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Abstract

features and RNA secondary structures.

Background: RNA-binding proteins (RBPs) play diverse roles in eukaryotic RNA processing. Despite their pervasive
functions in coding and noncoding RNA biogenesis and regulation, elucidating the sequence specificities that
define protein-RNA interactions remains a major challenge. Recently, CLIP-seq (Cross-linking immunoprecipitation
followed by high-throughput sequencing) has been successfully implemented to study the transcriptome-wide
binding patterns of SRSF1, PTBP1, NOVA and fox2 proteins. These studies either adopted traditional methods like
Multiple EM for Motif Elicitation (MEME) to discover the sequence consensus of RBP's binding sites or used Z-score
statistics to search for the overrepresented nucleotides of a certain size. We argue that most of these methods are
not well-suited for RNA motif identification, as they are unable to incorporate the RNA structural context of
protein-RNA interactions, which may affect to binding specificity. Here, we describe a novel model-based
approach—-RNAMotifModeler to identify the consensus of protein-RNA binding regions by integrating sequence

Results: As an example, we implemented RNAMotifModeler on SRSF1 (SF2/ASF) CLIP-seq data. The sequence-structural
consensus we identified is a purine-rich octamer 'AGAAGAAG' in a highly single-stranded RNA context. The unpaired
probabilities, the probabilities of not forming pairs, are significantly higher than negative controls and the flanking
sequence surrounding the binding site, indicating that SRSF1 proteins tend to bind on single-stranded RNA. Further
statistical evaluations revealed that the second and fifth bases of SRSF1octamer motif have much stronger sequence
specificities, but weaker single-strandedness, while the third, fourth, sixth and seventh bases are far more likely to be
single-stranded, but have more degenerate sequence specificities. Therefore, we hypothesize that nucleotide specificity
and secondary structure play complementary roles during binding site recognition by SRSF1.

Conclusion: In this study, we presented a computational model to predict the sequence consensus and optimal
RNA secondary structure for protein-RNA binding regions. The successful implementation on SRSF1 CLIP-seq data
demonstrates great potential to improve our understanding on the binding specificity of RNA binding proteins.

Introduction

RNA-binding proteins (RBPs) are implicated in virtually
every step of post-transcriptional gene expression
including pre-mRNA splicing, RNA editing and polyade-
nylation [1]. These proteins possess a diverse array of
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structurally and functionally distinct RNA-binding
domains such as RNA recognition motifs (RRM), KH
domains, RGG boxes, zinc finger, double-stranded
RNA-binding domain, etc [1]. In contrast to DNA,
recognition sites for RNA binding proteins can be pre-
sented diverse structural contexts. Indeed the structural
context of binding sites can have pronounced effects on
protein-RNA interactions [2,3]. Likewise, RNA binding
proteins can alter the folding landscape of RNA
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molecules thereby inducing structured or single
stranded conformations [4]. Given the significant role
RNA folding plays in promoting or inhibiting protein-
RNA interactions methods for evaluating both the
sequence and RNA-structural determinants to binding
specificity will be highly beneficial to the field.

Several methods for elucidating the specificity of pro-
tein-RNA interactions enable rapid advances in our
understanding of RBP functions. One recent innovation
is the Cross-Linking ImmunoPrecipitation (CLIP); CLIP
exploits photoreactive residues in RNA and polypeptides
to generate covalently linked complexes. Because UV
irradiation does not induce protein-protein cross-links
CLIP is thought to be more specific than other IP based
assays for protein-RNA interactions. CLIP was success-
fully applied to identify mRNA targets of the NOVA
protein, a neural splicing factor associated with paraneo-
plasticopsoclonus myoclonus ataxia (POMA) [5-7]. Cou-
pling CLIP with next-generation high-throughput
sequencing technology, known as CLIP-seq or HITS-
CLIP, provides a cost-efficient method to increase the
sensitivity of the assay by surveying the RNA landscape
on a more global scale. Several groups have successfully
implemented CLIP-seq analysis of NOVA, SRSF1, fox2
and PTB proteins in mammalian systems [5,8-10]. Both
MEME and Z-score statistics have been used to reveal
consensus binding motifs that are overrepresented in
CLIP-seq data [5,9]. Although Z-score statistics may be
able to identify the overrepresented sequence motifs, it
does not consider the degenerate feature of the binding
specificities of RBPs. MEME-based method is well
known to be an excellent tool for cases only regarding
sequence specificity [11]. Neither of these approaches
canascertain the roles of RNA secondary structure in
establishing the context of the protein-RNA interaction.
Hiller et al. extended MEME by adding a pre-computing
procedure to measure single-strandedness of RNA
sequence as a prior knowledge to guide the motif
search. They demonstrated that their model, MEMERIS,
is able to identify binding motifs located in single-
stranded regions with both artificial and biological data
[12]. Recently, Kazan et al. proposed RNAcontext for
learning both sequence and structural binding prefer-
ences of RNA-binding proteins [13].

