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Abstract

Background: Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most
metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money
and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic
sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed.
Since DNA sequences obtained in this second step also contain rDNA fragments, rapid in silico identification of
these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by
entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this
study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from
amongst millions of sequences in metagenomic data sets with high detection sensitivity.

Results: Performance evaluation with data sets/database variants simulating typical metagenomic scenarios
indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in
less than an hour on a simple desktop with modest hardware specifications.

Conclusions: In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the
algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire
experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic
approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects.

Availability: A web-server for the i-rDNA algorithm is available at http://metagenomics.atc.tcs.com/i-rDNA/

Background
The majority of microorganisms present in natural eco-
systems cannot be cultured in the laboratory and hence
remain unexplored. To exploit the potential of this
unexplored diversity, the new field, called metage-
nomics, has been initiated in the recent years.
The first step in a typical metagenomics project

involves estimating the microbial diversity present in the
environmental sample under study. Obtaining accurate

estimates of this diversity is an important step and
forms the first objective of any metagenomics project.
Analyzing 16S ribosomal RNA (16S rRNA) gene (com-
monly referred to as 16S rDNA) sequences is the most
commonly used method for rapidly estimating microbial
diversity [1,2]. This method is based on the following
premise. Major portions of the 16S rDNA sequence are
highly conserved across all bacterial and archaeal species
[3]. Using primers that can hybridize with these con-
served portions, 16S rDNA sequences of most of the
microbes (both culturable and un-culturable) in a given
environmental sample are directly amplified, cloned and
sequenced. Subsequently, the taxonomic affiliation of
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the obtained 16S rDNA sequences is identified using
16S rDNA sequence analysis platforms such as Green-
genes [4], RDP classifier [5], etc. Enumerating the num-
ber of 16S rDNA sequences assigned to various
taxonomic clades helps in quantifying the relative abun-
dance of various organisms/taxa present in the given
environmental sample.
In the second step of any metagenomics project, the

entire genomic content of the environmental sample
under study is extracted and sequenced. Millions of
DNA sequences originating from the genomes of var-
ious microbes in the sample are thus obtained. Using
computational techniques, the genes harbored in these
DNA sequences are identified and functionally
characterized.
Since the first step, i.e the 16S rDNA profiling, is

expected to provide a near comprehensive snapshot of
microbial diversity, almost all metagenomic projects
spend considerable amount of time, money and man-
power for completing the various experimental proce-
dures involved in this step. For instance, in a
metagenomics study performed by Manichanh et al.
(2008), the process of 16S rDNA extraction and amplifi-
cation (for a relatively small sample of just 50,000
sequence clones) took approximately 6 months and
required three persons and the cost incurred was more
than $70,000 of materials and equipments [6].
Since the sequences obtained from the complete DNA

content of an environmental sample (in the second step
mentioned above) contains rDNA fragments, it is possi-
ble (in theory) to computationally identify these rDNA
fragments directly from the sequenced environmental
DNA. Considering the availability of faster and cheaper
sequencing technologies, such as 454 [7], the applicabil-
ity of an alternative in silico approach to identify 16S
rDNA fragments directly from the completely sequenced
metagenomes will be immense, since it would not only
save huge amount of time, efforts and money (by
bypassing the entire experimental step of primer based
16S rDNA amplification, cloning and sequencing), but
would also circumvent various experimental limitations
associated with 16S rDNA profiling [8-10]. The recently
published ‘meta-rna’ program [11] represents a fairly
successful attempt in developing such an alternative in
silico approach. As a pre-processing step, this program
uses the HMMER program [12] for first building a set
of HMMs (Hidden Markov Models) that reflect/repre-
sent the sequence conservation found within rDNA
sequences in archaeal and bacterial clades. During run
time, the program aligns sequences in a given metage-
nomic data set against these precomputed HMMs, and
sequences showing significant alignment scores (in
terms of e-value) to these models are identified by the
meta-rna program as 16S rDNA fragments.

