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Abstract

Background: The challenge today is to develop a modeling and simulation paradigm that integrates structural,
molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at
multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological
process and also reduces the computational overhead. This objective motivates the use of new methods that can
transform the problem from energy and affinity based modeling to information theory based modeling. To achieve
this, we transform all dynamics within the cell into a random event time, which is specified through an
information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based
modeling approach to find the molecular dynamics of the system.

Results: In this paper, we present the discrete event simulation concept using the example of the signal
transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory
system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the
molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions
coming to a cell receptor as external signal. This model transforms the diffusion process into the information
theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using
these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system.

Conclusions: Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic
transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in
cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able
to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.

Introduction
Advancement in high-throughput biological experiments
has generated huge amounts of empirical data on the
molecular foundations of biological structures and func-
tions that require computer models for analysis. The
next challenge is to understand the complex interactions
of biological processes and functions creating the

intelligence of life. The complexity increases manifold as
we move into higher scales: interaction of large ensem-
ble of cells in a tissue or interaction of tissues in an
organ. Thus, we need to develop a comprehensive
model integrating molecular and genetic data for quanti-
tative studies of physiology and behavior of biological
processes at multiple scales [1].
Existing models used in the understanding of biologi-

cal processes can be divided into three main classes.
Quantum Mechanics based models (femtosecond-pico-
second; 1 1A nm− ) are used to understand the structure
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of macro molecules. The functional understanding of
biological molecules (like binding properties, configura-
tion states after binding and other individual properties
of the molecular reactions) are well studied by the
Molecular dynamics based model (picosecond-nanose-
cond; 1nm-10nm). The next challenge is to understand
the biological intelligence created by the usage of the
macro molecules in the cell. These are accomplished by
the Mesoscale Dynamics (nanosecond-seconds; 10nm-
1mm) models, and Cellular-level/Organ-level simulation
schemes. Such simulation schemes are again broadly
classified into two categories: (a) Continuous system
models [2-6], employing differential equations to simu-
late cellular dynamics used in tools like Dizzy [6] and
JARNAC [3]; (b) Stochastic discrete time models, like
StochSim [7] and M-cell [8], that have been developed
for capturing the stochastic nature of molecular interac-
tions within the existing framework of rate equations in
continuous time domain. Most of these models focus on
intracellular biochemical reactions and require accurate
estimation of a very large number of system parameters
for providing systemic understanding of underlying pro-
cesses. More integrative tools at the whole cell level
have also been developed, which try to model cellular
mechanisms and present visual representation of their
functionality [9,10].
Recently, it was shown that gene expression type

interactions create a stochastic resonance [11] within
the system and hence deterministic models are inap-
propriate for this process. The Gilliespie simulation [12]
incorporates the dynamics of the chemical master equa-
tion by approximately handling the stochasticity of the
mass-kinetic equations. As the temporal variability of
reaction time is appreciable within a biological process,
this method suffers from simulation stiffness. Moreover,
this model represents the biological pathways through a
set of reaction equations without showing their relation
to the biological functions creating the pathway. Any
change in the pathway description may change the com-
plete set of equations. Also their approach has computa-
tional overheads and require estimates of all the rate
constants. With the existing systems in perspective, we
present a discrete-event driven paradigm - modeling a
composite system by combining the state variables in
the time-space domain as events and determining the
immediate dynamics between the events by using statis-
tical analysis or simulation methods. To reduce compu-
tational overhead we transform the different diffusion
and molecular interactions within a cell from the ther-
modynamic energy based fields to the information the-
ory field by suitable abstraction of the energy field
profiles into selected statistical distributions. Our goals
are to [13][14]: (1) Use the results of the Quantum
Mechanics based models (molecular structure data) and

Molecular dynamics models (molecular binding data) to
create the micro-level biological event models. (2) Trans-
form the energy driven biological effects to information
theory parameters in the probabilistic domain consider-
ing the biological functions. (3) Develop event models to
estimate the statistics of the biological event. (4) Develop
a discrete-event based “in silico” simulation for complex
systems.
The rest of the paper is organized as follows. We

briefly present an overview on the different modeling
and simulation paradigms in Section Modeling and
Simulation landscape. Next, we introduce the discrete
event based simulation framework in Section Discrete
Event Simulation Technique. In Section PhoPQ Biologi-
cal System Model, we present the concept of event
abstraction of biological pathways using the PhoPQ bio-
logical system in Salmonella. We introduce the analyti-
cal models for the molecular transport mechanisms in
Section Analytical Models for Molecular Transport. In
Section Numerical Results for the Molecular Transport
Models, we present the performance results and valida-
tion of the molecular transport models. Section Simula-
tion Results of the PhoPQ system presents some in
silico results from the discrete event simulation of the
PhoPQ system, to validate the performance of the simu-
lation engine and also provides some examples of in
silico hypothesis tests. Finally, we conclude in Section
Conclusion and provide some directions for future
work. A short version of this paper appeared in [15].

Modeling and simulation landscape
The inherent complexity involved in the molecular pro-
cesses governing life has motivated the development of
computational modeling and simulation techniques to
decipher their ensemble dynamics. In this section, we
provide an overview of the wide spectrum of in silico
modeling and simulation methodologies available for
system-wide study of biological processes.
Mathematical models have being extensively used for

intracellular molecular networks like kinase cascades
and metabolic pathways, gene regulatory networks and
protein interaction networks. A large section of the
work in computational models of biological systems is
based on classical chemical kinetic (CCK) formalism
based on a set of ordinary differential equations (ODE),
also known as reaction rate equations or mass action
kinetics [16]. Representing a homogeneous biological
system as a set of biochemical reactions, the temporal
dynamics of the molecular species is studied in the con-
tinuous-deterministic domain. A large number of com-
putational tools, which provide a software platform for
building, storing and parameterizing a set of biochemical
reactions and solving those using numerical techniques,
are available, like Gepasi [2], Jarnac [3], CyberCell [8],
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Promot /DIVA [17], Stode [18]. These rate-based mod-
els have been successfully applied to study gene expres-
sion and other molecular reaction systems.
While continuous-deterministic reaction models are

capable of capturing behavioral dynamics for spatially
homogeneous systems with large number of molecular
species, the inherent stochasticity observed in many bio-
logical processes (gene expression and protein synthesis)
have proven the limitation of CCK in accurately repre-
senting biological processes. In a recent article [16],
Arkin et.al have shown the limitations of CCK in several
common biological scenarios, where stochastic reaction
dynamics present a more accurate picture of the systems
behavior. Stochastic models, which present an accurate
approximation for the chemical master equation (CME),
have been developed, largely based on Gillespie’s algo-
rithm [12,20,12]. In this method, the next reaction event
and the time associated with it are computed based on a
probability distribution (Monte Carlo Step). Stochastic
tools, like StochSim [7], have been developed based on
Gillespie’s technique and its computationally efficient
variants like Gibson-Bruck [21] and tau-leaping [22-24].
A large number of tools, which provide an integrative
environment to build and study biochemical reaction
systems in an exchangeable format (like Systems Biology
Markup Language (SBML)) using deterministic as well
as stochastic techniques are available, like E-Cell [25],
Virtual Cell [26], Dizzy [6], CyberCell [27], and M-Cell
[28]. These techniques are based on treating a biological
process as a system of equations, represented by their
rate constants and other parameters (like volume, cell
density etc.) and simulating their interactions through
numerical techniques or Monte Carlo based stochastic
simulations.
Another technique in building abstract computa-

tional models for biosimulation has been developed
based on Petri nets [29-31] and stochastic process
algebra [32]. These methods present a mathematical
formalism for representing biochemical pathways
within and between cells. In [30], the authors present a
stochastic Petri net (SPN) model for studying simple
chemical reactions (SPN model of ColE1 plasmid repli-
cation) and show how existing softwares can be used
to perform structural analysis based on numerical
techniques. Discrete event system specifications based
on Devs &amp; StateCharts [33] and Stochastic π cal-
culus [34] have been successfully demonstrated to pro-
vide a computational platform for temporal simulation
of complex biological systems. Hillston et. al have
developed a mathematical technique, Performance Eva-
luation Process Algebra (PEPA) [32], wherein function-
ality is captured at the level of pathways rather than
molecules and the system is represented as a continu-
ous time Markov chain.

