The state and behavioral changes of individual objects
are a function of their internal state and its interaction
with neighboring agents. These neighbors change over
time and space, and thus the model needs to explicitly
represent this network evolution.
CGDDSs serve as a bridge between mathematical

simulation theory and HPC design and implementation.
Like state charts and other formal models, they can be

used for formal specification, design and analysis of
multi-scale biological and social systems. CGDDSs allow
us to reason about efficient implementation and specifi-
cation of interactive simulations. Second, the aggregate
behavior of iterated compositions of local maps that
comprise a CGDDS can be understood as a (specific)
simulated algorithm together with its associated and
inherent computational complexity. We have called this
the algorithmic semantics of a CGDDS (equivalently,
the algorithmic semantics of a dynamical system or a
simulation). It is particularly important to view a com-
posed dynamical system as computing a specifiable algo-
rithm with provable time and space performance.
Together, the formal framework allows us to understand
how and when can network based models be mapped
efficiently onto parallel architectures.

Example modeling domains
While originally created for modeling infectious dis-
eases, EpiSimdemics has also been used to model the
spread of malware in wireless networks, the spread of
obesity and smoking in friendship networks, and inflam-
mation in humans. Below, we describe one of these
domains, Computational Epidemiology, in greater detail.
The spread of infectious diseases such as H1N1, or

recent outbreaks of Cholera in Haiti are important pub-
lic health problems facing the global community. Com-
putational models of disease spread in a population can
support public health officials by helping them to assess
the scope and magnitude of the spread and evaluate var-
ious methods for containing the epidemic. Models of
disease propagation over realistic networks for planning,
response and situation assessment have been used dur-
ing the recent epidemic outbreaks [12-15]. A first step
in developing such models is the synthesis of realistic
social contact networks.
Following Beckman et al. [10,14,16-18], we estimate a

contact network in four steps: (1) population synthesis, in
which a synthetic representation of each household in a
region is created; (2) activity assignment, in which each
synthetic person in a household is assigned a set of activ-
ities to perform during the day, along with the times when
the activities begin and end; (3) location choice, in which
an appropriate real location is chosen for each activity for
every synthetic person; and (4) contact estimation, in
which each synthetic person is deemed to have made con-
tact with a subset of other synthetic people.
The contact network is a graph whose vertices are syn-

thetic people, labeled by their demographics, and whose
edges represent contacts determined in step four, labeled
by conditional probability of disease transmission.
Each of the four steps makes use of multiple stochas-

tic models; the first three incorporate observed data for
a particular region. The synthetic population is
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generated using an iterative proportional fit to joint dis-
tributions of demographics taken from a census [19]. It
consists of a list of demographic variables such as age,
gender, income, household size, and education. Activ-
ities like school, work, and shopping are assigned using
a decision tree model based on household demographics
fit to activity or time-use survey data. This step creates
a “personal day planner” for each person in the synthetic
population. Activity locations are chosen based on a
gravity model and land use data. That is, every synthetic
activity produced in step three is assigned to an actual
location - office building, school, shopping mall, etc. -
based on its distance from the person’s previous activity
and its attractiveness, a measure of how likely that the
activity happens there.
Population synthesis uses a non-parametric, data-dri-

ven model based on US census data for the year 2000
(currently being updated to the 2010 census), including
the Public Use Microdata Sample [20]. The actual activ-
ity templates assigned to households are data-driven,
based on the National Household Transportation Survey
[21]. The gravity model used for location choice con-
tains nine parameters. The locations’ addresses and
attractor values are derived from Dun & Bradstreet’s
Strategic Database Marketing Records.
Disease propagation is modeled by

pi→j = 1 − (1 − risjρ)τ (1)

where pi®j is the probability infectious individual i
infecting susceptible individual j, τ is the duration of
exposure, ri is the infectivity of i, sj is the susceptibility
of j, and r is the transmissibility, a disease specific prop-
erty defined as the probability of a single completely
susceptible person being infected by a single completely
infectious person during one minute of exposure [1].