In spite of having significantly high detection sensitiv-
ity (even with metagenomic sequences as short as 100
bp), enormous compute time is needed by the meta-rna
program for analyzing huge metagenomic data sets. Our
experiments (on a desktop having 2 GB RAM and 2.33
GHz dual-core processor) with simulated data sets indi-
cated that the meta-rna program takes approximately
19, 49, 84 and 156 milliseconds for analyzing a query
sequence of length 100, 250, 400, and 800 base pairs
(bp), respectively. At this rate, approximately 325 hours
(i.e. greater than 13 days) would be needed for analyzing
the 7,521,215 sequences (average length around 800 bp)
constituting the Global Ocean Sampling Expedition
Microbial Metagenomic data sets [13-15]. Even for a
relatively smaller data set, such as the mouse gut meta-
genome, consisting of 1,744,283 sequences with average
length around 100 bp [16], the total analysis time
needed by the meta-rna program would exceed 9 hours.
A careful examination of the analysis procedure

reveals that the meta-rna program needs to analyze
every individual sequence in a given metagenomic data
set to identify rDNA fragments. Besides being time con-
suming, analyzing every sequence is also not an ideal
procedure (especially in this case) given the following
observation. Several recent studies on metagenomic data
sets obtained from diverse environments such as Sar-
gasso sea [13], soil [17] and sludge [18] have indicated
that the percentage of metagenomic sequences that har-
bor portions of the rDNA gene is generally less than
0.2%. In this paper, we propose an approach termed as
i-rDNA (identification of ribosomal DNA) that can
rapidly identify a small subset of metagenomic
sequences (from amongst all sequences constituting the
complete data set) that, in high probability, harbor por-
tions of the rDNA gene. Sequences belonging to only
this (small) subset can further be analyzed using the
meta-rna program. We demonstrate that adopting the i-
rDNA program as a precursor step to the meta-rna pro-
gram reduces the overall detection time by several fold.
Importantly, this significant reduction in analysis time
does not affect the overall detection sensitivity.

Results
i-rDNA algorithm
The i-rDNA algorithm is based on the following pre-
mise. Major portions of the 16S rDNA gene sequence
are highly conserved across all bacterial and archaeal
species. Consequently, 16S rDNA sequences are
expected to have an oligonucleotide composition dis-
tinct as compared to the oligonucleotide composition of
DNA sequences originating from other portions of the
genome. Therefore if genome fragments obtained from
all known bacterial and archaeal genomes are clustered
based on oligonucleotide usage patterns, fragments
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harboring portions of the 16S rDNA gene sequence
(irrespective of their taxonomic origin) will get spatially
localized to a ‘few’ clusters in feature vector space with
high frequency. In the pre-processing step, the method
presented in this paper identifies these ‘few’ clusters
(amongst all clusters in feature vector space) and tags
them as ‘probable’ rDNA clusters. While performing the
actual analysis (i.e during actual run time), the i-rDNA
algorithm first identifies a set of clusters (amongst all
clusters) whose sequences have an oligonucleotide com-
position similar to that of the query sequence being ana-
lyzed. Subsequently, i-rDNA algorithm classifies a given
query sequence as a ‘probable 16S rDNA fragment’ if
the overlap between the set of clusters (identified as
compositionally similar to that of the query sequence)
and the set of clusters pre-tagged as ‘probable 16S
rDNA clusters’ exceeds a pre-determined threshold per-
centage. Given that the run time steps of the i-rDNA
algorithm only involves finding the closest clusters (in
terms of oligonucleotide composition) for a given query
sequence, and subsequently checking if the overlap per-
centage (between the closest clusters and the pre-tagged
‘probable 16S rDNA clusters’) exceeds a pre-determined
threshold, the i-rDNA algorithm is able to rapidly ana-
lyze huge metagenomic data sets within a short span of
time and identify (a small set of) probable rDNA frag-
ments from amongst millions of sequences constituting
the complete metagenomic data set. The meta-rna algo-
rithm can then be employed for analyzing this small set
of candidate 16S rDNA query fragments.
Figure 1 illustrates the various steps of the i-rDNA

approach (described above). Details of the procedure fol-
lowed for (a) pre-clustering bacterial and archaeal gen-
ome fragments, (b) identifying and pre-tagging a subset
of clusters as ‘probable 16S rDNA clusters’ and (c)
determining the value of the ‘overlap percentage’ thresh-
old are given in methods section.