Other simulation methodologies, based on object
oriented and agent based (ABM) paradigms have also
been studied for in silico modeling of complex bio-pro-
cesses by Uhramacher et.al [35-37]. In [38], the authors
have developed AgentCell, an ABM based digital assay
for the study of bacterial chemotaxis. Simulation plat-
forms, based on discrete events, where the events are
modeled on rate constants and measured experimental
data, have been demonstrated in [9,39].
The overarching theme, guiding the development of in

silico modeling and simulation tools, is developing mod-
els based on continuous-deterministic ODEs or using
stochastic simulation algorithms (SSA) for approximat-
ing the chemical master equation, which capture the
temporal evolution of the biological process dynamics.
Most of these techniques focus on molecular pathways,
which are represented in graphical and mathematical
formalisms, treat spatial dynamics in terms of well-
defined cellular compartments, and abstract the
complexity in terms of estimated parameters and rate
constants. In the next section, we briefly outline our
modeling and simulation technique, based on a discrete
event system specification, where the molecular events
(representing reactions, molecular/ionic transport etc)
are mechanistically modeled depending on their biophy-
sical characteristics to compute the probability distribu-
tion of their execution times. A discrete event
simulation system then links the biological processes to
simulate the behavior emerging from the interaction of
the events in time.

Discrete event simulation technique
In a discrete-event based approach, the dynamics of the
system are captured by discrete time-space state vari-
ables, where an event is a combined process of large
number of state transitions between a set of state vari-
ables accomplished within event execution time. The
underlying assumption is that it is possible to segregate
the complete state-space into such disjoint sets of inde-
pendent events which can execute simultaneously with-
out any interaction.
We consider a biological process as a system of

resources (typically the various molecules, ions, ribo-
some-chromosome operon etc involved in the system)
that periodically change between one of the following
four states (Figure 1) based on the underlying resource
usage algorithms: (i) ‘used’ (e.g, an enzyme is busy in a
reaction), (ii) ‘idle’(e.g, an enzyme is free to enter a new
reaction), (iii) ‘created’ (e.g, a molecule is created by a
reaction) and (iv) ‘decayed’ (e.g, a molecule is in the
process of disintegration at the end of its life-cycle). The
transitions from one state to another are governed by
transition flow rates of the dynamic functions involved
in the process in a cell. The process is initiated by a set
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of input signal(s) from the external world to the system.
These input signals initiate the creation of dynamic
events which drive the simulation across in time
domain, capturing how the system resources change
states.
Two types of event models are required for this: (1)

event execution time, and (2) probability of next event
type. Figure 2 shows a section of the reaction pathway
of a biological process with these two types of events. A
salient feature of this approach is the balance between
computational complexity and accuracy of the estimate
by including the biological function details as much as
possible. The resource interaction between the different
events, specially resource conflicts, resource blocking
and system dead locks are automatically identified by

the simulation. Thus, we can track the important
resource counts and identify the exact time of occur-
rence of these events and direct the next actions based
on the outcome. In addition, the simulation can show
how the resource dynamics in the system depend on
time and external input signal rate, initial values of the
resources used in the simulation and the logic of the
resource usage algorithms (i.e., the gradual internal
changes due to the input signal and the propagation of
its effect into the whole system).
To illustrate the concept, we present the discrete

event modeling of the PhoP/PhoQ two component regu-
latory system which controls the expression of essential
virulence traits in Salmonella Typhimurium depending
on the concentration of extra-cellular magnesium [40],
[41]. Based on available information, we have developed
a functional event diagram (Figure 3) of the process. We
identify the list of discrete events that can be included
in the simulation based on the available knowledge of
the system. In other words, we need to identify the var-
ious types of molecules, cells, tissues etc which are
involved in the resource usage algorithm for an event
(either in reactions, or as catalysts or as end products).
To find the time taken for an event, it is important to
identify the parameters which affect the interaction of
the resources in a particular biological discrete event
process and mapping them into the time domain (i.e.
identifying the time required for completion of the bio-
logical discrete event processing as a function of these
parameters). The event holding time algorithms are
modeled by stochastic models, diffusion equations and
so on.

PhoPQ biological system model
In Salmonella, virulence is produced by the two-compo-
nent PhoPQ system that is activated by Mg2+ concentra-
tion change. We identify the key biological functions
involved in the PhoPQ regulatory network (from the
sensing of Mg2+ at the cell membrane to the expression

Figure 1 State transition diagram of an enzyme during its life
cycle. A biological process is visualized as a system of resources
periodically changing between one of the following four states
based on the underlying resource usage algorithms: (i) ‘used’ (e.g,
an enzyme is busy in a reaction), (ii) ‘idle’(e.g, an enzyme is free to
enter a new reaction), (iii) ‘created’ (e.g, a molecule is created by a
reaction) and (iv) ‘decayed’ (e.g, a molecule is in the process of
disintegration at the end of its life-cycle). The state transitions are
governed by transition flow rates of the dynamic functions involved
in it. The process is initiated by a set of input signal(s) from the
external world to the system. These input signals initiate the
creation of dynamic events which drive the simulation across in
time domain, capturing how the system resources change states.

Figure 2 Modeling scheme for pathway abstraction. Schematic representation of the two types of event models required in our simulation
approach: (1) event execution time, and (2) probability of next event type. The figure shows a section of the reaction pathway in a biological
process with these two types of events.
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of virulent genes in the nucleus). The schematic block
diagram of the processes which we have identified to
capture the pathway details is presented first. For each
process block, we have some input signal(s) coming into
the process and output signal(s) which can be consid-
ered as the outcome of the process and can trigger one
or more processes (or the same process itself in a feed-
back mechanism). Figure 3 captures the high-level biolo-
gical functions involved.
Mg2+ receptor Signaling Process
Normally a biological process is defined by a pathway
(experimentally determined by biologists) that shows the
cascade of biological functions in time. Currently, many
pathway databases have been established maintaining this
record for different species which we use to understand
this process. With the departure of a Mg2+ molecule, the
phoQ protein auto-phosphorylates (kinase activity) by
making use of an ATP molecule from the cell. The phos-
phatase activity of phoQ regulates the phosphotransfer
mechanism to phosphorylate the phoP protein under
micromolar Mg2+ concentrations, and dephosphorylates
the phosphorylated phoP molecules under millimolar Mg2
+ concentrations. Generally, Mg2+ concentrations higher
than 250 mM stimulate the dephosphorylation of

phospho-phoP (also called phoPp). Two independent
mechanisms of dephosphorylation of phoPp occur. One
involves the reversion of the reaction that takes place to
phosphorylate the response regulator, and the other is a
specific phoPp phosphatase induced by high concentra-
tions of Mg2+ that renders the release of inorganic
phosphate.
Thus we can identify the following discrete events

from the PhoPQ pathway: with the departure of a Mg2+

molecule (event: ion diffusion from membrane protein),
the phoQ protein autophosphorylates (kinase activity)
by making use of an ATP molecule from the cell (event:
membrane reaction). The phosphate activity of the
phoQ regulates the phosphotransfer mechanism to
phosphorylate the phoP protein under micro molar
Mg2+ concentrations, and dephosphorylates the phos-
phorylated phoP molecules under millimolar Mg2+ con-
centrations (event: cytoplasmic reaction). The Phospho
PhoP (phoPp) activates the promoter loci and there is
only one activation per phoPp. The loci are obtained
from the determination of regulatory pathway. phoPp
binding to DNA site is required for transcription (event:
DNA protein binding). RNA polymerases are involved
in the process of transcription (event: cytoplasmic multi

Figure 3 Biological processes involved in the PhoPQ process in Salmonella. functional event diagram of the PhoP/PhoQ two component
regulatory system with the list of discrete events included in the simulation based on the available knowledge of the system.
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molecule reaction). We also need to consider translation
(including steps such as binding of polymerases, regula-
tory factors, subunits etc) and transport processes.
Thus we can identify many different biological func-

tions and separate models are required to estimate their
characteristics. The models for cytoplasmic reactions
[42-45], DNA-protein binding [46,47], protein-ligand
docking [48,49] and protein synthesis [50] have been
reported separately. Here, we present the model for the
molecular transport time event. We also explain, how
we validate the mathematical model by considering
actual molecular data on the PhoPQ system and pub-
lished experimental results (similar analysis has been
done for other model systems e.g., the RNAi pathway in
[51]). Based on this model and the other models we
mentioned, we can complete the simulation of the
PhoPQ system.