The EpiSimdemics simulator
EpiSimdemics [2,8] is an interaction-based, high-perfor-
mance computing modeling environment to study pro-
blems represented as a CGDDS. EpiSimdemics allows us
to study the joint evolution of contagion dynamics,
interactor (i.e., agent) behavior and interaction networks
as a contagion spreads. The interaction network is
represented as a bi-partite graph, with interactors (e.g.,
people or cells) and locations (e.g., building or tissue
types) represented as nodes and visits of locations by
interactors represented as edges. Each interactor’s state
is represented as one or more Probabilistic Timed Tran-
sition Systems (PTTS). A PTTS is a finite state machine
where transitions can be timed and probabilistic.
The computation structure of this implementation,

shown in Figure 1, consists of three main components:
interactors, locations and message brokers. Given a

parallel system with N cores, or Processing Elements
(PEs), interactors and locations are first partitioned in a
round-robin fashion into N groups denoted by P1, P2,...,
PN and L1, L2,..., LN, respectively. Each PE then executes
all the remaining steps of the EpiSimdemics algorithm,
given in Figure 2, on its local data set (Pi, Li). Each PE
also creates a copy of the message broker, MBi. Next, a
set of visit messages are computed for each interactor Pi
for the current iteration, which are then sent to each
location (which may be on a different PE) via the local
message broker. Each location, upon receiving the visit
messages, computes the probability of spread of conta-
gion for each interactor at that location. Outcomes of
these computations, called interaction results, are then
sent back to the “home” PEs of each interactor via the
local message broker. Finally, the interaction result mes-
sages for each interactor on a PE are processed and the
resulting state of each affected interactor is updated. All
of the PEs in the system are synchronized after each
iteration, so that the necessary data is guaranteed to
have been received by the respective PEs. The above
steps are executed for the required number of iterations
(e.g., days in an epidemiology simulation), and the
resulting interaction network dynamics are analyzed in
detail. The computation that takes place on line 12 of
the algorithm consumes roughly 60% of the execution
time of the system. It is this portion of the computation
that is offloaded to the GPU. Note that this section of the
computation is purely serial in that it does not require any
inter-process communication. Therefore, any speedup that
is gained through this offload will be applied linearly
across the entire distributed computation.
In general, there is a trade-off between computational

generality and computational efficiency. The more tightly
constrained the problem being simulated, the more the
semantics of the problem can be exploited to increase
computational efficiency. EpiSimdemics is designed to
compute diffusion processes in parallel across a wide
range of domains. For this reason, efforts at increasing
the computational efficiency of the simulator are targeted
at high-level algorithmic and implementation features
that do not, in general, depend on the semantics of the
particular diffusion process being studied. Any diffusion
process that contains an inherent latent period such that
the results of an interaction between two agents does not
immediately effect other interactions should be able to be
simulated efficiently. For instance, when a person
becomes infected through an interaction with a conta-
gious person, the newly infected person is not immedi-
ately contagious themselves.

The NVIDIA graphics processing unit (GPU) architecture
The NVIDIA GPU (or device) consists of a set of
streaming multiprocessors (SMs), where each SM
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consists of a group of scalar processor (SP) cores with a
multi-threaded instruction unit. The actual number of
SMs vary depending on the different GPU models. The
NVIDIA Tesla S2050, which we used for our experi-
ments, consists of 14 SMs, each with 32 SP cores, mak-
ing a total of 448 SP cores.
All the SMs on the GPU can simultaneously access

the device memory, which can be upto 6 GB in capacity.
The device memory can also be read or written to by
the host CPU processor. Each SM has faster on-chip
shared memory, which can be accessed by all the SPs
within the SM and are up to 48 KB in size. The shared
memory can be considered to be a data cache that is
explicitly managed by the computation executing on the
GPU.
The CUDA programming model
CUDA (Compute Unified Device Architecture) [22] is
the parallel programming model and software environ-
ment provided by NVIDIA to run applications on their
GPUs, programmed via simple extensions to the C pro-
gramming language. CUDA follows a code offloading
model, i.e., compute-intensive portions of applications
running on the host CPU processor are typically off-
loaded onto the GPU device for acceleration. The kernel
is the portion of the program that is compiled to the
instruction set of the GPU device and then offloaded to

the device before execution. For this paper, we have
used CUDA v3.1 as our programming interface to the
GPU.
Each kernel executes as a group of threads, which are

logically organized in the hierarchical form of grids and
blocks of threads. The dimensions of the blocks and the
grid can be specified as parameters before each kernel
launch. The kernel is mapped onto the device such that
each thread block is executed on only one SM, and a
single SM can execute multiple such thread blocks
simultaneously, depending on the memory requirements
of each block. The on-chip shared memory of an SM
can be accessed only by the thread block that is running
on the SM, while the global device memory is shared
across all the thread blocks in the kernel.