Validation
Twelve simulated metagenomic data sets were used for
evaluating the performance of the i-rDNA algorithm.
Three of these data sets (referred to as simLC-Sanger,
simMC-Sanger and simHC-Sanger) were downloaded
from http://fames.jgi-psf.org/. These simulated data sets
of varying taxonomic complexity (Low, Medium and
High) were constructed by combining real time sequen-
cing reads from 113 organisms listed in Additional File
1. These simulated ‘gold-standard’ data sets [19] are
generally used for evaluating the performance of algo-
rithms used in metagenomic analysis. Using the same
coverage values used while creating these 3 simulated
data sets (having real time reads from Sanger sequen-
cing technology), we applied the program MetaSim [20]
on the same 113 organisms for generating 9 more data

sets. These additional data sets can be divided into three
groups having sequences of average lengths 400, 250
and 100 base pairs respectively. Sequences in these data
sets thus simulated the typical sequence lengths
obtained from existing sequencing technologies, namely
454-Titanium (sequence length centered around 400
bp), 454-Standard (250 bp), and Roche-GS20 (100 bp).
These 12 simulated data sets were first given as input

to the meta-rna algorithm. The number of rDNA frag-
ments identified in each data set by the meta-rna algo-
rithm was noted down. The same data sets were then
given as input to the i-rDNA algorithm. Sequences iden-
tified by the i-rDNA algorithm as ‘probable’ 16S rDNA
fragments (in each data set) were consequently given as
input to the meta-rna algorithm. The number of rDNA
fragments identified in this two step procedure (invol-
ving both i-rDNA and meta-rna) and the overall analysis
time taken for this alternative approach was noted
down. Results of these experiments are given in Table 1.
The overall pattern of results indicates that the two-

step procedure (i-rDNA followed by the meta-rna) is able
to detect around 85-94% of 16S rDNA fragments in a
given data set. Around 9-17% of sequences in the data
sets are observed to be predicted by the i-rDNA algo-
rithm as ‘probable 16S rDNA sequences’. As expected,
providing this relatively small subset of ‘probable’
sequences as input to the meta-rna algorithm (instead of
the whole input data set) results in 6-11 fold reduction in
the overall processing time. It is significant to note that
negligible time is required by the i-rDNA algorithm for
identifying the initial 16S rDNA candidate set. The i-
rDNA algorithm is able to process approximately 35,000
sequences/minute. For example, i-rDNA algorithm pro-
cessed 1,744,283 mouse gut metagenome sequences [16]
in 50 minutes, and in the process it identified 180,795
‘probable’ 16S rDNA sequences. Another 56 minutes
were needed by the meta-rna algorithm for analyzing this
subset of probable candidates identified by i-rDNA. The
overall processing time for this data set was thus reduced
from 552 minutes (~9 hours) taken by meta-rna to 106
minutes (less than 2 hours) by i-rDNA followed by meta-
rna. A similar estimate on the 7,521,215 sequences in the
Global Ocean Sampling Expedition Microbial Metage-
nomic data sets [13-15] indicates a significant reduction
in total analysis time from approximately 325 hours (>13
days) to 34 hours (< 2 days).
Given that the final objective of ‘computationally’

identifying 16S rDNA fragments is to obtain a taxo-
nomic profile of any given metagenomic data set, any
loss in detection sensitivity by the i-rDNA approach will
be ‘acceptable’, only if the ‘reduced detection sensitivity’
does not significantly alter the taxonomic profile of a
given metagenomic data set. Using a recently published
metagenomic data set, the following experiment was
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performed to verify if ‘similar’ taxonomic profiles are
obtained by providing input sequences to (1) i-rDNA or
(2) directly to the meta-RNA program. Approximately
1.3 million sequences constituting the metagenomic
data set sampled from a malnourished child [21] were
provided as input to (1) i-rDNA and (2) directly to the
meta-RNA program. Providing the entire data set
directly to the meta-RNA program identified 3276 16S
rDNA sequences. On the other hand, the i-rDNA pro-
gram (in conjunction with the meta-RNA program)
identified 2678 16S rDNA sequences (approximately
82% of 3276 sequences). The RDP classifier [5] was