Analytical models for molecular transport
From the PhoPQ system, we find that an important pro-
cess that we have to model is the movement of mole-
cules (Mg2+ ions, phoPp etc). We have identified the
following movement models for biological processes:
(a) diffusion of charged ions (e.g. Mg2+) in the cell (to
model the Mg2+ arrival/departure process); (b) diffusion
of non-charged molecules (to model the transport func-
tion of phospho-PhoP in the cytosol); (c) diffusion of
charged ions out of the cell (to model the Mg2+ depar-
ture process out of the cell). This movement model
should also consider the breakage of the ionic bond
between Mg2+ and phoQ molecules for the diffusion to
occur; (d) The fourth movement model is the movement

of ions or molecules due to additional energy provided
by the pump system. Here, we present the analytical
solution of the first two models.
Model 1: the diffusion model
The actual diffusion model of Mg2+ ions inside the cell
membrane is illustrated in Figure 4. The diffusion takes
place through an ion-channel at the surface of the cell
membrane. In [52], the authors have shown that ion
transport through these ion-channels can be appropri-
ately modeled using standard diffusion equations. We
consider the following hypothetical mathematical model:
suppose that a long capillary (open at one end) filled
with water is inserted into a solution of known chemical
concentration C0, and the chemical species diffuses into
the capillary through the open end. The concentration
of the chemical species should depend only on the dis-
tance down the tube and so is governed by the diffusion
equation:

∂
∂

= ∂
∂

< < ∞ >C

t
D

C

x
x t

2

2 0 0, , (1)

where, for convenience, we assume that the capillary is
infinitely long. Here, D = diffusion constant having units
length2/time, c = concentration of the chemical, t = time
and x = distance traversed inside the capillary by the
chemical.
Because the solute bath in which the capillary sits is

large, it is reasonable to assume that the chemical con-
centration at the tip is fixed at C(0,t) = C0, and because
the tube is initially filled with pure water, C(x,0) = 0.

Figure 4 A simplified illustration of bacterial cell membrane with ion channels Schematic for the actual diffusion process of Mg2+ ions
inside the cell membrane. The diffusion takes place through an ion-channel at the surface of the cell membrane.
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The solution of this problem is given by [53]:

C x t C
s

ds
y

( , ) [ ( ) ]= − −
−∞∫2 1

1
2 20

2


exp (2)

where
y

x

Dt
=

2 . We can compute the inter-arrival
time between the diffused molecules from the following
theorem:
Theorem 1 The inter-arrival time between the diffusion
of the (i + 1)th and ith molecules or ions when the diffu-
sion is based on the concentration gradient only is given
by:

I I
i

C G D
i i+ − = +

1
0
2 2

2 1

4

( )
(3)

where Ii+1and Ii are the times taken for diffusion of the
(i + 1)th and ith molecules respectively, and G is the
cross-sectional area of the capillary.
Proof 1 The total number of molecules entering the
capillary in a fixed time t is

N G C x t dx C G
tD= =

∞

∫ ( , ) 2 0
0 

(4)

Thus we get:

I
i

C G D
I

i

C G D
I I

i

C G D
i i i i+ += + = ⇒ − +

1

2

0
2 2

2

0
2 2 1

0
2 2

1

4 4

2 1

4

( )
,

( )  

It is also possible to determine the diffusion coefficient
by solving Eqn 4 for D:

D
N

C G t
=  2

0
2 24

In [54], this expression was used to measure the diffu-
sion constant in bacteria. With concentration C0 = 7 ×
107/ml, and times t = 2, 5, 10, 12.5, 15 and 20 minutes,
they counted N = 1800, 3700, 4800, 5500, 6700 and
8000 bacteria in a capillary of length 32 mm with 1 μl
total capacity. In addition, with C0 = 2.5, 4.6, 5.0, and
12.0 × 107 bacteria per millimeter, counts of 1350, 2300,
3400, and 6200 were found at t = 10 minutes. A value
of D in the range of 0.1 — 0.3 cm2/hour was estimated
using Eqn 4.
Also, from Eqn 2 it can be observed that C(x,t)/C0 is

constant on any curve for which y is constant. Thus, t =
x2/D is a level curve for the concentration, and mea-
sures how fast the diffusive elements move into the
capillary. Here, t = x2/D is called the diffusion time for
the process. Table 1 shows typical diffusion times for a
variety of cellular structures. Clearly, diffusion is quite
effective when distances are short, but totally inadequate
for longer distances (e.g. along a nerve axon) and

biological systems have to employ other transport
mechanisms in such situations. For the sample PhoPQ
biological system introduced before, the phoPp transport
to the cytosol process can be modeled using the diffu-
sion model discussed above. But it is not suited for dif-
fusion of charged molecules, e.g., Mg2+. Also, this is
only an approximate model as the source does not ide-
ally replenish itself. So, we will have better results if the
initial concentration C0 is quite high.
Model 2: diffusion model considering the ion flux
For better analysis of the diffusion process, we need to
consider the ion flux through the membrane of width l
(supposing a potential difference exists across it with j
(0) = j1 and j(l) = j2) created due to movement of
positively charged Mg2+ ions. We can make a simplify-
ing approximation that the potential gradient through
the channel is constant:

∂
∂

= − = = −  
 

x l

V

l
V1 2

1 2, (5)

If the process is in steady state so that the ion flux
everywhere in the channel is the same constant, then
the total flux, J, can be written as:

J D
C x t

x
C x t

V

l
= − ∂

∂
+[

( , )
( , ) ] (6)

where, a = zF/RT, z = total number of positive
charges in Mg2+, F = Faraday’s constant, T = absolute
temperature and R = gas constant. Substituting the
value of J in the diffusion equation we get:

∂
∂

= − ∂
∂

= ∂
∂

+ ∂
∂

< < ∞ >C

t

J

x
D

C

x
aD

C

x
x t

2

2 0 0, , (7)

where, a = aV/l. As it is difficult to achieve a closed
form solution of the above equation, we modify the
boundary conditions leading to the following theorem:

Table 1 Estimates of diffusion times for typical cellular
structures, computed from the relation t = x2/D using D =
10–5cm2/s

x t Example

10 nm 100 ns thickness of cell membrane

1 μm 1 ms size of mitochondrion

10 μm 100 ms radius of small mammalian cell

250 μm 60 s radius of squid giant axon

1 mm 16.7 min half-thickness of frog sartorius muscle

2 mm 1.1 h half-thickness of lens in the eye

5 mm 6.9 h radius of mature ovarian follicle

2 cm 2.6 d thickness of ventricular myocardium

1m 31.7 yrs length of a nerve axon

These diffusion times have been estimated from Model 1.

