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Abstract

suggested.

hypertensive ISIAH kidney.

Background: The kidney mass is significantly increased in hypertensive ISIAH rats with Inherited Stress Induced
Arterial Hypertension as compared with normotensive WAG rats. The QTL/microarray approach was carried out to
determine the positional candidate genes in the QTL for absolute and relative kidney weight.

Results: Several known and predicted genes differentially expressed in ISIAH and WAG kidney were mapped to
genetic loci associated with the absolute and relative kidney weight in 6-month old F2 hybrid (ISIAHXWAG) males.
The knowledge-driven filtering of the list of candidates helped to suggest several positional candidate genes,
which may be related to the structural and mass changes in hypertensive ISIAH kidney.

In the current study, we showed that all loci found for absolute and relative kidney weight didn’t overlap with
significant or suggestive loci for arterial blood pressure level. So, the genes differentially expressed in ISIAH and
WAG kidneys and located in these QTL regions associated with absolute and relative kidney weight shouldn’t
substantially influence the BP level in the 6 month-old ISIAH rats. However, in some cases, small effects may be

Conclusions: The further experimental validation of causative genes and detection of polymorphisms will provide
opportunities to advance our understanding of the underlying nature of structural and mass changes in

Background

Renal function plays a major role in long-term control of
arterial blood pressure and sodium balance [1]. Kidney
as a target organ in hypertension is widely investigated.
Differences in the kidney size have been observed between
most rat models of hypertension and their respective nor-
motensive controls [2]. The alterations in kidney size may
occur as a consequence of pathophysiological processes
underlying the hypertension development. Several studies
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were conducted in order to find the genetic determinants
for hypertensive dependent relative kidney weight changes
and several genetic loci associated with this trait were
found [2,3]. However little is known about particular
genes participating in the trait manifestation.

The use of experimental animal models provides valu-
able information to elucidate the nature of polygenic
traits [4]. The ISIAH (Inherited Stress-Induced Arterial
Hypertension) rat strain was developed to study the
mechanisms of the stress-induced hypertension and its
complications [5]. The ISIAH rats show a number of
characteristic features of hypertensive state: the elevated
systolic arterial blood pressure (SABP) at basal condition,
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a dramatic increase in SABP when restrained, hypertro-
phy of the heart left ventricle, increase in the wall thick-
ness of the small arteries, and changes in the ECG
pattern [6]. In addition, ISIAH rats have significantly
increased kidney mass as compared to normotensive
controls [7].

Earlier we used quantitative trait loci (QTL) approach,
which helps to map the genomic regions associated with
the phenotypic variation of quantitative physiological
traits, and we described several QTL for absolute and
relative kidney weight in 6 month old F,(ISIAH x
WAG) hybrid male rats [8]. Our results suggested that
absolute and relative kidney weights are complex pheno-
types resulting from a large number of factors, each
exhibiting a small effect QTL for hypertension.

The combined use of QTL mapping and subsequent
microarray profiling of nonrecombinant parental strains
is recognized as a powerful tool to identify the genes
underlying QTL [9] and to reduce the number of candi-
date genes in the QTL regions [10,11].

Earlier we described the results of the comparative ana-
lysis of gene expression profiling which revealed differen-
tially expressed genes in kidney of hypertensive ISTAH
and normotensive WAG rats. The functional annotation
of the genes differentially expressed in ISIAH and WAG
kidney helped to suggest the genetic determinants related
to blood pressure control in ISIAH rats. The analysis
showed that many genes are working in stress-related
mode in hypertensive kidney and the alterations in gene
expression are likely related to both pathophysiological
and compensatory mechanisms [12].

The present work was carried out to determine the dif-
ferentially expressed genes present in QTL for absolute
and relative kidney weight in 6 month old F,(ISIAH x
WAG) hybrid male rats and related to the mechanisms
defining the differences in hypertensive and normoten-
sive kidney weight.

In the current study, several known and predicted
genes differentially expressed in ISIAH and WAG kid-
ney were mapped to genetic loci associated with the
absolute and relative kidney weight in 6-month old F,
hybrid (ISTAHxWAG) males. The knowledge-driven fil-
tering of the list of candidates helped to suggest several
positional candidate genes, which may be related to the
structural and mass changes in hypertensive ISIAH kid-
ney. Besides, we showed that loci for absolute and rela-
tive kidney weight didn’t overlap with significant or
suggestive loci for arterial blood pressure level. The role
of loci with small effects is discussed.