Results and discussion
Algorithm - EpiSimdemics on a GPU
As discussed before, the most computationally intensive
part of the application, i.e., Compute-Interactions should
be offloaded to the GPU for faster execution. Since each
compute node in our test cluster has a GPU attached to
it, every node accelerates the Compute-Interactions
phase of the algorithm on the dedicated GPU device,
while performing the rest of the computations on the
CPU. Moreover, since each node in the cluster has

Figure 1 The computational structure of EpiSimdemics. The numbers in the diagram correspond to line numbers in the algorithm in Figure 2.
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identical computation and communication patterns, we
can investigate the intra-node parallelization methods
for a single GPU device in isolation. More specifically,
the GPU offload process can be broken down into the
following steps:

1. Transfer the input data from the CPU’s main host
memory to the GPU’s device memory.
2. Invoke the GPU kernel method (computeInterac-
tions()), which does the parallel computation on the
GPU device.
3. Transfer the output data from the GPU’s device
memory back to the CPU’s main host memory.

We invoke the CUDA kernel once per simulation
iteration. Inside each kernel, we loop over all the set of
locations that are being processed by the current node,
and calculate the contagion spread information for each

location for a simulation iteration. The interactions
between agents are computed between all pairs of co-
located occupants, where the interaction is modeled, for
example, by Equation 1. For GPU-EpiSimdemics, the
locations, the interactors, and their respective PTTS
states are transferred to the GPU’s device memory as
input. After processing, the interaction result messages
are transferred back to the CPU’s main memory, which
are then communicated to the other nodes in the clus-
ter, as necessary.
Semantic approximation
In the CPU-only implementation of EpiSimdemics,
interactions between agents are computed using a
sequential discrete event simulation (DES). Each visit by
an interactor to a location is converted into a pair of
events, one each for arrivals and departures. The events
for each agent that visits a location during an iteration
is placed in a list sorted by event arrival or departure

Figure 2 Parallel algorithm of EpiSimdemics. The line numbers in the algorithm correspond to numbers in Figure 1.
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time, as appropriate. The events in the list are then pro-
cessed, starting with the event with the earliest time. An
arrive event causes the agent to be added to the occu-
pant list for the location. A depart event first removes
the agent from the occupant list, and then computes the
interactions, pair-wise, between the departing agent and
each agent remaining in the occupancy list.
The initial GPU version of this algorithm was a

straightforward implementation of the CPU algorithm.
It did not scale well, taking about the same time on the
GPU as on the CPU. This has been reported in the lit-
erature for other similar applications [23]. There are
two main reasons for this. First, the amount of data that
needed to be transferred from the CPU to the GPU was
large compared to the amount of computation that
needed to be performed. Second, the GPU’s SMs per-
form best when executing in a single-instruction multi-
ple-data (SIMD) fashion, which is hard to achieve in a
DES.
In order to improve performance, the DES-based algo-

rithm was converted to a time-stepped algorithm, fol-
lowing a similar procedure to that used in [24]. The
iteration was divided up into time bins, and a matrix
created for each location indicating, for each agent and
bin, how long the agent was present in that location
during the time covered by that time bin. The length of
the interaction between two agents within a time bin is
the minimum of their entries in the matrix. A time bin
of five minutes was used for the results presented in
this paper, which gives a good performance while main-
taining accuracy, as shown in the section on Program
Correctness.
The time-stepped algorithm approximates the DES

algorithm. It may overestimate the interaction time and
it is possible for two agents to interact even if they do
not visit a location at the same time, but are placed in
the same time bin (i.e., one leaves shortly before the
other arrives). An overestimation of the contact time
between two agents can occur only in, at most, two
time bins: the one containing the maximum of the arri-
val times and one containing the minimum of the
departure times. In other words, the first and last bins
in which the agents are both at the location. These may
be the same bin. In all time bins between these two,
both agents are at the location for the time covered by
the time bin, and no over-estimation can occur. There-
fore, the maximum error for a single contact is twice
the bin size. Reducing the size of the time bins reduces
the error in the approximation, at the expense of trans-
ferring more data to the GPU.
As an example, consider four agents, A1-A4, visiting a

location, with the arrival and departure times given in
Table 1. The iteration is divided into three 60 minute
time bins: B1 covers time 0-60, B2 covers 60-120, and

B3 covers 120-180. The length of occupancy of each
agent in each of the time bins is also shown in Table 1.
The approximated length of interaction for each pair of
agents for each time bin is shown in Table 2, along with
the total approximated interaction time and the actual
interaction time. In particular, note the interaction time
between A1 and A2, which is approximated by the
time-stepped algorithm as 10 minutes, when they are
never in the location at the same time.