Ghosh et al. BMC Genomics 2010, 11(Suppl 3):S3
http://www.biomedcentral.com/1471-2164/11/S3/S3

Page 7 of 17



Theorem 2 The solution to the diffusion problem out-
lined in Eqn 7 with boundary conditions 0 <x <l and >
0 is given by:

C x t
C m e

z F V

R T
m

e

m
zFV
RT

m

m

( , ) [
( ( ) )

( )

(

= − −

+
×

−

=

∞

−

∑ 2 1 1

4

0
2

2 2 2

2 2
2 21





22 2

2

2 2 2

2 2 24 2


t

z F V

R T l
Dt

zFVx
RTl m x

l

+ −)
sin ]

(8)

Proof 2 A standard method for obtaining the solution of
the above partial differential equation (PDE) is to
assume that the variables are separable. Thus we may
attempt to find a solution of Eqn 7 by putting

C = Y (x)Z(t) (9)
where, Y and Z are functions of x and t, respectively.

Substitution in Eqn 7 yields

′
=

′′ + ′Z t

Z t
D

Y x aY x

Y x

( )
( )

( ) ( )
( )

(10)

such that the left hand side depends on t only, and the
right hand side depends on x only. Both sides therefore must
be equal to the same constant which is conveniently taken
as l2D. We thus have two ordinary differential equations:

1 2

Z

dZ

dt
D= − , (11)

Y″(x) + aY′(x) + l2Y(x) = 0 (12)
The solution for the first equation is:
Z = e–l

2

Dt (13)
For the second equation, we make a change of vari-

ables to bring it down to a standard form as follows:

′′ + − =

= − = −∫
f

a
f where

Y f adx f
ax

( ) , ,

ln ln ln

 2
2

4
0

1
2 2

(14)

The solution for f is given by:

f A x
a

B x
a= − + −sin cos 2

2
2

2

4 4
(15)

f Ye
ax

= 2 (16)

where A and B are the constants of integration. Thus
we can write:

Y x e A x
a

B x
a

ax

( ) [ sin cos ]= − + −
−

2 2
2

2
2

4 4
  (17)

and the concentration at distance x and time t is given by:

C x t Z t Y x

e A x
a

B x
aDt

ax

( , ) ( ) ( )

[ sin cos ]
( )

=

= − + −
− +
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2 2
2
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(18)

Since we are solving a linear equation, the most gen-
eral solution is obtained by summing solutions of type
Eqn 18 so that we have:

C x t e

A x
a

B x
a

mDt
ax

m

m m m m

( , )

[ sin cos

( )
=

× − + −

− +

=

∞

∑ 

 

2

2

1

2
2

2
2

4 4

(19)

The previous capillary model cannot be used in this
case to obtain a solution because the underlying com-
plexity becomes immense. We will now consider diffusion
out of a plane sheet of thickness l through which the dif-
fusing substance is initially uniformly distributed and
the surfaces of which are kept at zero concentration.
Mapping this model to our case, the ion channel of
length l is assumed to contain the entire diffusing sub-
stance. Every single molecule coming out of this sheet is
assumed to enter the cell membrane (Mg2+arrival pro-
cess). This model thus approximately characterizes the
Mg2+diffusion process. The corresponding boundary con-
ditions are as follows:
C(x,0) = C0, 0 <x <l (20)
C(0,t) = 0, C(l,t) = 0 (21)
where Eqn 20 signifies the initial concentration inside

the ion channel and Eqn 21 signifies the initial concen-
tration (before the start of diffusion) inside the cell mem-
brane. Eqn 21 yields:

C t B e Bm
Dt

m

m

m( , )0 0 0
2

1

= = ⇒ =−

=

∞

∑ 

Also, substituting Bm = 0 in Eqn 21 for x = l, we get:

C l t e A l
amDt

al

m

m m( , ) sin= = −
− −

=

∞

∑0
4

2

2

1

2
2

 (22)

The solution can be obtained by elimination of vari-
ables such that we have:
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Substituting these values in Eqn 20 we get:
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Multiplying both sides of Eqn 23 by

g x

l
dx



and inte-
grating with respect to 0 to l, we get:
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We will make use of the following identities for the
solution of Am:

e bx dx e
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Substituting these identities in Eqn 24, we get:
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And hence we can write:
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Thus we get the time domain analysis for the concen-
tration of Mg2+ molecules from which we can derive the
mean Mg2+ departure rate. The inter-arrival time
between the diffused molecules can be computed from
the following theorem:
Theorem 3 The inter-arrival time between the diffusion
of the (i + 1)th and ith molecules or ions when the diffu-
sion is based on both the concentration and potential
gradients across the cell is given by IN–i – IN–i–1, where
IN–i and IN–i–1 are the times taken for diffusion of the ith

and (i + 1)th molecules/ions respectively and can be
solved from the following equations:
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Proof 3 The total number of molecules/ions, N, present
inside the sheet of area G in a fixed time IN is given by:
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The inter-arrival time can be computed in a straight-
forward way by noting that diffusion occurs when a
molecule/ion goes out off the plane sheet.
The third diffusion model basically characterizes reac-

tion-diffusion systems and can be simply computed by
convoluting the event time distributions (which are ran-
dom variables) of a reaction model and any of the above
diffusion models.

Numerical results for the molecular transport models
Here we present the numerical results for our diffusion
models and Table 2 concisely presents the parameters
used.
Figure 5 plots the inter-arrival time of diffused mole-

cules for molecular concentrations ≃ 10–9,10–6,10–5,10–4

moles respectively governed by Model 1. This model as
stated earlier is suitable for diffusion of uncharged mole-
cules. The figure shows that the inter-arrival time
increases with increasing number of molecules diffused
in. This is because the concentration gradient reduces
with more molecules diffusing in, resulting in larger
time required for the molecules to move in. It is
observed that larger the initial concentration, the lesser
is the inter-arrival time. This is expected due to a higher
concentration gradient. Also, it can be observed that the
inter-arrival time distribution can be fitted to an expo-
nential distribution.
Figure 6 plots the inter-arrival times for diffusion

model 2 where the potential gradient is considered. We
assume a constant potential gradient of 60mV for the
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molecules to overcome for diffusion to take place. The
inter-arrival times are higher than the first model
because the molecules have to overcome the potential
gradient as well in order to diffuse. Here, the exponen-
tial increase in the inter-arrival times can be observed
more clearly. This scenario is best depicted by the curve
for concentration 10–9moles where the results are gener-
ated for a large number of molecules diffused out.
Note that model 1 is standard and we estimated the

inter-arrival times of Mg2+ molecules using it. The tran-
sient analysis of model 2 is hard to solve and hence we
chose a specific boundary condition (as mentioned
before) to derive a closed form expression. The

corresponding results compare well with model 1 indi-
cating its validity.

Simulation results of the PhoPQ system
As the arrival/departure of Mg2+ molecules into the cell
membrane is essentially a stochastic process, a constant
diffusion rate is not suitable to trigger the input process
of the PhoPQ system. Hence we use an exponential dis-
tribution (as indicated by the numerical plots above) to
estimate the inter-arrival times for diffusion of Mg2+

(which is considered to be a random variable) to gener-
ate the results. The mean of this exponential distribu-
tion is obtained from similar plots of inter-arrival times
as shown above and corresponding curve-fitting. As
mentioned before, the PhoPQ system is triggered at
micromolar concentrations of Mg2+ outside the cell, i.e.,
with millimolar Mg2+ concentration inside the cell. Thus
it is fair to assume C0 ≃ 10–3 moles. The mean of the
inter-arrival times of Mg2+ for this concentration is esti-
mated to be ≈ 10–6 secs for Model 1 and 10 msecs for
Model 2 respectively. The discrete-event simulation fra-
mework correspondingly uses a Poisson distribution
with the same mean (as the inter-arrival times follow an
exponential distribution) to estimate the time taken for
the departure process of Mg2+triggering the signal trans-
duction cascade (following Model 2) and an exponential

Figure 5 Inter-arrival time vs number of molecules for
diffusion model 1 Inter-arrival time of diffused molecules for
molecular concentrations ≃ 10–9, 10–6, 10–5, 10–4 moles respectively
governed by Model 1. This model as stated earlier is suitable for
diffusion of uncharged molecules. The figure shows that the inter-
arrival time increases with increasing number of molecules diffused
in. This is because the concentration gradient reduces with more
molecules diffusing in, resulting in larger time required for the
molecules to move in. Also, it is observed that larger the initial
concentration, the lesser is the inter-arrival time. This is expected
due to a higher concentration gradient. This inter-arrival time
distribution can be easily fitted to an exponential distribution.