Methods

Animals

The hypertensive ISIAH (Inherited Stress Induced
Arterial Hypertension) and normotensive WAG (Wistar
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Albino Glaxo) rats bred in the Laboratory of Experimen-
tal Animals at the Institute of Cytology and Genetics
(Novosibirsk, Russia) were used. All rats were main-
tained in the standard conditions with free access to
food and water. All animal experiments were approved
by the Institute’s Animal Care and Use Committee.

The description of animals used in QTL analysis was
given earlier [7]. QTL analysis for absolute and relative
kidney weight was performed using 6-month old F,
hybrid males (n = 126) derived from a cross of ISIAH
and WAG rats. The genome scan was carried out with
149 polymorphic microsatellite markers (141 markers
were for autosomes and 8 markers were for chromosome
X). The list of markers and the genomic coverage data
are available on the site of Institute of Cytology and
Genetics SB RAS http://icg.nsc.ru/isiah/en/category/qtl/.
The relative kidney weight was expressed as the ratio of
organ weight to the body weight (g/100 g b.w.).

The 6-month old ISIAH (n = 3), and WAG (n = 3)
males were used in microarray experiments. Their SABP
was 173.67 + 1.86 mmHg in ISIAH and 124.67 + 2.67
mmHg in WAG males. The SABP was measured indir-
ectly by the tail-cuff method. The blood pressure level
was determined under short-term ether anesthesia to
exclude the effect of psychological stress induced by the
measuring procedure. Renal cortex and renal medulla
were analyzed separately. The kidney of the decapitated
rats was immediately removed and sectioned to get the
samples of renal cortex and renal medulla. Samples
(50 mg) were homogenized in 1 ml of TRIzol (Invitrogen
Life Technologies, USA) in glass homogenizers, removed
to 1.5-ml Eppendorf tubes and stored at -70°C until
RNA isolation.

The details of QTL analysis were described earlier
[8,13]. Genomic DNA was prepared from liver by the
conventional method using Proteinase K and phenol-
chloroform extraction. Isolated genomic DNA was pre-
cipitated and dissolved in deionized water. The http://
www.ensembl.org/Rattus_norvegicus database was used
to define the relative positions of the markers along
chromosomes given in Megabases (Mb). Genotyping:
50-100 ng of genomic DNA was amplified by PCR
in reaction buffer containing 2 pmol of each primer,
200 pmol of each dNTP, 1.5 mmol MgCl, and 0.2 U of
Taq DNA Polymerase (Medigen, Russia). The PCR reac-
tions were performed following the protocol: initial
denaturation at 95°C for 3 minutes, followed by 38
cycles of denaturation at 94°C for 20 seconds, annealing
for 15 seconds at a temperature specific to each pair of
primers and elongation at 72°C for 20 seconds. Cycles
were followed by a final extension step at 72°C for
5 minutes. The time of elongation was not varied
because all the amplified fragments were shorter than
300 nucleotides. The product of each tube was analyzed
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by electrophoresis in 6-8% polyacrylamide gel in TBE
buffer at 10 V/cm. The separated fragments were visua-
lized by staining with ethidium bromide and analyzed
on gel-imager Biometra (Germany).

Linkage and statistical analysis

The data for relative kidney weight were transformed
using natural logarithm to reduce skewness and kurtosis
in the distribution. Linkage analysis was done using the
MAPMAKER/EXP 3.0 and MAPMAKER/QTL 1.1 pro-
grams kindly provided by Dr. Eric Lander (Whitehead
Institute, Cambridge, MA) [14]. The chromosome X
was analyzed as backcross group. The QTL boundaries
were determined in the respective one LOD confidence
interval. Position of markers was given in megabases
(Mb) according to RGSC Genome Assembly v 5.0.

The QTL Cartographer Version 1.17, JZmapqtl http://
statgen.ncsu.edu [15,16] was used to assess genome-
wide and chromosome-wise empirical significant thresh-
old values for QTLs. Permutation test was done using
1000 permutations of the original data [17]. The LOD
scores exceeding 5% experiment wise threshold value
were taken as significant evidence of linkage [18]. LOD
scores exceeding 5% chromosome-wise threshold value
were considered as suggestive linkage.

Microarray experiments

The collected samples were sent to JSC Genoanalytica
(Moscow, Russia), where total RNA was extracted and
processed. Three samples from ISIAH kidney and three
samples from WAG kidney were run as experimental
replicates. Four hundred nanograms of total RNA was
used for complementary RNA in vitro transcription, fol-
lowed by a T7 RNA polymerase-based linear amplification
and labeling with the TotalPrep RNA Labeling Kit using
Biotinylated-UTP (Ambion, Austin, TX). The signal was
developed by staining with Cy3-streptavidin. The hybridi-
zation was performed on Illumina RatRef-12 Expression
BeadChip microarray platform containing 22,524 probes
for a total of 22, 228 rat genes selected primarily from the
National Center for Biotechnology Information RefSeq
database (Release 16; Illumina, San Diego, CA, USA).
Hybridization, washing and staining were carried out
according to the Illumina Gene Expression Direct Hybridi-
zation Manual. The BeadChip was scanned on a high-
resolution Illumina BeadArray reader.