Here we describe a model-based approach—RNAMotif-
Modeler to evaluate protein-RNA interactionsusinga
retained binding affinity ratio, which is considered to be
affected by two major factors—sequence degeneracy and
RNA secondary structure deviation. RNAMotifModeler
incorporates predicted unpaired probability of each
nucleotide in the protein-RNA binding regions; such
probability is derived from RNA secondary prediction
algorithms, such as RNA-fold, based on the nucleotide
compositions of the neighbouring flanking sequences.
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This strategy is different from RNAContext, which uses
predicted RNA secondary structures as input such as
‘Paired’, ‘Hairpin Loop’, ‘Unstructured’ or ‘Miscella-
neous’. Unlike MEMERIS, RNAMotifModeler uses the
base-pairing probability for each nucleotide rather than
the entire binding site. For each binding instance, RNA-
MotifModeler defines a score that evaluates the consen-
sus binding site within an optimal structural context,
and aims at searching for an optimal RNA sequence-
structural consensus for an RNA binding protein. These
features enhance our ability to calculate and estimate
the sequences that yield the highest binding affinity for
a specific RBP.

We tested RNAMotifModeler on CLIP-seq data that
profile the transcriptome-wide binding pattern of
SRSF1, serine/arginine-rich splicing factor 1 [5]. The
sequence features of the binding motifs are consistent
with the experimentally defined cis-acting elements
recognized by SRSF1 [5,14,15]. Interestingly, the predic-
tion suggests that the second and fifth bases of
SRSFloctamer motif have stronger sequence specifici-
ties, but lower p-values of unpaired probabilities, while
the third, fourth, sixth and seventh bases are more sig-
nificantly to be single-stranded, but have less sequence
specificities. Therefore, we conclude that the sequence
and structure specificities are both required and may
play complementary roles during binding site recogni-
tion of SRSF1.

Results

Elucidating the sequence and structural features defining
protein-RNA interactions is a major challenge in the
field. To begin to address this problem we developed a
tool to evaluate the structural context of RNA fragments
co-purified with RNA binding proteins by CLIP. The
results presented here focus on SRSF1; however this
tool will be generally applicable to any RNA binding
protein. SRSF1 is an essential splicing factor with multi-
ple roles in post-transcriptional gene expression [16].
SRSF1 is also a potent proto-oncogene and implicated
in maintaining genome stability [17]. Moreover, loss of
SRSF1 binding sites by mutations linked to genetic dis-
eases can induce aberrant patterns of pre-mRNA spli-
cing [5]. Thus considerable effort has been focused on
defining the binding specificity and RNA targets of
SRSF1. Here we report a novel tool intended to examine
the contributions of structural and sequence elements in
RNA fragments co-purified with SRSF1 by CLIP.

Workflow of RNAMotifModeler

The first step of RNAMotifModeler is to do data pre-
processing. In this study, the data came from our pre-
vious genome-wide profiling of SRSF1 protein’s binding
sites by combining cross-linking immunoprecipitation



Wang et al. BMC Genomics 2011, 12(Suppl 5):58
http://www.biomedcentral.com/1471-2164/12/55/S8

(CLIP) with high-throughput sequencing [5]. In total,
932,152 reads were obtained from SFRS1-bound RNA in
four independent experiments. As a comparison,
670,448 reads were generated from three experiments
performed on nonselected input RNA. After removing
redundant sequences and alignment to the human gen-
ome, we obtained 953 and3374 loci for CLIP and input
RNA samples, respectively.904 positive gold standard
sequences were selected from at least three out of the
four CLIP-seq experiments and absent from the input
sequences. A same number of negative sequences were
randomly picked from non-SRSF1-targeted regions
belonging to the same genomic category (exonic, intro-
nic, intergenic, etc) as their positive counterparts. Base-
pairing probabilities of each nucleotide to its neighbours
were subsequently predicted by RNAfold [18] (Vien-
naRNA package, version 1.7.2) for both positive and
negative gold standard sequences.