Figure 6 Inter-arrival time against number of molecules for
diffusion model 2 Inter-arrival times for diffusion model 2 where
the potential gradient is considered. We assume a constant potential
gradient of 60mV for the molecules to overcome for diffusion to take
place. The inter-arrival times are higher than the first model because
the molecules have to overcome the potential gradient as well in
order to diffuse. Here, the exponential increase in the inter-arrival
times can be observed more clearly. This scenario is best depicted by
the curve for concentration 10–9moles where the results are
generated for a large number of molecules diffusing out.

Table 2 Parameter Estimation for the numerical plots

Parameters Salmonella cell

Diameter of an ion-channel (d) 10 × 10–10m

Cross-sectional area of ion-channel (G′)
4

2
2( )d

Number of ion-channels (N′) 100

G N′ × G′

D 10–5cm2/s

V 60 mV

List of parameters used to generate the numerical results on the two diffusion
models reported in the paper.
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distribution to estimate the phoPp molecule transport
times (following Model 1).
The simulation framework also uses the holding time

estimates of other elementary biological processes such
as cytoplasmic reactions [42], [43], [44], [45] (models 2,
3, 4 and 5 in Figure 3), protein-DNA binding [46] (model
6 in Figure 3) and gene transcription/translation times
[50]. Here, we present the results illustrating the sensitiv-
ity of the simulation to the diffusion models used.
Modeling validation and performance measurement
The efficacy of an in silico modeling and simulation
approach is governed by
(a) validation of the model against existing wet-lab

experimental results,
(b) effective calibration and sensitivity analysis of the

key parameters governing the biological model and
(c) hypothesis testing of different conditions on the

biological system which can give further insights for
novel experiments in the future.
In this section, we employ the discrete event based

stochastic simulation framework to model the dynamics
of single cell dynamics, specifically, the effect of the
PhoPQ two-component signal transduction pathway on
the expression of virulence genes involved in bacterial
pathogenesis of the gram-negative bacteria Salmonella
Typhimurium. While the simulation system can be used
to model the temporal dynamics of different regulatory
pathways in a bacterial cell, we focus on the particular
system in this work as it provides,
1. Existing wet-lab experimental setup and results [55]

which allow the validation of the in silico results
2. The system involves the interaction of signal trans-

duction with subsequent expression of genes governed
by the upstream signals
3. The gene regulation pathway as built based on

existing literature on the two-component system pro-
vides various regulatory mechanisms including up and
down regulation of genes, and positive feedback effects
which can serve to test different hypothesis in silico.
4. As the system involves complex biological functions

like gene regulation and protein expression, whose exact
molecular mechanisms are not always well known, it
provides a platform to test the efficacy of granular
model abstraction based on available knowledge, on the
behavior at a systems level.
In the rest of the section, we start with a brief descrip-

tion of the wet lab experimental system, moving on to
present the detailed results of in silico analysis. We
show how the discrete event simulation framework can
be used for hypothesis-driven analysis of different condi-
tions in silico for the PhoPQ system.
In-silico model validation with wet lab experimental system
The experimental setup, explained in details in [55],
consists of reporting the system output of the phoPQ

pathway on bacterial cells. As reported in [55], fluores-
cence measure of expression of destabilized green fluor-
escence protein (dEGFP) under the control of a phoPp
(phosphorylated phoP) responsive promoter was used as
the reporter system. Thus, the system measure of the
dEGFP was in essence an indication of the phoPp con-
centration in the system.
In the experimental system, low Mg2+ was maintained

for a period of 60 mins, during which the system output
increased, after which the signal was toggled to high
Mg2+. The measurements of the fluorometer were taken
every 15 mins for the positive activation state. Figure 7
shows the system output of the cell culture in time,
both for high-magnesium as well as low-magnesium
conditions. Figure 8 shows the system behavior as
observed for time of 60 mins when the cells were in a
culture of low (8μM) magnesium medium. It shows how
in low magnesium, the PhoPQ pathway is activated (as
shown by increase in concentration of phoPp). Similarly,
Figure 9 shows the toggling effect of the ‘on-off’ switch
mechanism when the system state was changed from
high to low magnesium medium. Based on these experi-
ments, we run the discrete event simulation to generate
in silico results which capture the system output in
time. The simulation initialization with different
resource and system parameters are key to the success
of the model.
Also, the platform provides flexibility in changing

these conditions and resources to generate synthetic,
hypothetical results for a better understanding of the
test system. In the next subsection, we outline the sys-
tem and simulation parameters and present the results
of the in silico experiment.
Figure 10 plots the concentration of phoPp molecules

against time as observed in wet lab experiments [55]. At
present it is difficult to directly link the results of the

Figure 7 Effect of Mg2+ on the system output (measured by
the surrogate marker dEGFP Experimental plot showing the
system output of the cell culture in time, both for high-magnesium
as well as low-magnesium conditions.

Ghosh et al. BMC Genomics 2010, 11(Suppl 3):S3
http://www.biomedcentral.com/1471-2164/11/S3/S3

Page 11 of 17



simulation to the wet lab experiments data that we have.
This is because simulation gives the temporal dynamics
in actual molecular count, whereas the fluorescent tag
based wet lab experiments only show the sensitivity of
the fluorescent light. It was not possible to calibrate the
fluorescent tag sensitivity to molecular count per cell in
the past. Thus our simulation results validate the simi-
larity of the temporal dynamics of experimental results
now, without actual comparison of the molecular count
of a cell. Currently more sophisticated experiments like
microfluidic based single cell assay [56] allows real time
observation of single molecules in a cell. In future, we
hope to get molecular level measurements in a cell to
validate our results quantitatively.
Simulation setup Next, we setup the ‘dry-lab’ experi-
mental system for the signal transduction and subsequent
gene regulation pathway involved in the test-bed. The in

silico experiment is initialized with the system molecular
resources and biological parameters associated with the
probability distribution functions of the different event
holding time modules. In this experiment, we focused on
parameters associated with the Salmonella bacterial cell
based on the CCDB database [27] which are summarized
in Table 3. The simulation also initializes other resource
parameters like the number of molecules (in terms of
concentration) for the different species involved in the
system (e.g. ATP, ADP, phoP, phoQ, extracellular Mg2+

ions) and the gene regulatory pathway information
extracted during the PhoPQ pathway creation phase.
Once the system is initialized, the event queue is popu-
lated with the initial event list which determines the
snapshot of the biological environment at simulation
start time and the simulation engine is triggered.
We used comprehensive knowledge extraction from

PubMed database [57], to construct the gene regulatory
pathways for the phoPQ network, identifying the

Table 3 System model and simulation parameters

Biological Parameters Value

Length of Genome 4857432

Number of Genes 4451

Rate of transcription 40 nucleotides/sec

Rate of translation 18 residues/sec

Area of cell 6 × 10–12m2

Volume of cell 10–18m3

Diffusion coefficient of Mg2+ ion 10–9m2/s

Diffusion coefficient of protein molecule 7.7 × 10–6m2/s

Average mass of a protein molecule 25 kDa

Average diameter of a protein molecule 5 nm

List of parameters used to generate the complete discrete event based
simulation results

Figure 9 Effect on the system output when toggled from high
to low Mg2+ concentration Experimental plot showing the
toggling effect of the ‘on-off’ switch mechanism when the system
state was changed from high to low magnesium medium.