subsequently used for obtaining the taxonomic profile of
sequences identified as 16S rDNA fragments by either
methods. The taxonomic profiles obtained were then
compared at various taxonomic levels.
Results of the above experiments (summarized in

Table 2) indicate that the taxonomic profiles (in terms
of groups identified along with their relative percen-
tages) obtained using 16S sequences predicted by either
methods are very similar. Consequently, the marginal
loss in detection sensitivity of the i-rDNA program does
not seem to impact the obtained taxonomic profile.
Moreover, the time taken by the i-rDNA approach for

Figure 1 Steps of the i-rDNA approach Flowchart illustrating the various steps followed by the i-rDNA approach.
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analysing this metagenome was observed to be approxi-
mately 6 times lesser (4.3 hours) as compared to that of
the meta-RNA program (25.3 hours). The above results
reaffirm the suitability/applicability of the i-rDNA pro-
gram for analysing real metagenomic data sets.
To further demonstrate the applicability of the i-

rDNA algorithm for typical metagenomic data sets
(wherein a majority of sequences originate from new or
hitherto unknown taxonomic clades), it is important to
test the present algorithm’s ability in detecting the
rDNA fragments originating from organisms belonging
to new (or hitherto unknown) taxonomic clades. For
this purpose, the following ‘leave one clade out’ testing
strategy was adopted. In an iterative manner, 16S rDNA
sequences belonging to a species or genus or family or
order or class or phylum were not considered while pre-
computing the ‘probable 16S rDNA clusters’ (section B
in methods). These six different simulated scenarios
were referred to as ‘NEW SPECIES’, ‘NEW GENUS’,
‘NEW FAMILY’, ‘NEW ORDER’, ‘NEW CLASS’ and

‘NEW PHYLUM’, respectively. Subsequently, these left
out sequences (which now simulate sequences from an
unknown species or genus or family or order or class or
phylum respectively) were tested against the respective
modified set of ‘probable 16S rDNA clusters’. These
tests were also carried out using four sequence lengths
(100, 250, 400 and 800 bp) that mimicked sequences
obtained using the four commonly used sequencing
technologies mentioned above.
Table 3 shows the detection sensitivity of the i-rDNA

algorithm with 16S rDNA fragments originating from
new species, genus, family, order, class and phylum.
Results indicate that, for query sequences having lengths
greater than 250 bp, the i-rDNA algorithm is able to
detect fragments of 16S rDNA originating from new
organisms (belonging to even an entirely new phylum)
with greater than 75% sensitivity. Even with the weak
composition signal obtained from sequences with length
as low as 100 bp, the detection sensitivity of the i-rDNA
algorithm is observed to be greater than 70%. This

Table 1 Results indicating detection sensitivity and fold-reduction in search-space achieved using the i-rDNA
algorithm

Validation
data set

Total number
of sequences

(X)

i-rDNA predicted
‘probable 16S rDNA’

sequences (Y)

Fold reduction in
search space (X/

Y)

meta-RNA predicted
16S rDNA sequences

(A)

i-rDNA predicted 16S
rDNA sequences within

‘A’ (B)

Detection
sensitivity
(B*100/A)