Microarray data extraction, normalization, and analyses

The primary statistical analysis of the hybridization results
was performed by JSC Genoanalytica (Moscow, Russia).
The [llumina GenomeStudio software was used to extract
fluorescence intensities and normalize the expression data.
Data acquisition and analysis were done using gene
expression module and rank invariant normalization. After
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normalization, genes were filtered by their ‘detection’
p-value, which had to be less then 0.01 (significantly
detected), in both samples. Subsequently, the differentially
expressed genes were identified using the Illumina Custom
error model, which provides an expression difference
score (Diff-Score) taking into account background noise
and sample variability. Genes were considered significantly
changed at a |Differential Score| of more than 20, which
was equivalent to a p-value of less than 0.01. Fold changes
were calculated as ratio of gene expression value in ISIAH
to gene expression value in WAG. The lists of genes dif-
ferentially expressed in kidney of hypertensive ISIAH and
normotensive WAG rats are available on the site of Insti-
tute of Cytology and Genetics SB RAS http://icg.nsc.ru/
isiah/en/. Heatmaps were constructed from normalized
signals using gplots package for R statistical software
http://cran.r-project.org/web/packages/gplots/index.html.

Results and discussion

Many different reasons may cause the increase of the
kidney weight. It may be modified by hypertrophy and/
or hyperplasia of the kidney tissues. Each of these pro-
cesses may be under common and partly separate con-
trol and may be triggered also by some common and
specific stimuli [19].

The significant positive correlation was shown
between kidney weight and glomerular number and size
[20]. Comparative electron microscopic study of glomer-
ular apparatus in 6-month old ISIAH and Wistar rats
showed hypertrophy of renal corpuscles in hypertensive
kidney, accompanied by multiple structural changes
such as capillary narrowing or dilation, endothelial flat-
tening, podocyte hypertrophy and flattening of their
cytopodia, thickening of basal lamina, mesangial volume
expansion and increase in the number of intercapillary
processes of mesangial cells [21]. Besides, the renal
medullary interstitial cells of ISIAH kidneys were char-
acterized by higher numerical density and were enlarged
with a higher volume share of their secretory granules
[22]. Complex of these signs suggested a disturbance of
glomerular capillary blood circulation and a functional
podocyte stress, compensating the microcirculatory dis-
turbances. Changes in basal membranes and mesangium
are indicative of not only increase in filtration barrier
functional load, but also of initial stages of glomerular
[21] and renomedullar sclerosis [22].

The QTL analysis revealed 6 suggestive loci for kidney
weight on chromosomes 4, 6, 10, 15, 17, and X. One
significant locus on Chr.7 and three suggestive loci on
Chr.2, 3, and 6 were found for relative kidney weight.
The description of all these loci was done earlier [8].

Comparative analysis of gene expression profiling in
kidney of hypertensive ISIAH and normotensive WAG
rats revealed 126 differentially expressed genes in renal
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cortex and 65 differentially expressed genes in renal  hypertensive ISTAH and normotensive WAG rats are
medulla [12]. The hierarchical clustering and heatmaps shown in Figures 1 and 2. In the present work we deter-
illustrating each individual’s expression pattern in genes mined several differentially expressed genes (Table 1
differentially expressed (p < 0,01) in kidney of Figures 3, 4, 5, 6, 7, 8, 9) mapped to genetic loci
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Figure 1 Hierarchical clustering of the genes differentially expressed in renal cortex of hypertensive ISIAH and normotensive WAG rats.
Normalised gene expression is indicated by the row Z-score where red represents upregulated genes and green represents downregulated genes.
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associated with the absolute and relative kidney weight
described earlier for 6-month old F,(ISTAH x WAG)
hybrid male rats [8]. It is considered that the determina-
tion of differentially expressed genes between selected
lines of animals, and their localization within QTLs for
the selected phenotype, dramatically increases the

probability of identifying genes that contribute to that
phenotype through differential expression [10,11,23]. It
is understandable that both real target genes and genes
located in loci just by chance could be found among
these genes. The further discussion will help to discrimi-
nate between the differentially expressed genes located
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Table 1 Genes differentially expressed in ISIAH and WAG kidney and localized in QTL for absolute and relative kidney
weight in 6-month old F, (ISIAH x WAG) males