Figure 10 Experimental results: concentration of phoPp
molecules with time with Mg2+concentration 10–3 moles
Experimental plot for the concentration of phoPp molecules against
time as observed in wet lab experiments [55].

Figure 8 Effect of low Mg2+ (8μM) on the system output
(measured by the surrogate marker dEGFP Experimental plot
showing the system behavior as observed for time of 60 mins when
the cells were in a culture of low (8μM) magnesium medium. It
shows how in low magnesium, the PhoPQ pathway is activated (as
shown by increase in concentration of phoPp).
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common intersection of the pathways i.e. the genes and
gene products which are regulated by this system at var-
ious stages. In our current work, the two component
pathway involves transcriptional regulation of 44 genes,
5 of which are involved in another cascading two com-
ponent system (pmrBA). A positive feedback loop exists
in this pathway, in the form of up regulation of phoPQ
gene by the system. Figure 11 shows the complete path-
way, with the positive feedback loop marked in dark
color. The pathways have been constructed using the
Cell Designer 3.0 software which presents a structured
(Extensible Markup Language (XML)) format data
which can be easily rendered into the discrete event
simulation framework. The process involved 112 experi-
mental reports of this system extracted from PubMed
[57], development of the pathway graphs for each
experiment and then concatenating those graphs to get
the complete pathway graph.
For the current system, the simulation focused on tra-

cing the effects of signaling events (Mg2+ ion arrival and
departures) on the expression dynamics of the PhoPQ
pathway. Also, as a reporter protein (GFP) has been
used in the wet-lab scenario to trace the system beha-
vior, our results are focused primarily on phoPp as the
main resource whose dynamic temporal behavior was
observed in the simulation. Although, the simulation
can be configured to monitor and generate results for a
wide range of system resources, phoPp was chosen pri-
marily to verify the wet-lab tests. The in-silico results

denote resource states averaged over 100 runs of the
simulation under the same initial conditions.
In order to simulate similar conditions “in silico”, the

simulation was configured to run with low Mg2+ for 60
mins, during which no resource conflicts or starvation
were assumed (i.e, the simulation would not stop due to
lack of any resource). As seen in Figure 12, the simula-
tion responds with continuous growth in phoPp concen-
tration, implying increasing dEGFP fluorescence.
In another simulation experiment, the system was

started with high Mg2+ which was switched to low Mg2+

at 20 mins which was kept low for 30 mins. and toggled
back to high. Figure 13 captures the system response
under this scenario. As seen from these figures, the
effects captured by the simulation show similar
dynamics to the wet-lab system.
Figure 14 plots the phoPp concentration change from

our discrete event simulation framework with 3 different
means for the Mg2+ departure process. It can be noted
that with mean = 100μs, the phoPp concentration
change is quite steep, and it achieves the maximum
value of phoPp (observed experimentally) in the cell at
≈ 1 sec. But as the mean is increased to 10 ms, we get
acceptable estimates of the phoPp concentration. This
outlines the importance of diffusion Model 2 where the
mean of the Mg2+ departure process is indeed in the
range of 10 ms as against the 1μs range for Model 1. As
discussed earlier, Model 1 is suitable for the phoPp
transport process in the cytosol.

Figure 11 PhoPQ gene regulatory pathway Manually-curated comprehensive gene regulatory pathway network for the phoPQ system. The
two component pathway involves transcriptional regulation of 44 genes, 5 of which are involved in another cascading two component system
(pmrBA). A positive feedback loop exists in this pathway, in the form of up regulation of phoPQ gene by the system. The figure shows the
complete pathway, with the positive feedback loop marked in dark color. The pathways have been constructed using the Cell Designer 3.0
software which presents a structured (Extensible Markup Language (XML)) format data that can be easily rendered into the discrete event
simulation framework. The process involved 112 experimental reports of this system extracted from PubMed [57], development of the pathway
graphs for each experiment and then concatenating those graphs to get the complete pathway graph.
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Also, the condition of no resource starvation shows
relative smoothness in output as obtained from continu-
ous system models since the effect of low copy number
of molecules on stochasticity [16] is not displayed. The
in silico platform allows the analysis of the effects of
stochasticity on the model by varying the resource states
of the molecules involved in the simulation and also the
sensitivity of the system outputs to the different para-
meters governing the event holding time distributions.

In the next sub-section, we present a systematic analysis
of the different in silico hypothesis tests.
In silico hypothesis testing
The in-silico simulation allows the modeler to test the
system under various synthetic conditions, in terms of
system resource states, initial conditions and different
combinations of environmental cues driving the systems
(for example, the diffusion of Mg2+ through the cell
membrane in our case study).
In order to capture the effects of varying the rate of

diffusion of Mg2+ on the system output, we ran the
simulation with increasing Mg2+ diffusion rates (with
means 100ms, 1ms,10ms) and reported the results for
two key system resources, the proteins phoQ, which is
the sensory protein responsible for binding to Mg2+, and
the phoP protein, which controls the dynamics of gene
expression. Figure 15 shows how the rate of decrease in
the concentration of inactive phoQ (phoQ molecule
bound to a Mg2+) is damped with increasing delay in
the diffusion of Mg2+ out of the membrane. Also, cap-
tured in this graph is the effect of resource starvation
on the biological system. As the Mg2+ ion initiated sig-
nal activates the PhoPQ pathway, the sensory phoQ pro-
teins are consumed by the system, thereby shutting
down the pathway when all phoQ molecules available to
the system have been used. Similarly, Figure 16 captures
the effect of the same conditions on phoP. An interest-
ing observation, not captured in the wet-test lab results,

Figure 14 Simulation results: concentration of phoPp
molecules with time with Mg2+ concentration 10–3 moles
Simulation plots for the phoPp concentration change with 3
different means for the Mg2+ departure process. It can be noted
that with mean = 100μs, the phoPp concentration change is quite
steep, and it achieves the maximum value of phoPp (observed
experimentally) in the cell at ≈ 1 sec. But as the mean is increased
to 10 ms, we get acceptable estimates of the phoPp concentration.
This outlines the importance of diffusion Model 2 where the mean
of the Mg2+ departure process is indeed in the range of 10 ms as
against the 1μs range for Model 1.

Figure 12 Effect of low Mg2+ on the in silico system The
simulation was configured to run with low Mg2+ for 60 mins,
during which no resource conflicts or starvation were assumed (i.e,
the simulation would not stop due to lack of any resource). As seen
in this figure, the simulation responds with continuous growth in
phoPp concentration, implying increasing dEGFP fluorescence.

Figure 13 In silico system output when Mg2+ conc. changes
from high to low The simulation was started with high Mg2+

which was switched to low Mg2+ at 20 mins and was kept low for
30 mins. and toggled back to high after that. This figure captures
the system response under this scenario.
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is the orchestration of the positive feedback loop of
phoP, as identified in the knowledge extraction phase.
As seen in Figure 16, the concentration of phoP in the
system decreases initially; but once the expression of
genes is triggered by phoPp (phosphorylated phoP),
phoP starts appearing in the system. The corresponding
effect on phoPp, which increases in concentration when
Mg2+ depart from the membrane (activating the path-
way) is captured in Figure 14. In both the graphs, the
slowest diffusion rate does not bring the system into
resource shortage phases while the other diffusion rates
lock the system (plateau on Figure 14) due to non-avail-
ability of phoPp molecules. These graphs show how the
tuning of different parameters (in the diffusion rates)
can be synthetically manipulated to study different beha-
viors of the systems.
The in silico results on the test-bed pathway demon-

strate the efficacy of the modeling and simulation
approach for studying single cell dynamics. Particularly,
the flexibility in event scheduling and resource state spe-
cifications allows a modeler to validate the effects of
high and low copy number of molecules on different
parts of the biological system. Moreover, the flexibility

allows the simulation to be computationally efficient
depending on the required granularity of the biological
model and the resource state space considered [58].