Our next step, as shown in Figure 1, is to identify
sequence-structural consensus for the RNA binding pro-
tein based on the gold standard sequences from CLIP-seq
data. We took an iterative approach that alternates
between: 1) optimization of parameters specifying sequence
degeneracy and structural context given a sequence motif,
and 2) search of optimal sequence reference motif given
the estimated parameters by evaluation of each motif
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candidate’s contribution to binding affinities of positive
gold standard sequences. The above two steps will be
repeated until a convergence when the starting motif can-
didate makes the most contribution to binding affinities.

Finally, RNAMotifModeler outputs the converged
sequence motif, optimal parameters, statistical performance
of using the optimal parameters such as the area under the
ROC curve (AUC), etc. The AUC scores are measured by
area under ROC curves derived from predictions of gold
standard sequences being bound by SRSF1 proteins varying
the binding affinity threshold. In order to predict binding
sites of SRSF1 proteins, we pick the sequence binding affi-
nity yielding the maximal prediction accuracy as a cutoff
score. Based on the predicted parameters, positive gold-
standard sequences can be scanned to find all potential
binding sites with binding affinities higher than the cutoff
score. These binding sites can be further used for sequence
logo creation and transformed to positional weight matrix,
which aremuch more widely used.

Convergence of SRSF1 consensus motif searching

We call the converging path from a starting motif can-
didate to the final consensus motif a motif searching
pathway. To have a global overview of the convergence,
motif searching pathways for all motif candidates are
organised together to form a motif searching graph. In
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the particular case of hexamer prediction for SRSF1, the
motif searching pathwaysof all initialized reference
motifs converge to a short list of candidates (Figure 2).
All of the 4096 motif candidates converge within three
iterations, of which 85.7% converge after the first itera-
tion. AGAAGA, AAGAAG and GAAGAA are top three
hexamers with the highest in-degrees, responsible for
99.7% of all motif candidates (Table 1). Despite only one
or two sequence alterations, the other twelvereference
motifs are closely related to these three motifs. It is also
notedthat nearly an equal number of motif candidates
convergeto each one of the top three reference motifs.
More interestingly, these hexamers share a core
sequence of ‘AAGA’indicating that they may be adjacent
to each other in RNA fragments.

SRSF1 consensus motifs of different lengths
RNAMotifModeler provides an option to predict
sequence-structural consensus of different lengths. We
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Table 1 The final converged motifs and their
corresponding numbers of source motifs

Converged motif No. of source motifs

AGAAGA 1484

AAGAAG 1375

GAAGAA 1225
Others 12

have mentioned in the previous section that for short
motifs, it is suggested to perform predictions starting
from every potential motif candidate and generate a
motif searching graph to inspect the global convergence.
For longer motifs, however, it is computationally expen-
sive. In this case, we conduct predictions starting froma
sufficient number of motif candidates randomly picked
from motif space. The converged motif with the highest
prediction power, measured by AUC, is selected as the
optimal one.

GGAGGA &

B )
T

o

® Source motif
@® Destination motif
® Intermediary motif

GAGBAG

Figure 2 Motif searching graph. Source, intermediary and destination motifs are represented by nodes colored in blue, purple and red. The
size of node is proportional to its in-degree. Arrows between nodes indicate reference motif searching pathways. This figure demonstrates the
fast convergence of the vast majority of motif candidates using the Quantum Particle Swarm Optimization algorithm.
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Using the above strategy, we predicted optimal 6nt,
7nt and 8nt consensus motifs for SRSF1 proteins (Addi-
tional file 1(A), (B) and Table 2). Interestingly, the
sequence motifs of different lengths are highly similar to
each other. Comparing their sequence and structural
parameters identified, we can also see a high consistency
among them. Importantly, the predicted unpaired prob-
abilities of these three motifs indicate SRSF1 tends to
bind on single-stranded RNA regions.