QTL Genes differentially expressed in ISIAH and WAG kidneyA
Chr. Peak Confidence Ratio Acc.i# Symbol Mb Definition
marker interval, * ISIAH/ WAG
(Mb) Mb
kidney_weight
4 D4Rat68 204-242 037 NM_001009661.1 Whp11 2344 WW domain binding protein 11
(233.3) 0.56 (p<0.05) NM_017336.1 Ptpro 2355 Protein tyrosine phosphatase, receptor type, O
0.36 NM_017336.1 Ptpro 235.5 Protein tyrosine phosphatase, receptor type, O
6 D6Rat143 42-62 0.56 XM_576132.1 Txndc7 523  Thioredoxin domain containing 7
(48.1) 0.38 XM_001074910.1 Oact2 60.9 O-acyltransferase (membrane bound) domain
containing 2
10 D10Rat43 10-58 1.69 XM_2203084 Wwcl 205 WW and C2 domain containing 1
(22.3) 042 NM_172335.2 Gm?2a 403 GM2 ganglioside activator
0.38 NM_172335.2 Gm2a 40.3 GM2 ganglioside activator
15 D15Rat80 18-50 0.28 NM_013219.1 Cadps 19.3 Ca++-dependent secretion activator
(30.3) 1.66 XM_001054512.1  RGD1308430 37.2 Similar to 1700123020Rik protein
17 D17Rat107 0-24 1.84 XM_001061265.1 LOC682869 5.1  similar to Golgi phosphoprotein 2 (Golgi membrane
(11.8) protein GP73), transcript variant 2
0.51 NM_181626.3 Iscal 75 lron-sulfur cluster assembly 1 homolog (S. cerevisiae)
0.35 NM_181626.3 Iscal 7.5 Iron-sulfur cluster assembly 1 homolog (S. cerevisiae)
0.08 XM_346945.2 RGD1564391 7.8  RGD1564391 (predicted)
6.54 NM_001014007.1 LOC306766 ~ 12.7  Hypothetical LOC306766
5.06 NM_001014007.1 LOC306766 12.7 Hypothetical LOC306766
In_relative_kidney_ weight
3 D3Rat56- 0-62 037 NM_001004280.1 Mmadhc 40.9  methylmalonic aciduria (cobalamin deficiency) cblD
D3Rat130 type, with homocystinuria
(26-55.2) 0.1 NM_001004280.1 Mmadhc  40.9 methylmalonic aciduria (cobalamin deficiency)
cbID type, with homocystinuria
6 D6Rat143 42-62 0.56 XM_576132.1 Txndc7 523 Thioredoxin domain containing 7
(48.1) 0.38 XM_001074910.1 Oact2 60.9 O-acyltransferase (membrane bound) domain
containing 2
7 D7Rat51- 44-84 0.57 XM_2351564 Ptprb 594  protein tyrosine phosphatase, receptor type, B
D7Rat165 (predicted)
(54.6-73.5)

*- the QTL boundaries were determined in the respective one LOD confidence interval. Mb - megabases.
A-genes differentially expressed in renal cortex of ISIAH and WAG rats are given in regular type and genes differentially expressed in renal medulla of ISIAH and

WAG rats are given in bold type letters.

in QTL and to suggest the candidate genes in the loci
for absolute and relative kidney weight which may be
related to the structural and mass changes in hyperten-
sive ISIAH kidney.

Genes in QTL for kidney weight

The QTL for kidney weight in the distal part of Chr.4 in
ISIAH rats partially overlaps Kidney mass QTL 34
(Kidm34) (210-233 Mb) found in rats with Metabolic Syn-
drome X and increased relative kidney weight [24] and
with the rat QTL Coreg2 for compensatory renal growth
(CRG) (210-224 Mb) of the remnant kidney after unilat-
eral nephrectomy [25]. However, the Cacnalc (216,6 Mb)
gene suggested as a positional candidate for CRG in
Coreg?2 was not significantly expressed (Detection P-value
< 0.05) in both kidney cortex and medulla of ISIAH and
WAG rats. Two other differentially expressed genes,