Conclusion
We have proposed a new “in silico” modeling technique
capturing the temporal dynamics of biological systems
at multiple scales that can be simulated by the discrete
event technique. For this, we need the transformation of
biological functions into information theory based mea-
sure like probability distributions of event time. We
have presented one example of the transformation of a
biological function (i.e., molecular transport time) driven
by concentration and potential gradients in this paper.
We also validated the molecular transport models and
put together a discrete event simulation for the PhoPQ
system to validate the system level dynamics based
results with experimental estimates. We also used this
molecular transport model to generate some in-silico
hypothesis testing results on the PhoPQ system.
The proposed stochastic models meet the accuracy

and computational speed requirements for modeling
complex biological processes. These models are

Figure 16 Change in conc. of membrane phoP Simulation plot
capturing the effects of varying diffusion rates on phoP. An
interesting observation, not captured in the wet-test lab results, is
the orchestration of the positive feedback loop of phoP, as
identified in the knowledge extraction phase. As seen in this figure,
the concentration of phoP in the system decreases initially; but
once the expression of genes is triggered by phoPp
(phosphorylated phoP), phoP starts appearing in the system. The
corresponding effect on phoPp, which increases in concentration
when Mg2+ depart from the membrane (activating the pathway) is
captured in Figure 14. In both the graphs, the slowest diffusion rate
does not bring the system into resource shortage phases while the
other diffusion rates lock the system (plateau on Figure 14) due to
non-availability of phoPp molecules. These graphs show how the
tuning of different parameters (in the diffusion rates) can be
synthetically manipulated to study different behaviors of the
systems.

Figure 15 Change in conc. of membrane phoQ In order to
capture the effects of varying the rate of diffusion of Mg2+ on the
system output, the simulation was ran with increasing Mg2+

diffusion rates (with means of 100ms, 1ms and 10ms). The results
have been reported for two key system resources, the proteins
phoQ, which is the sensory protein responsible for binding to Mg2+,
and the phoP protein, which controls the dynamics of gene
expression. The figure shows how the rate of decrease in the
concentration of inactive phoQ (phoQ molecule bound to a Mg2+)
is damped with increasing delay in the diffusion of Mg2+ out of the
membrane. Also, captured in this graph is the effect of resource
starvation on the biological system. As the Mg2+ ion initiated signal
activates the PhoPQ pathway, the sensory phoQ proteins are
consumed by the system, thereby shutting down the pathway
when all phoQ molecules available to the system have been used.
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parametric and can be used for different cases of mole-
cular transport. Once the complete set of mathematical
models for the different biological functions are in
place, it should be possible to reuse these models to
construct other biological process models with marginal
changes. The models provide for both speed of compu-
tation and flexibility that is required to model the
dynamics of an entire cell. We envisage the development
of an efficient tool for understanding the dynamics of
complex biological systems that can model the multi-
scale biological process at a coarse grain accuracy.

Acknowledgements
The authors would like to acknowledge the National Science Foundation
(NSF) and the University of Southern Mississippi for providing generous
funds to accomplish this project. The authors also thank Dr. Simon Daefler’s
lab at the University of Texas, Southwestern Medical Center for providing
the experimental results on the PhoPQ system. Publication of
thissupplement was made possible with support from the International
Society of Intelligent Biological Medicine (ISIBM).
This article has been published as part of BMC Genomics Volume 11
Supplement 3, 2010: The full contents of the sup-plement are available
online at http://www.biomedcentral.com/1471-2164/11?issue=S3.

Author details
1Computational Biology and Bioinformatics Lab, School of Computing, The
University of Southern Mississippi, USA. 2Department of Computer Science
and Engineering, The University of Texas at Arlington, USA.

Authors contributions
PG helped with the development of the model and simulation and
generating the results. PG, SG, KB, SKD and CZ helped with conceptualizing
the whole project and writing the paper. All authors have read and
approved the paper.

Competing interests
The authors declare that they have no competing interests.

Published: 1 December 2010

References
1. Kitano H: Computational Systems Biology. Nature 2002, 420:206-210.
2. Mendes P: GEPASI: A software package for modeling the dynamics,

steady states and control of biochemical and other systems. Comput.
Applic. Biosci 1993, 9:563-571.

3. Sauro HM: Jarnac: a system for interactive metabolic analysis. Animating
the Cellular Map. In Proceedings of the 9th International BioThermoKinetics
Meeting. Stellenbosch University Press;Hofmeyr JH, Rohwer JM, L SJ
2000:221-228.

4. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F,
Saito K, Tanida S, Yugi K, Venter CJ, Hutchison CA: ECell: Software
environment for whole cell simulation. Bioinformatics 1999, 15:72-84.

5. Cellier F: Continuous System Modeling. USA: Springer Verlag; 1991.
6. Ramsey S, Orell D, Bolouri H: Dizzy: Stochastic simulation of large scale

genetic regulatory networks. Journal of Bioinformatics and Computational
Biology 2005, 3:415-436.

7. Novre NL, Shimizu TS: StochSim: modeling of stochastic biomolecular
processes. Bioinformatics 2000, 17:575-576.

8. R D, B G, EM J: Accommodating space, time and randomness in network
simulation. Curr Opin Biotechnol 2006, 17:493-508.

9. Xia XQ, Wise MH: DimSim: A Discrete Event Simulator of Metabolic
Networks. Journal of Chemical Information and Computer Sciences 2003,
43:1011-1019.

10. Efroni S, Harel D, Cohen I: Towards rigorous comprehension of biological
complexity: Modeling, execution and visualization of thymic t cell
maturation. Genome Research 2003, 13:2485-2497.

11. Hasty J, Collins JJ: Translating the Noise. Nature Genet 2002, 31:13-14.
12. Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J.

Phys. Chem 1977, 81:2340-2361.
13. Ghosh S, Ghosh P, Basu K, Das S, Daefler S: iSimBioSys: A Discrete Event

Simulation Platform for ‘in silico’ Study of Biological Systems. Proceedings
of IEEE 39th Annual Simulation Symposium: 2006; USA 2006, 204-213.

14. Ghosh S, Ghosh P, Basu K, Das S: iSimBioSys: An ‘In Silico’ Discrete Event
Simulation Framework for Modeling Biological Systems. Proceedings of
IEEE Comp. Systems BioInf. Conf.: 2005; USA 2005, 170-171.

15. Ghosh P, Basu K, Das S, Zhang C: In-silico effects of Mg2+diffusion rates
on stochastic event based simulation of the PhoPQ system. Proceedings
of International Joint Conference on Bioinformatics, Systems Biology and
Intelligent Computing: 2009; China 2009, 405-411.

16. Samoilov MS, Arkin AP: Deviant effects in molecular reaction pathways.
Nat. Biotechnol. 2006, 24:1235-1240.

17. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles ED: Modular modeling of
cellular systems with ProMoT/Diva. Bioinformatics 2003, 19:1169-1176.

18. van Gend C, Kummer U: STODE automatic stochastic simulation of
systems described by differential equations [abstract]. International
Conference of Systems Biology 2001.

19. Gillespie DT: A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 1976,
2:403-434.

20. Gillespie DT: Concerning the validity of the stochastic approach of
chemical kinetics. J. Stat. Phys. 1977, 16:311-319.

21. Gibson MA, Bruck J: Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels. Journal of Physical
Chemistry 2000, 104:1876-1889.

22. Gillespie DT: Approximate accelerated stochastic simulation of chemically
reacting systems. J. Chem. Phys. 2001, 115:1716-1733.

23. Tian T, Burrage K: Binomial leap methods for simulating stochastic
chemical kinetics. J. Chem. Phys. 2004, 121:10356-10364.

24. C A, M K, EJ S, VD G: Time accelerated Monte Carlo simulations of
biological networks using the binomial tau-leap method. Bioinformatics
2005, 21:2136-2137.