Predicted sequence and structural features of SRSF1
binding regions

To better compare RNAMoifModeler predictions with
the SRSF1 binding motif reported previously, here we
focus on octamer predictions. Consistent with the
sequence consensus predicted by MEME [5], the refer-
ence sequence motif for SRSF1 proteins predicted using
RNAMotifModeler is also ‘AGAAGAAG’ (Table 2 and
Figure 3). Based on the predicted optimal parameters,
we obtained an AUC of 0.875 (Figure 4(A)) and an max-
imal accuracy of 0.803 (Figure 4(B)), which are both
higher than the MEME-based prediction, of which the
AUC is 0.86 and maximal accuracy is 0.78 [5]. The opti-
mal parameter matrix searched by RNAMotifModeler is
presented in Table 2. The first row listed the reference
sequence motif identified while the following four rows
include retained binding affinity ratios caused by
sequence alterations. To visualize the predicted SRSF1
sequence consensus more straightforwardly, positive
gold-standard sequences were scanned to search binding
sites with binding affinities higher than the threshold
0.138, based on which a sequence logo was created by
Weblogo [19]. This motif is consistent with the posi-
tional weight matrix (PWM) identified by MEME using
the same gold standard sequences in our previous study
[5], and is similar to the motifs found by other groups
[20-22]. The last row in Table 2 is constituted by
unpaired probabilities for all nucleotides in the motif,
indicating the optimal RNA secondary structure of
SRSF1 binding regions. We note that every nucleotide
of the predicted SRSF1 binding motif has a very high

Table 2 Optimal parameters of the octamer predicted by
RNAMotifModeler.

A G A A G A A G
1.00 0.17 1.00 1.00 0.24 1.00 1.00 0.81
0.79 1.00 0.65 0.90 1.00 0.84 1.00 1.00
052 032 0.50 0.16 035 0.02 0.34 0.63
0.75 0.15 0.39 0.63 0.09 0.06 0.73 0.55
upP 0.99 0.96 0.99 099 0.98 0.99 092 0.83

cnNn o>

The column headers represent the predicted reference motif. The first four
rows indicate the retained binding affinity ratio corresponding to a sequence
alteration from each nt in the reference motif. The last row shows the optimal
unpaired probability (UP) for each nt of the predicted reference motif.
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Figure 3 Sequence consensus logo (the upper panel) and
unpaired probabilities (the lower panel) of SRSF1 predicted by

RNAMotifModeler.

probability to be single-stranded, suggesting that SRSF1
proteins tend to bind on highly unpaired RNA regions.

SRSF1-RNA binding sites are presented as single-stranded
regions

Based on the predicted unpaired probabilities of nucleo-
tides in the converged reference motif, we can conclude
that SRSF1 tends to recognize purine-rich motifs in
regions with a low degree of predicted secondary struc-
ture. To further test the hypothesis that RNA regions
bound by SRSF1 proteins are significantly unpaired, we
compared the unpaired probability of each nucleotide in
the predicted binding sites with two different control
sets of random’binding’sites. In our first control set, we
randomly picked the same number of sites as the pre-
dicted binding sites in each positive gold standard
sequence. P-values were computedfor each nucleotide
based on Wilcoxon rank sum tests, with the alternative
hypothesis that the unpaired probability in predicted
binding sites are higher than controls. Indeed, all med-
ian unpaired probabilities of predicted binding sites are
significantly higher than controls (Figure 5(A)). In the
second control set, we first randomly selected the same
number of exonic fragments that were not targeted by
SRSF1 as the positive gold standards. The length of each
exonic fragment equals its counterpart in the positive
gold standard sequence. We subsequently drew the
same number of random sites as the predicted binding
sites from each control sequence. Wilcoxon tests were
also performed between predicted binding sites and the
second control set of random sites. Again, all the eight
nucleotidesof binding sites in CLIP sequences are signif-
icantly more single-stranded (Figure 5(B)). The boxplots
of the unpaired probabilities of the random sites in the
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two control sets and the predicted binding sites are
shown in Figure 6(A), (B) and 6(C), respectively.