GPU implementation
In this section, we discuss the mapping of the Compute-
Interactions phase to the computational and memory
units within a GPU. Then, we describe how we used all
the available CPU and GPU resources efficiently to gain
more speed-up and scalability.
Mapping to the computational units
The threads in the GPU kernel are grouped as blocks in
a grid, and parallelism can be exploited at two layers, i.
e., independent tasks can be assigned to different blocks,
while the threads in each block can work together to
solve the assigned task. We can see that the locations
can be processed in parallel, and so the Compute-Inter-
actions phase of EpiSimdemics can map very well to the
hierarchical CUDA kernel architecture, as shown in Fig-
ure 3. More specifically, the set of independent locations
can be assigned to different blocks for parallel proces-
sing. The interactors within a location are then assigned
to independent threads within the block. The threads
(occupants) can cooperatively work together and gener-
ate the set of interaction result messages for their
location.
Mapping to the memory units
All the blocks in a CUDA kernel can access the entire
device memory of the GPU. The input data is therefore
transferred to the device memory from the CPU. The
input data contains information about the occupants in
all the locations, and the PTTS state information of
each occupant in every location. However, access to the
device memory is very slow (400-600 clock cycles [22])
when compared to the faster shared memory or cache
memory. Moreover, the faster shared memory is local to
each CUDA block, where each block processes a single
location. We make use of the faster shared memory by
first explicitly copying the relevant occupants and PTTS
state information from the device memory to the caches,

Table 1 Example of approximation algorithm.

Agent Arrive Depart B1 B2 B3

A1 30 70 30 10 0

A2 90 150 0 30 30

A3 55 130 5 60 10

A4 65 95 0 30 0
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and then do the processing. The movement of data from
the device’s global memory to the faster shared memory
is slow, but it needs to be done just once per location.
The interaction result messages (output data) are
directly stored in the device’s global memory. Figure 3
shows the mapping of the input data to the different
memory hierarchies in the GPU.
We further optimized the device memory accesses and

data access patterns in the shared memory, as suggested
in the CUDA programming guide [22].
CPU-GPU co-scheduling
The GPU kernel offload method uses the available intra-
node parallelism in a GPU and improves the overall
scalability of EpiSimdemics. However, this requires each
CPU to have a dedicated GPU device to which the tasks
can be offloaded for acceleration. But, each node in any
present day cluster will usually have more CPUs (2 - 32)
than the number of GPUs (1 - 4). For example, our test

cluster is made up of 8 nodes with 32 CPU cores per
node. Each node is attached to a dual-GPU system,
which means that 32 CPU cores in every node are con-
tending with each other to offload the kernels to 2
GPUs. The scalability of EpiSimdemics will be poor if
the kernels are offloaded in the default way (by block-
ing), because CPU resources will be wasted in just wait-
ing for a free GPU. Next, we present our ongoing work,
where we have explored different kernel offload techni-
ques to improve the scalability of general multi-CPU-
multi-GPU applications [25]. For our discussions we
assume that each node contains c CPU cores, and each
node is attached to g GPU devices.
Default offload In the default offload method, either g
CPU cores in a node offload the complete kernel to the
g GPU’s (one host core per GPU), or all the c CPU
cores offload a fraction of the kernel simultaneously to
the g GPU’s (c/g hosts per GPU). We should point out
that the multi-CPU offload approach results in the
queuing of both GPU data transfers and kernel execu-
tions, since concurrent accesses to the GPU’s from mul-
tiple GPU contexts is not yet supported by NVIDIA.
Also, the order in which the CPU’s access the GPU’s is
not defined and depends on the GPU’s run-time system.
If the data and the kernel tasks scale according to the

available processing elements, then both the above
approaches will result in the same overall execution
times. This is because the data transfers and kernel
tasks can be simply aggregated and launched from the

Table 2 Results of approximation algorithm for each pair
of interactions, and actual interaction time.