25. Object-oriented software suit for modeling, simulation and analysis of
complex systems: [http://www.e-cell.org/].

26. Virtual Cell Project: [http://www.nrcam.uchc.edu/].
27. CCDB Database: [[http://redpoll.pharmacy.ualberta.ca/CCDB/].
28. Monte carlo simulator of cellular micro physiology: [http://www.mcell.psc.

edu/].
29. Haas P: Stochastic petri nets: Modelling, stability, simulation. USA:

Springer;978-0-387-5-5 2002.
30. Goss PJ, P J: Quantitative modeling of stochastic systems in molecular

biology by using stochastic Petri nets. Proc Natl Acad Sci 1998,
95:6750-6755.

31. Matsuno H, Doi A, Nagasaki M, Miyano S: Hybrid Petri net representation
of gene regulatory networks. Proceedings of Pacific Symposium on
Biocomputing 2000, 341-352.

32. Calder M, Gilmore S, Hillston J: Modelling the influence of RKIP on the
ERK signalling pathway using the stochastic process algebra PEPA.
Transactions on Computational Systems Biology 2006, 4320:1-23.

33. Zeigler B, Praehofer H, Kim T: Theory of Modeling and Simulation. UK:
London: Academic Press; 2000.

34. Uhrmacher AM, Priami C: Discrete event systems specification in systems
biology - a discussion of stochastic pi calculus and DEVS. Proceedings of
the Winter Simulation Conference: 2005, USA 2005, 317-326.

35. Uhrmacher AM: Concepts of Object and Agent Oriented Simulation.
Transactions of the Society for Computer Simulation International 1997,
14:59-67.

36. Uhrmacher AM, Tyschler P, Tyschler D: Modeling and Simulation of Mobile
Agents. Future Generation Computer Systems 2000, 17:107-118.

37. Himmelspach J, Uhrmacher A: A component based simulation layer for
JAMES. Proceedings of the 18th Workshop on Parallel and Distributed
Simulation: 2004, USA 2004, 115-122.

38. Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P: AgentCell: A
Digital Single-Cell Assay for Bacterial Chemotaxis. Bioinformatics 2005,
21:2714-2721.

39. Zhang T, Rohlfs R, S R: Implementation of a discrete event simulator for
biological self-assembly systems. Proceedings of the Winter Simulation
Conference: 2005, USA 2005, 2223-2231.

Ghosh et al. BMC Genomics 2010, 11(Suppl 3):S3
http://www.biomedcentral.com/1471-2164/11/S3/S3

Page 16 of 17

http://www.biomedcentral.com/1471-2164/11?issue=S3
http://www.ncbi.nlm.nih.gov/pubmed/12432404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16962764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16962764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11984558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17033664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12801880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12801880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15549913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15549913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15699024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15699024?dopt=Abstract
http://www.e-cell.org/
http://www.nrcam.uchc.edu/
[http://redpoll.pharmacy.ualberta.ca/CCDB/
http://www.mcell.psc.edu/
http://www.mcell.psc.edu/
http://www.ncbi.nlm.nih.gov/pubmed/9618484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9618484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15774553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15774553?dopt=Abstract


40. Groisman EA: The Pleitropic Two-Component Regulatory System PhoP-
PhoQ. Journal of Bacteriology 2001, 183:1835-1842.

41. Lucas RL, Lee CA: Unravelling the mysteries of virulence gene regulation
in Salmonella Typhimurium. Journal of Molecular Biology 2000,
36:1024-1033.

42. Ghosh P, Ghosh S, Basu K, Das S, Daefler S: An Analytical Model to
Estimate the time taken for Cytoplasmic Reactions for Stochastic
Simulation of Complex Biological Systems. Proceedings of 2nd IEEE
Granular Computing Conference: 2006; USA 2006, 1-6.

43. Ghosh P, Ghosh S, Basu K, Das S, Daefler S: Stochastic Modeling of
Cytoplasmic Reactions in Complex Biological Systems. Proceedings of 6th
IEE International Conference on Computational Science and its Applications:
2006; UK 2006, 566-576.

44. Ghosh P, Ghosh S, Basu K, Das S: Holding Time Estimation for Reactions
in Stochastic Event-based Simulation of Complex Biological Systems.
Simulation Modelling Practice and Theory 2008, 16:1615-1639.

45. Ghosh P, Ghosh S, Basu K, Das S: A Markov Model based Analysis of
Stochastic Biochemical Systems. Proceedings of LSS Computational Systems
Bioinformatics Conference (CSB): 2007; USA 2007, 121-132.

46. Ghosh P, Ghosh S, Basu K, Das S: Modeling protein-DNA binding time in
Stochastic Discrete Event Simulation of Biological Processes. Proceedings
of IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology: 2007; USA 2007, 439-446.

47. Ghosh P, Ghosh S, Basu K, Das S: Parametric modeling of protein-DNA
binding kinetics: A Discrete Event based Simulation approach. Journal of
Discrete Applied Mathematics 2009, 10:2395-2415.

48. Ghosh P, Ghosh S, Basu K, Das S: A stochastic model to estimate the time
taken for Protein-Ligand Docking. Proceedings of IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology: 2006;
Canada 2006, 1-8.

49. Ghosh P, Ghosh S, Basu K, Das S: A Computationally Fast and Parametric
Model to estimate Protein-Ligand Docking time for Stochastic Event
based Simulation. LNCS Transactions on Computational Systems Biology
2007, 4780:14-41.

50. Ghosh S, Ghosh P, Basu K, Das S: Modeling the stochastic dynamics of
gene expression in single cells: A Birth and Death Markov Chain
Analysis. Proceedings of 2nd IEEE International Conference on Bioinformatics
and Biomedicine: 2007; USA 2007, 308-316.

51. Ghosh P, Dullea R, Fischer J, Turi T, Sarver R, Zhang C, Poland B, Das S:
Comparing 2-nt 3’ overhangs against blunt ended siRNAs: A systems
biology based study. BMC Genomics 2009, 10:1-14.

52. Alvarez J, Hajek B: Ion channels, or stochastic networks with charged
customers [abstract]. Stochastic networks Conference 2004.

53. Fall C, Marland E, Wagner J, Tyson J: Computational Cell Biology. USA:
Interdisciplinary Applied Mathematics; 2002.

54. Segel L, Chet I, Henis Y: A simple quantitative assay for bacterial motility.
J. Gen. Microbiol. 1977, 98:329-337.

55. Rangavajhala VK, Daefler S: Modeling the Salmonella PhoPQ two
component regulatory system. 2003.

56. Ji Y, Jie X, Xiaojia R, Kaiqin L, Sunney X: Probing Gene Expression in Live
Cells, One Protein Molecule at a Time. Science 2006, 311:1600-1603.

57. Pubmed Central: [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
db=PubMed].

58. Lok L: The need for speed in stochastic simulation. Nat. Biotechnol. 2004,
22:964-965.

doi:10.1186/1471-2164-11-S3-S3
Cite this article as: Ghosh et al.: Discrete diffusion models to study the
effects of Mg2+ concentration on the PhoPQ signal transduction system.
BMC Genomics 2010 11(Suppl 3):S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ghosh et al. BMC Genomics 2010, 11(Suppl 3):S3
http://www.biomedcentral.com/1471-2164/11/S3/S3

Page 17 of 17

http://www.ncbi.nlm.nih.gov/pubmed/11222580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/404390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16543458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16543458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
http://www.ncbi.nlm.nih.gov/pubmed/15286647?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Modeling and simulation landscape
	Discrete event simulation technique
	PhoPQ biological system model
	Mg2+ receptor Signaling Process

	Analytical models for molecular transport
	Model 1: the diffusion model
	Model 2: diffusion model considering the ion flux

	Numerical results for the molecular transport models
	Simulation results of the PhoPQ system
	Modeling validation and performance measurement
	In-silico model validation with wet lab experimental system
	In silico hypothesis testing


	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