The two groups of Wilcoxon testsdemonstratethat
binding sites predicted by RNAMotifModeler are not
only more unpaired in positive gold standard sequences
than those not targeted by SRSF1, but also less structured
than by chance within themselves. More interestingly,
comparing Figure 5(A) with Figure 3, we found that the
second and fifth nt of SRSF1 motif have much stronger
sequence specificities but lower p-values in the Wilcoxon
tests against controls, while the third, fourth, sixth and
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Figure 5 Results of Wilcoxon tests with the alternative
hypothesis thatthe unpaired probabilities in the predicted

binding sites are higher than negative controls randomly
drawn from (A) the same positive gold-standard sequences,
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and (B) random sequences.

seventh positions are more significantly single-stranded
but have less sequence specificities, suggesting that both
the sequence and secondary structure play complemen-
tary roles in the specificity of SRSF1-RNA interactions.

Comparisons of predictions before and after
incorporating RNA structure information
RNAMotifModeler can be used to predict sequence
consensus motifs enriched in CLIP data without evalu-
ating the structural context of the co-purified RNA.
We then investigated whether inclusion of the
unpaired probablities for each nucleotide or not contri-
butes to the consensus motif elucidated by RNAMotif-
Modler. Using the same positive and negative gold-
standard sequences, we identified the same reference
motif ‘AGAAGAAG’ and a very similar sequence para-
meter matrix. However, we obtained anAUC 0f0.853
and a maximal accuracy of 0.789, suggesting a slightly
reduced prediction power when discarding RNA sec-
ondary structure information (Additional file 2). Using
the identified parameter matrix based on only sequen-
ceswe predicted 2295 binding sites, of which 81% are
commonly identified by incorporating RNA secondary
structure information (Figure 7(A)). The unpaired
probabilities of the other 437 binding sites are signifi-
cantly lower than previously identified binding sites
(Figure 7(B) and 7(C)). Except the third nucleotide of
motif, all of the unpaired probabilities of these binding
sites are even lower than background, indicating that
binding sites predictions may result in a considerable
number of false positives caused by ignoring RNA sec-
ondary structures. Bringing in RNA secondary struc-
ture information, we found 1046 more binding sites.
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Figure 6 Unpaired probabilities of nucleotides of (A) a control set of binding sites randomly selected from negative goldstandard

sequences (B) a control set of binding sites randomly selected from positive goldstandard sequences, and (C) binding sites predicted

by RNAMotifModeler in positive gold standard sequences.

These binding sites may have low sequence specifici-
ties, but their binding affinities can be complemented
by high structure specificities. Although the AUC
increases only by 0.023 after introducing RNA second-
ary structure information, false positive and false nega-
tive binding sites are both significantly reduced.

Discussion
In recent years, there is an increasing interest in using
high-throughput sequencing technology to study pro-
tein-RNA binding patterns, but almost all of current
bioinformatic approaches used for this purpose do not
take into account RNA secondary structures, which
have been demonstrated to have critical impact on pro-
tein-RNA binding in previous biochemical experiments.
Thus, the starting point of our proposed model-RNA-
MotifModeler is to predict both structural and sequence
specificities of protein-RNA binding regions. We
demonstrated the potential of RNAMotifModeler by an
application to predicting binding specificities of SRSF1
proteins and obtained a reference motif of ‘AGAA-
GAAG’ with a parameter matrix including retained
binding affinity ratios caused by sequence degeneracy, as
well as probabilities for nucleotides being unpaired.
RNAMotifModeler incorporates RNA secondary struc-
ture using RNAfold-derived probabilities of nucleotides
being paired with its neighbours. The preference for
base-pairing probabilities over RNA secondary struc-
tures is due to a couple of concerns: a) It is very difficult
to take into account RNA secondary structures directly
in many real applications because of multiple RNA fold-
ing choices including optimal and sub-optimal struc-
tures; b) Unlike MEMERIS, RNAMotifModeler tries to
identify the optimal structural feature that is expected
to represent the base pairing probability for each
nucleotidein motif. Therefore, we did not use

measurements of single-strandedness of the entire pro-
tein-RNA binding regions in MEMERIS [12]. ¢) The
base-pairing probabilities predicted by RNAfold program
[18] encode all possible secondary structures.