SimLC
-Sanger

97493 9262 10.5 183 156 85.2

SimMC
-Sanger

114456 10873 10.5 268 236 88.1

SimHC
-Sanger

116770 10505 11.1 392 341 87.0

SimLC-454-
400

224422 30663 7.3 268 241 89.9

SimMC-
454-400

268350 36145 7.4 337 312 92.6

SimHC-454-
400

267076 37492 7.1 452 407 90.0

SimLC-454-
250

359076 53795 6.7 404 374 92.6

SimMC-
454-250

429360 65498 6.6 506 476 94.1

SimHC-454-
250

427321 64922 6.6 679 637 93.8

SimLC-454-
100

897689 153505 5.8 845 776 91.8

SimMC-
454-100

1073401 174535 6.2 1035 971 93.8

SimHC-454-
100

1068303 130974 8.2 1514 1371 90.6

* X = The total number of sequences in a given data set; Y = Total number of sequences predicted by the i-rDNA program as ‘probable rDNA sequences’ in that
data set

** A = The total number of 16S rDNA sequences predicted by meta-rna program in the entire data set;

B = Number of 16S rDNA sequences within the subset of ‘probable r-DNA sequences’ predicted by i-rDNA
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indicates that the i-rDNA algorithm can be used for
detecting 16S rDNA fragments from typical metage-
nomic data sets, wherein majority of organisms belong
to hitherto unknown species, genus, family, order, class
and phyla.

Discussion
A typical metagenomic analysis comprises of two major
phases of experimentation. The first phase involves iso-
lation, amplification and sequencing of the rDNA

content of the environmental sample to obtain estimates
of taxonomic diversity. In the second phase, the entire
genomic content of the environmental sample is
sequenced and analyzed. Both phases therefore involve
costs with respect to time, money and manpower for
carrying out experimentation and analysis. Given the
ability of the approach (i.e using i-rDNA algorithm in
conjunction with the meta-rna program) to accurately
and rapidly identify rDNA fragments directly from the
sequenced genomic content (obtained in the second

Table 2 Comparison of the taxonomic assignments* of 16S sequences (identified by i-rDNA and the meta-RNA
program) in the malnourished child gut metagenome# at the taxonomic levels of (A) Order (B) Class and (C) Phylum.

(A) Order 16S sequences identified by Percentage of 16S sequences identified by

i-rDNA meta-RNA i-rDNA meta-RNA

Bacteroidales 1456 1469 60.9 59.5

Campylobacterales 247 286 10.3 11.6

Clostridiales 208 208 8.7 8.4

Fusobacteriales 143 182 6.0 7.4

Aeromonadales 143 130 6.0 5.3

Enterobacteriales 78 78 3.3 3.2

Burkholderiales 78 78 3.3 3.2

Mycoplasmatales 13 13 0.5 0.5

Erysipelotrichales 13 13 0.5 0.5

Bifidobacteriales 13 13 0.5 0.5

TOTAL 2392 2470

(B) Class 16S sequences identified by Percentage of 16S sequences identified by

i-rDNA meta-RNA i-rDNA meta-RNA

Bacteroidia 1456 1469 60.5 59.2

Epsilonproteobacteria 260 286 10.8 11.5

Gammaproteobacteria 221 221 9.2 8.9

Clostridia 208 208 8.6 8.4

Fusobacteria 143 182 5.9 7.3

Betaproteobacteria 78 78 3.2 3.1

Mollicutes 13 13 0.5 0.5

Erysipelotrichi 13 13 0.5 0.5

Actinobacteria 13 13 0.5 0.5

TOTAL 2405 2483

(C) Phylum 16S sequences identified by Percentage of 16S sequences identified by

i-rDNA meta-RNA i-rDNA meta-RNA

Bacteroidetes 1508 1599 61.1 60.3

Proteobacteria 572 624 23.2 23.5

Firmicutes 221 221 8.9 8.3

Fusobacteria 143 182 5.8 6.9

Tenericutes 13 13 0.5 0.5

Actinobacteria 13 13 0.5 0.5

TOTAL 2470 2652

* The taxonomic affiliations were obtained by providing the sequences as input to the RDP classifier (Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007 73(16):5261-7.

# Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS. Metagenome of the gut of a malnourished child. Gut Pathog. 2011 May 20;3:7.
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phase), the in silico approach suggested in this paper has
the potential to completely bypass the first phase of
experimentation, thereby eliminating the costs asso-
ciated with this phase.
It should be noted that conservation of oligonucleotide

usage patterns within rDNA genes forms the premise of
the i-rDNA algorithm. Consequently, the subset of
sequences predicted by the i-rDNA algorithm as probable
rDNA fragments is a mix of true 16S rDNA fragments
and other genomic fragments (from non-rDNA gene
regions) sharing an oligonucleotide composition similar to
the rDNA genes. However, the size of the predicted subset
(by i-rDNA) as a proportion of the total data set is
observed to be around 10-15%. This indicates that the oli-
gonucleotide composition of approximately 10-15% of
genomic regions in prokaryotic organisms resembles that
of the 16S rDNA gene. This region is probably well con-
served and would be interesting for further analysis. How-
ever it should be noted that the subsequent use of the
meta-rna program of this predicted subset helps in identi-
fying the true set of rDNA fragments in the given data set.
As demonstrated in this paper, using the meta-rna pro-
gram on the subset of the sequences (predicted by i-
rDNA), rather than the whole data set results in significant
saving of time with minimal loss in detection sensitivity.
Furthermore, given the premise of the i-rDNA algo-

rithm is based on conservation of oligonucleotide usage
patterns, the i-rDNA approach can, in principle, be
applied for the identification of any phylogenetic marker
gene exhibiting universal sequence conservation at
nucleotide level. The current study involving 16S rDNA
sequences (as marker genes) can be taken as a proof of
concept for the above assertion. However, the following
aspects need to be considered before extending the i-
rDNA approach to other phylogenetic marker genes.
First, the marker gene should be conserved across all
phylogenetic clades. Second, sequences belonging to the
marker gene should also be available in sufficient num-
bers. This is important given that the training process
(in the i-rDNA approach) involves identification of a set

of ‘probable marker gene clusters’. The higher the num-
ber of marker gene sequences available, the more robust
is the training process.
The initial step in the i-rDNA approach involves (a

one-time) pre-clustering of genomics fragments gener-
ated from completely sequenced microbial genomes. In
the present study, the time taken for performing this
initial step was only about 3 hours on a simple desktop
(2.33 GHz Intel dual core processor, 2GB RAM). This
includes the time taken for (1) generating all the vectors
(2) the actual clustering step, as well as, for (3) obtaining
the vectors corresponding to the final cluster centroids.
However, it should be noted that the initial clustering
step (as well as the steps followed by i-rDNA for identify-
ing a set of ‘probable rDNA clusters’) is a ‘one-time’ pro-
cess. The actual run-time steps of the i-rDNA approach
do not involve a repetition of the initial clustering steps.
The final detection of 16S rDNA fragments within the

i-rDNA approach is dependent on the detection sensi-
tivity of the downstream meta-RNA program. Results in
the original published paper [11] of the meta-RNA pro-
gram indicate high detection sensitivity. Even in our
experiments, the percentage of 16S sequences missed by
the meta-RNA program was observed to be negligible.
For instance, the meta-RNA program failed to detect
only 6 out of 63,325 high quality 16S rDNA sequences
downloaded from the RDP database. We performed an
evaluation of such sequences (that were observed to be
missed by the meta-RNA program) in the following
manner. Using ClustalW [22], we generated a multiple
sequence alignment and the corresponding trees indicat-
ing the relative distances between 16S rDNA sequences
(missed by meta-RNA) and representative sequences of
the corresponding genera. It was observed that 16S
rDNA sequences missed by meta-RNA are relatively dis-
tant from other representative sequences belonging to
the same genera. For instance, the 16S rDNA sequence
(Sequence Id: S001045291) belonging to Mycobacterium
sp. 1764, was observed to be highly distinct as compared
to 16S rDNA sequences of other species belonging to

Table 3 The performance of i-rDNA algorithm in six different simulated metagenomic scenarios.