Interaction B1 B2 B3 Approx Actual

A1↔A2 0 10 0 10 0

A1↔A3 5 10 0 15 15

A1↔A4 0 10 0 10 5

A2↔A3 0 30 10 40 40

A2↔A4 0 30 0 30 5

A3↔A4 0 30 0 30 30

Figure 3 Mapping of Compute-Interactions to the NVIDIA GPUs. l1 -ln denote the set of independent locations, and p1-pm indicate the set
of interactors within one of the locations.
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minimum set of CPU cores or split into all available
CPU cores. In some applications, the amount of data
transferred to or from the GPU will be constant, and
does not depend on the kernel size (e.g., some graph
analysis kernels require the complete graph in the device
memory for different sized loads). For such cases, it is
obviously better to aggregate the tasks into g GPU ker-
nels, and offload them independently from g set of CPU
cores. In effect, either types of applications can be mar-
shaled such that, offloading either from g or c CPU
cores produce similar effects.
Cooperative offload While the default offload method
has performance advantages over the CPU-only solu-
tions for certain system configurations, it suffers from
CPU slack, i.e., computational resources will be wasted
in simply waiting for a free GPU. On the other hand,
the cooperative offloading method removes the proces-
sor slack and keeps all the processing cores busy during
the entire kernel execution.
In the cooperative offload method, the tasks to be exe-

cuted on the CPU cores are distributed intelligently
between CPU and GPU cores depending on the relative
speedup of the GPU when compared to the CPU. Simi-
lar to the default offload method, there are a couple of
ways to do the cooperative offloading - (1) Exclusive
mode: g CPU cores are exclusively assigned to specific
host cores to perform the GPU kernel offload, while the
other c − g CPU cores execute the remaining CPU
tasks, or (2) Round-robin mode: access to the GPU is
distributed in a round-robin fashion across the different
host cores in the node, and every CPU core performs
useful computations before and after its turn to execute
on the GPU. The CPU cores communicate the order of
GPU execution via shared memory or explicit message
passing protocols. Typically the threads or processes
within the node asynchronously wait for a ready mes-
sage from the immediately lower ranked thread/process,
before proceeding to use the GPU. Similar to default
offloading, the exclusive mode is more useful if the data
transfer and kernel tasks can be aggregated to be
launched from the minimum set of host CPU cores.
However, some multi-threaded applications are not flex-
ible in dynamic task distribution, and their kernels can-
not be merged and divided as needed. Such applications
will have to launch kernels from their individual threads,
and can adopt the round-robin offloading method to
avoid the GPU resource contention.

Testing
Experimental setup
Data To explore the performance and scalability of the
GPU kernel, we chose a data set that fits in both the
CPU and GPU memories within a single node. Our data
set was synthetic population from the state of Delaware,

consisting of 247, 876 persons and 204, 995 locations.
All results are based on running EpiSimdemics for 55
simulated days and computing the average single day
time across those 55 days.
Hardware We ran our experiments on an eight-node
cluster, where each node had four eight-core AMD pro-
cessors. Each node was attached to two NVIDIA Tesla
S2050 GPUs, which belong to the latest Fermi GPU
architecture family. For most experiments, we used one
CPU core and one GPU on a single node. To study our
ongoing work of the different GPU offload methodolo-
gies, we use 8 CPU cores and both GPUs.
Execution profile
There are two measures of speedup that can be consid-
ered. The first is the speedup of a computational kernel
offloaded to a GPU, as compared to execution only on a
CPU. This measure also includes data structure setup
done on the CPU, and data transfer time between the
CPU and GPU (lines 11 and 12 in Figure 1). We refer
to this as kernel speedup. The second measure compares
the execution of the entire algorithm (lines 3 through
20), including the parts that were not considered for
GPU offload. We refer to this as application speedup.
Figure 4 shows the distribution of the different steps