We note from our prediction results that almost all
unpaired probabilities of bases in the reference motif of
SRSF1 predicted by RNAMotifModeler are close to 1,
suggesting a very strong preference of SRSF1 to single-
stranded RNA. The statistical significances were further
proved by Wilcoxon tests on unpaired probabilities of
nucleotides between predicted binding sites and ran-
domly selected sites in random exonic fragments that
were not targeted by SRSF1. Another group of Wil-
coxon tests show that the unpaired probabilities of pre-
dicted binding sites are all significantly higher than
thoserandomly selected in the same positive gold-stan-
dard sequences, indicating that SRSF1 proteins indeed
have strong bias to single-stranded regions. These find-
ings are consistent with previous conclusions in the lit-
erature. It is known that SRSF1 protein contains an
arginine-serine rich region (RS domain) and two RNA
recognition motifs (RRMs), through which SRSF1 recog-
nizes specific RNA regions [23,24]. Importantly, RRM is
one of single-stranded RNA-binding domains of pro-
teins [25]. Comparing the sequence consensus and p-
values derived from Wilcoxon tests, we propose that
sequence and structural specificities may be two com-
plementary factors that are both facilitating the binding
site recognition of SRSF1.

RNAMotifModeler also provides an option to predict
only sequence consensusmotif based on gold-standard
protein-RNA binding sequences. In the specific applica-
tion to SRSF1, we found that the prediction power is
still comparable with MEME-based approach, although
the AUC and maximum accuracy were both reduced
when RNA secondary structure information was not
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incorporated. Using predicted reference motif and
sequence degeneracy parameters we identified 2295
binding sites, of which 437 are not included in the bind-
ing sites predicted after incorporating structure informa-
tion. Interestingly, the unpaired probabilities of these
437 binding sites predicted by RNAfold are even lower
than random sites selected by chance. Based on previous
biological studies, we argue that these binding sites are
probably false positives, although they satisfy the
sequence specificity requirements.

Two parameters—the number of particles Mand the
contraction-expansion coefficient § of the Quantum
Particle Swarm Optimization greatly affect the predict-
ing accuracy of RNAMotifModeler. To estimate and set
up these parameters prior to the optimization proce-
dure, we did a series of hexamer motif searching tests
with Menumerated from 10 to 10000 and § ranging
from 0 to 1 for SRSF1 CLIP-seq data. The AUC scores
resulted from optimizations using all parameter combi-
nations are presented in 3D heatmaps (Additional file
3). We observed a much more rapid decrease in predic-
tion power as B becomes lower when M is small. In

contrast, when f is sufficiently high, the AUC score is
not greatly affected by M. Thus, the greater M and f3
are, the higher prediction performance RNAMotifMode-
ler would achieve. However, under the consideration of
computational efficiency, we have to consider the time
consumed in each test (Additional file 3). The time con-
sumed is exponential to the increment of the number of
particles, and is not actually controlled by B. When m is
100 and B equals 1.0, RNAMotifModeler achieved a
high AUC score of 0.86 within three minutes. These
two parameters are then selected for all the other opti-
mizations for the SRSF1 dataset used in this study.
Convergence of optimization algorithms used in predict-
ing protein-DNA or protein-RNA binding sites is a com-
mon concern due to a number of parameters to be fitted
in model. In this report, we proposed motif searching
pathways and motif searching graphs to inspect whether
or not the algorithm of RNAMotifModeler indeed has a
good convergence property. Importantly, the convergence
of randomly initialized motif candidate to final targets
turned out to be very fast. Thus, for short motifs, we sug-
gest generate such a motif searching graph in order to
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have a global landscape of all possible converged motifs
and their possible relationships, as they are possibly parts
of a common longer motif.

Despite our successful characterization of the binding
features of SRSF1 proteins, our future work will be
applying RNAMotifModeler to studying specificities of
other RNA binding proteins such as fox2, NOVA and
EWS, for which high-throughput sequences are
available.