Source of the query sequence Percentage of 16S rDNA gene fragments correctly identified by i-rDNA algorithm

Length of the query sequences

800 bp 400 bp 250 bp 100 bp

New species 96.4 94.1 91.3 85.3

New genus 94.5 91.3 85.3 71.2

New family 93.5 90.2 84.1 70.6

New order 92.3 90.1 84.8 70.6

New class 91.0 90.0 83.8 70.0

New phylum 89.2 88.4 82.4 69.5
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genus Mycobacterium. The resulting tree (generated
using ClustalW) for these sequences is shown in Figure
2. In this figure, sequence S001045291 (belonging to
Mycobacterium sp. 1764) is observed to be placed at a
relatively higher distance from the other 16S rDNA
sequences belonging to genus Mycobacterium. Given
that the meta-RNA program uses universal HMM mod-
els (one each for Bacteria and Archaea) for predicting
16S rDNA fragments, it is expected that the meta-RNA
program will miss such 16S rDNA sequences having
deviant sequence architectures.

Conclusions
The paper presents an algorithmic approach that can
rapidly identify probable 16S rDNA sequences from
metagenomic sequence data sets typically constituted of
millions of sequences. The detection sensitivity of this
algorithmic approach has been validated using simulated
sequence data sets generated using four different
sequencing technologies (with sequence lengths ranging
from 100 bp to 800 bp). Validation results, even using
simulated metagenomic data sets (wherein 16S rDNA
sequences originate from entirely new taxonomic
clades), indicate high detection sensitivity by the
approach discussed in this paper. Furthermore, the i-
rDNA algorithm is able to process a million metage-
nomic sequences in less than an hour.
In addition to the speed of execution and the high

detection sensitivity, the utility of the approach dis-
cussed in this paper would be immense since it would
bypass the entire experimental step of primer-based
rDNA amplification, cloning and sequencing. This
would result in drastically reducing the cost, time and
human efforts invested in all metagenomic projects.

Methods
(A) Clustering microbial DNA sequences
DNA sequences from microbial genomes can be clus-
tered based on compositional characteristics such as

oligonucleotide usage patterns. For this purpose, fna
files (which contain entire genome sequences) corre-
sponding to 237 completely sequenced microbial gen-
omes (one representative from each genera) were
downloaded from NCBI (http://ncbi.nlm.nih.gov/). Each
genome was split into 1,000 base pair fragments. Fre-
quencies of all possible tetra-nucleotides were computed
for each fragment and stored as 256 dimensional vec-
tors. Using k-means clustering approach [23], vectors
corresponding to each of these fragments generated
from all the microbial genomes were clustered. The
Manhattan distance (L1 norm) between individual vec-
tors was used as the similarity measure for clustering.
Once the clustering process was completed, vectors cor-
responding to the centroid of each individual cluster (i.e
cluster centroids) were computed and stored.

(B) Identification of ‘probable rDNA clusters’
For this purpose, 63,325 high quality 16S rDNA sequences
were downloaded from the RDP database [24]. For every
sequence, a vector representing the frequencies of all 256
tetra-nucleotides was generated. The Manhattan distance
of each vector to all pre-computed ‘cluster centroids’ was
obtained. Clusters having the least distance with each indi-
vidual vector were identified. This process was repeated
using vectors corresponding to each of the 63,325 16S
rDNA sequences. The frequency with which each cluster
was picked up by these sequences was calculated. Clusters
having the highest frequency (picked up by a minimum of
10,000 16S rDNA sequences) were identified and tagged
as ‘probable 16S rDNA clusters’.
A flowchart illustrating various steps for (A) clustering

genomic fragments and (B) identification of ‘probable
rDNA clusters’ is provided in Figure 3.