of the EpiSimdemics algorithm, for both the CPU and
GPU implementations. This result, in particular, was
obtained by running the program on a single CPU and
offloading the Compute-Interactions computation to one
GPU. However, the distribution in the execution profile
remains nearly the same when run on multiple cluster
nodes. This results in a kernel speedup of six and an
application speedup of 3.3 on a single compute node.
Scalability analysis
In this section, we will show the results of executing
EpiSimdemics on up to eight nodes in the cluster. Ide-
ally, in the CPU-only case, the performance improve-
ment of a program should be proportional to the
number of nodes in the system. In practice, we do not
get perfectly linear scaling when we increase the number
of nodes, because of the overhead incurred by commu-
nicating data among the different nodes. By offloading
some of the computation within the node to a GPU, we
can achieve super-linear speedup. Figure 5 shows the
performance improvement of EpiSimdemics (with and
without the GPU) relative to a single node system with-
out a GPU. These results were obtained using only a
single core and single GPU on each node. If multiple
cores and GPUs are used, contention for the GPUs
becomes an issue. This is handled through cooperative
offload, discussed below.
Confirmation of program correctness
We confirm the correctness of the contagion spread cal-
culations when computed on the GPU by comparing
results of the original CPU-only computation to the
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results of the GPU accelerated computation. We do this
by plotting the epi-curves (i.e., new infections per day)
that are generated by EpiSimdemics for both the CPU
and GPU platforms as shown in Figure 6. The epi-curve
for the CPU case is the mean of 25 runs, with error bars
showing the variance within those runs. The epi-curve
for the GPU case falls within the errorbars for the CPU
case, thereby confirming that GPU-EpiSimdemics pro-
duces the same dynamics as the original EpiSimdemics.
Example disease spread
Figure 7 shows a snapshot of the spread of disease in
Delaware’s Kent and Sussex counties on day 34 of one
simulation. The area of interest is divided into small
blocks, and each block is colored according to the num-
ber of infected individuals who live in that block. Yellow
blocks indicate areas of low disease prevalence, while
red blocks indicate higher prevalence.

Evaluating the GPU offload methods
Figure 8 shows the execution profile of all the 8 CPU
cores while applying the default offload method, where
the entire eligible computation is offloaded to the GPU,
and each core must wait for use of the GPU. The execu-
tion time in this and the next two figures is the average
compute time across all 55 iterations on each core. We
can see two idle phases for each core, one when waiting
to access the GPU and the other when waiting for the
other cores to complete there computation.
Figure 9 shows the execution profile of all 8 CPU

cores while applying the cooperative offload method.
We can see that the CPU and GPU cores are kept busy
for a much larger percentage of time and finish at
approximately, which indicates effective co-scheduling.
Also, the EpiSimdemics application cannot be offloaded
in exclusive mode, because it is inherently CPU-centric

Figure 4 Execution time of different steps in the EpiSimdemics algorithm.

Figure 5 Relative performance of EpiSimdemics with and without the GPU with respect to the ideal speedup.
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and task re-distribution is not possible. So, EpiSim-
demics is offloaded in round-robin mode. EpiSimdemics
is found to be 9.5-times faster (kernel speedup) than the
single core CPU-only solution when the cooperative off-
load method is applied.
Figure 10 shows the performance comparison (kernel

speedup) of each of the offloading techniques with the
CPU-only version of EpiSimdemics. We can see that the
cooperative offload method shows the best performance.

Future work
Interaction-based simulation systems can be used to
model disparate and highly relevant problems in biology.
We have shown that offloading some of the work in dis-
tributed interaction-based simulations can be an effec-
tive way to achieve increased intra-node efficiency.
When combined with effective techniques for internode
communication, high scalability can be achieved. We
also described ways to exploit multiple cores and multi-
ple GPUs per node by intelligently scheduling work
across all available processors. In the future, we plan to
explore using other GPU frameworks and GPU-aware
communication libraries that reduce the data transfer
overhead between the CPU memory and the device
memory of the GPU.
We are currently developing a model of gut immunity.

The goals of this model are to build, refine and validate
predictive multiscale models of the gut mucosal immune
system that compute condition-based interactions
between cells for understanding the mechanisms of
action underlying immunity to enteric pathogens.
Instead of people moving among locations as in the
Computational Epidemiology model, immune cells move

Figure 6 Epi-curves validating the correctness of GPU-EpiSimdemics.

Figure 7 Simulated disease spread on day 34 in Kent and
Sussex counties in Delaware. Yellow through red areas indicate
increasing disease prevalence.
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Figure 8 Default kernel offload profile.

Figure 9 Cooperative kernel offload profile.

Figure 10 Performance comparison of the different offload methods.
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among tissue locations. Individual immune cells make
contact and interact with dynamic populations of bac-
teria and cytokines as they migrate within and among
three tissue sites: i) the lumen/lamina propria border,
where epithelial cells reside, ii) the lamina propria, more
generally termed the effector site of the immune
response, and iii) mesenteric lymph node, the inductive
site of the immune response. This level of detail
requires unprecedented scaling on high-performance
computing systems - 107 to 109 cells (agents), simula-
tions with time resolution of minutes for a total period
of years and spatial resolution of 10−4 meters.
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