Methods

Predicting RNA base-pairing probabilities

One of the distinct features of RNAMotifModeler is that
the information of secondary structures of the RNA
regions bound by SRSF1 proteins is incorporated into
the motif identification. For each nucleotide in the RNA
fragment, we calculate the base pairing probability using
the RNAfold function of the Vienna RNA package (ver-
sion 1.7.1) [18]. The base pairing probability is used
since it integrates likelihood of single-strandedness over
multiple possible RNA secondary structures. For the
CLIP-seq derived RNA fragments, these probabilities are
generated based on the base pairing probability of base i
being paired with base j, denoted as p,;. The binding
probability of base i with all other neighbouring bases,
defined as P;, is calculated by:

ns i—1
p; = Z Py + iji, (1)
i1

j=i+1

where #; is the length of sequence s. Similar strategies
are also used elsewhere [26,27].

Modelling protein-RNA binding affinities

In RNAMotifModeler, the consensus of each binding
motif is defined by the following components: 1) The
reference motif, a k-base RNA sequence on which the
protein preferably binds; 2) Retained binding affinity
despite of a one-nucleotide deviation from reference
motif to the sequence of one binding sites. For each k-
base motif, there are 3k retained binding affinities that
describe all the possible deviations from reference motif.
For instance, if the i-th base of the reference motif and
a specific binding site is m; and f;, respectively, the
retained binding affinity is defined as Mim.f; 3) a vector
that denotes the optimal base pairing probability of k
bases in the motif 8 = (0,); and 4) the penalty for the
deviation from the optimal base pairing probability o.
All these parameters will be optimized iteratively. A
matching score describing the similarity between an
RNA fragment (F) and a reference motif (R) is defined:

L—Fk+1
SrF = max (SrE1). (2)
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Where Si £, is the binding affinity for /-th binding site:

k
SrE] = ((Mirmirﬁ,i) (1 —xe |6i — Py, |))’ ®)
i=1

where Py, represents the pairing probability of the i-th
nucleotide in the RNA fragment F, calculated in Eq. (1).
This matching score integrates the loss of binding affi-
nity caused by both nucleotide and structure deviances
from reference motif. We denote the parameter asso-
ciated to the reference motif R as Ag = (1,0, &)z, where
@,0 and arepresent the 3k retained binding affinities,
optimal base pairing probability of k bases, and the pen-
alty for the deviation from the optimal base pairing
probability, respectively.

Identify the optimal reference motif from CLIP-seq data

We adopted an iterative approach to identify the opti-
mal reference motif and its associated parameters, using
a Quantum Particle Swarm Optimization algorithm
(QPSO) [28]. The iterative strategy includes the selec-
tion of reference motifR, and optimization of the para-
meters associated to the reference motif Ag. The overall
procedure includes the following steps:

1. Randomly select a motif candidate R;,;; from the
motif searching space M = {b1b,...by : by,by,..bx € {AG,
C,U}}as the reference motif.

2. Optimize the parameters for the reference motif by
maximizing its ability for characterizing the CLIP-seq-
derived RNA fragments.

Step 2.1. Parameter initiation. We first create M parti-
cles in the parameter space by randomly selecting num-
bers from U(0,1).

Step 2.2. Particle evaluation. For each particle (para-
meters), we evaluate its capability for distinguishing the
CLIP-seq-derived RNA fragment from background
sequences. We plot an ROC (Receiver Operating Char-
acteristic) curve by adjusting the matching score thresh-
old, calculated in Eq. (2). The quality of the parameter
is evaluated based on the AUC (area under the curve) of
the ROC plot.

Step 2.3. Particle update. Let x;glfbeSt(t) and Aglobatbestp)
be the best individual particle and the population of par-
ticles has met at the ¢-th iteration. To guarantee conver-
gence, each particle must converge to its local attractor
xfbeSt[ZS]. Compute xfbesz(t) and the mean of the best
positions of all particles A" (¢) as follows:

Xﬁ?eﬁ(t) _ ((Pl . )L;fjlfbest(t) - )L;glohalbest(t))/(wl + (/)2) (4)

m

)L]T”b“t(t) _ Z kz?m(t)/m, (5)

i=1

where ¢; and ¢,are random variables following U(0,1);
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QPSO employs Monte Carlo method to update para-
meters:

M) = B - I (1) = (0] In(1fu), k=05

hij(t+1) =174 ,
i+ 1) )\fgt(t)+ﬂ-|)\f’b"“‘t(t)—)L,-,j(t)l-ln(l/u), k<05

(6)

where f is called contraction-expansion coefficient
controlling the convergence speed of QPSO; u and k are
random variables which also follow U(0,1).