(C) Determining optimal threshold values for ‘cumulative
sequence count’ and ‘overlap percentage’
There are two run-time values needed by the i-rDNA
algorithm. First is the optimal number of closest clusters

Figure 2 Analysis of a 16S rDNA sequence missed by meta-RNA program. A ClustalW tree depicting a 16S rDNA sequence (Sequence Id:
S001045291) from the species Mycobacterium sp. 1764 as outlier compared to other sequences from the genus Mycobacterium. The meta-RNA
program misses this sequence because of its’ distinct sequence architecture.
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to be identified for a given query sequence. Second is a
value for ‘overlap percentage’ between the closest clus-
ters and the pre-tagged ‘probable 16S rDNA clusters’.
The objective was to find the right combination of these

values to ensure that the i-rDNA algorithm achieves
highest detection sensitivity in the least possible time.
For this purpose, 55 genomes (listed in Additional File
2) were used for generating four training data sets each

Figure 3 Pre-processing steps of the i-rDNA approach. A flowchart illustrating various steps for (A) clustering genomic fragments and (B)
identification of ‘probable rDNA clusters’
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having 550,000 sequences. These 55 organisms were
chosen carefully to ensure that there is minimal taxo-
nomic overlap between the organisms in the training
and the validation data sets. The taxonomic similarity
status between the 112 organisms of the validation sets
and the 55 organisms in the training sets is given in
Additional File 1.
The i-rDNA algorithm was applied on these training

data sets using varying values for the above mentioned
two parameters. The value of the first parameter (i.e the
number of closest clusters to be identified for a given
query sequence) was varied by progressively increasing
the value of an encoded parameter, which we termed as
‘cumulative sequence count’. For a given query
sequence, the value of cumulative sequence count is
obtained by progressively adding the number of
sequences in the identified closest clusters (which are, in
turn, pre-sorted in ascending order of their distance to a
given query sequence). Therefore, the number of closest
clusters identified for a given query sequence increases
with increasing value of ‘cumulative sequence count’.
The i-rDNA algorithm was applied on the four training
data sets using varying values of (a) ‘cumulative
sequence count’ (ranging from 20K to 80K sequences)
and (b) overlap percentage (ranging between 20% to
80%). For each combination of parameter values, two
results (A and B) were noted down. While value ‘A’
represented the percentage of training data set
sequences reported by i-rDNA as ‘probable’ 16S rDNA
fragments, value ‘B’ represented the percentage of ‘true’
16S rDNA fragments found within the subset of
sequences reported by i-rDNA as ‘probable’ 16S rDNA
fragment. The idea was to find the right combination of
A and B to ensure that the i-rDNA algorithm achieves
highest detection sensitivity in the least possible time. In
an ideal scenario, the value of A should be the lowest
possible, and the value of B should be the highest possi-
ble. A low ‘A’ value will result in only a small subset of
query sequences being redirected to meta-rna program
for further analysis. At the same time, the right subset
of query sequences should also be picked by the i-rDNA
program to ensure minimal loss in detection sensitivity
(i.e. resulting in a high value for B).
Results of the above experiments are summarized in

Additional File 3. The optimal combination for values
‘A’ and ‘B’ (for each sequence lengths) are indicated in
bold in the respective tables. Values in these tables were
also used for computing the true positive and false posi-
tive rates for various thresholds of ‘cumulative sequence
count’ and ‘overlap percentage’. Using these true posi-
tive and false positive rates, receiver operator character-
istics (ROC) curves were generated for different data
sets. The methodology used for computing the true
positive, false positive rates and the corresponding

analysis on the generated ROC curves are provided in
Additional File 4.

Additional material

Additional File 1: List of the 112 organisms constituting the simLC,
simMC and the simHC data sets along with their representation
status with respect to the 55 genomes of training data set.

Additional File 2: Llist of of 55 organisms used for generating four
different training data sets corresponding to the sequence lengths
of Sanger, 454-Titanium, 454-Standard, 454-GS20 sequencing
technologies.

Additional File 3: The training results obtained using various
combinations of ‘cumulative sequence count’ (20K, 30K 40K, 50K,
60K, 70K, 80K) and ‘overlap percentage’ (20%, 30%, 40%, 50%,
60%, 70%, 80%). The four tables 3A-D (in this file) show results
obtained with Sanger, 454-400, 454-250 and 454-100 training data
sets respectively.

Additional File 4: Summary of the methodology used for
computing the true positive/false positive rates and the
corresponding analysis on the generated ROC curves

List of abbreviations used
i-rDNA: identification of ribosomal DNA; MetaSim: Metagenomic sequence
Simulator.
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