Repeat Step 2 and Step 3 until |A8°P#0est (14 1)- pglobatb-
“Y(t)| < & repeatedly, in which ¢ is a tolerance used here
as a criterion for the algorithm to terminate;

3. Based on the final parameter vector A8°?#/**  the
maximal binding affinity of motif candidate K in positive
gold standard sequence F is:

agF = af\e/ig; aK,For (7)
where Qg r denotes the set of all binding sites for motif
K in sequence F; ay r is also computed by Eq. (3).

Let n; and #n,, be the number positive gold standard
sequences and the number of motif candidates, respec-
tively. Let Sg,,, F be the maximal binding affinity com-
puted using optimized parameters for the initial
reference motif R;,;, in sequence F. Although R;,;, is a
reference motif, Sg,,,r is not necessarily contributed by
a binding site instance of R;,;,. In contrast, the ‘real’
reference motif contributes are always expected to con-
tribute more to the binding affinities. Thus, to evaluate
contributions of all motif candidatesto binding affinities
ofpositive gold standard sequence, we define
¢ = [cek]F=1,2,..n,K=1,2,.n, as the motif contribution
scorematrix:

CFK = 0, ag,F #SRxerF (8)
0T ’
1, akF = SRy F

and v = [vk|k=1,2,n, as the motif contribution score
vector:

s
VK = Z CEK) )
F=1

We denote the motif associated with the maximum
score in v as R, If R, = Ripip, meaning the initia-
lized reference motif accounts for the most contribution
to the retained binding affinities, then we stop the itera-
tion; otherwise, let R,,,, be the next R;,;;, and repeat
steps 2 and 3 until convergence.

Motif searching pathways and graph

The route from original assumed reference motif to the
final converged motif is called a motif searching path-
way. Different initialized motifs may converge to differ-
ent final motifs. Therefore, to investigate the
convergence performance of RNAMotifModeler, it is
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important to enumerate all possible convergence path-
ways and find out what are the final converging points.
For the specific example of SRSF1 protein, we used
RNAMotifModeler to predict the optimal parameters
for each one of 4096 motif candidates. All pathways are
summarized and illustrated in a graph in Figure 2 using
Cytoscape (version 2.6.1) [29]. Source motifs (all initial
motifs), intermediary motifs (motifs which are neither
final nor initial motifs) and destination motifs (con-
verged motifs) are colored in blue, purple and red col-
ors, respectively. The arrow from a source motif to an
intermediary or destination motif denotes one motif
transit. From the graph, we observe that the vast major-
ity of original motifs transited to only three motifs,
which we believe are the best candidates of reference
motifs for SRSF1 proteins.

RBP binding motif logo

Although RNAMotifModeler provides a parameter
matrix consisting of retained binding affinity ratios due
to sequence mutations and structure alterations at each
base, it is not straightforward for people to comprehend
the sequence consensus. Thus, we provide an alternative
way to generate a Positional Weight Matrix (PWM) and
corresponding sequence logo. First of all, once RNAMo-
tifModeler reaches a convergence, we obtain the optimal
reference motif, estimated parameters, ROC curve, AUC
score and the accuracy curve. At the peak of the accu-
racy curve we choosecorresponding binding affinity as a
cutoff. Then, we trace back to each positive gold stan-
dard sequence and search all binding sites with binding
affinities higher than the cutoff score. These predicted
binding sitesare subsequently used to compute a corre-
sponding PWM and create a sequence logo based on
Weblogo [19].

Additional material

Additional file 1: Optimal 6nt and 7nt sequence-structural
consensus for SRSF1 proteins predicted by RNAMotifModeler. The
upper panel (A) and the lower panel (B) show the sequence and
structural parameters identified for motif of length ént and 7nt,
respectively.

Additional file 2: Prediction results based on RNAMotifModeler
excluding the information of RNA secondary structure. (A) ROC
curve (B) Accuracy curve, and (C) consensus sequence logo.

Additional file 3: 3D heatmaps illustrating (A) the prediction power
and (B) time cost of RNAMotifModeler affected by the number of
particles and the Contraction-Expansion coefficient which are two
critical parameters of QPSO algorithm.
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