Wbp11 and Ptpro, have been located in QTL for kidney
weight in ISIAH rats in the distal part of Chr.4 (Figure 3).
Wbp11 regulates mRNA processing and is involved in
RNA splicing [26,27]. Its transcriptional activation is
associated with enhanced expression of genes that regu-
late RNA processing, splicing, and degradation [28].
WBP11 was one of urinary polypeptides significantly
down-regulated and specific for essential hypertension
with left ventricular diastolic dysfunction that subse-
quently distinguished hypertensive patients with overt
heart failure from healthy controls [29]. The QTL for
kidney weight in the distal part of Chr.4 does not over-
lap with loci for blood pressure traits in ISIAH rats but
overlaps with the locus where the ISIAH alleles signifi-
cantly increase the basal level of corticosterone (Figure 3)
[13]. Corticosterone may induce the formation of reactive
oxygen species [30] and development of adaptive
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Figure 3 The position of the differentially expressed genes in
QTL for kidney weight on chromosome 4. LOD score for kidney
weight is 2.61. It exceeds 1% chromosome-wise threshold value 2.44.
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Figure 5 The position of the differentially expressed genes in
QTL for kidney weight on chromosome 10. LOD score for kidney
weight is 1.72. It exceeds 5% chromosome-wise threshold value 1.54.

response to oxidative stress may influence the mRNA
processing [31] causing both the induction of stress-
response genes and inhibition of gene transcription [32].
So, the down-regulation of Wbpl1 in ISIAH kidney may
be relevant to changes in transcriptional level of many
genes found in current study but probably doesn’t have
direct effect on the kidney weight or structural changes
in kidney histology related to the trait.

Ptpro (or GLEPP1, glomerular epithelial protein 1) is a
receptor tyrosine phosphatase expressed on the apical
cell surface of the glomerular podocyte [33]. The
GLEPP1 (Ptpro) receptor plays a role in regulating the
glomerular pressure/filtration rate relationship through
an effect on podocyte structure and function. Podocytes
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Figure 4 The position of the differentially expressed genes in
QTL for kidney weight and for relative kidney weight on
chromosome 6. LOD score for kidney weight is 2.52. It exceeds 1%
chromosome-wise threshold value 2.40. LOD score for relative kidney
weight is 2.34. It exceeds 1% chromosome-wise threshold value 2.14.

are specialized epithelial cells with delicate interdigitat-
ing foot processes which cover the exterior basement
membrane surface of the glomerular capillary. It was
demonstrated that glomerular enlargement is associated
with podocyte hypertrophy, podocyte stress, and the
decrease in Ptpro expression in the aging Fischer 344
rats known to develop spontaneous glomerulosclerosis
with age [34]. Ptpro is localized in QTL for renal function
(Rf13) (224-248 Mb) found in hypertensive salt-sensitive
rats given a high-salt diet (8% NaCl) and associated with
change in renal blood flow rate [35]. Ptpro-/- mice had an
amoeboid rather than the typical octopoid structure seen
in the wild-type mouse podocyte and blunting and widen-
ing of the minor (foot) processes. Ptpro”” mice had
reduced glomerular filtration function and a tendency to
hypertension [36]. The extensive loss of GLEPP-1 was
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Figure 6 The position of the differentially expressed genes in
QTL for kidney weight on chromosome 15. LOD score for kidney

weight is 2.37. It exceeds 1% chromosome-wise threshold value 2.12.
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QTL for kidney weight on chromosome 17. LOD score for kidney
weight is 2.04. It is equal to 2.5% chromosome-wise threshold value.

found in patients with focal segmental glomerulosclerosis
and collapsing glomerulopathy [37]. GLEPP1 expression is
considered to be a useful marker of podocyte injury [38].
Ptpro downregulation in ISIAH kidney may be responsible
for the podocyte histological changes. It may be consid-
ered as a candidate gene for the kidney histological
changes leading to the increased kidney weight in ISTAH
rats.

Another locus mapped on chromosome 6 was the
same for both kidney weight and relative kidney weight
traits in ISIAH rats (Figure 4). This locus overlaps with
the rat QTL Coregl for compensatory renal growth
(CRG) (51-70 Mb) of the remnant kidney after unilateral
nephrectomy [39]. In our study, the QTL on chromo-
some 6 contained 2 genes differentially expressed in
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Figure 8 The position of the differentially expressed genes in
QTL for relative kidney weight on chromosome 3. LOD score for
relative kidney weight is 1.71. It exceeds 5% chromosome-wise
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Figure 9 The position of the differentially expressed genes in
QTL for relative kidney weight on chromosome 7. LOD score for
relative kidney weight is 2.91. It exceeds 5% experiment-wise
threshold value = 2.74.

threshold value 1.50.

hypertensive and normotensive kidney. These were
Txndc?7 in renal cortex and Oact2 in renal medulla.

Txndc7 (or Pdia6), is one of the endoplasmic reticulum
(ER) resident genes (proteins) that control ER functions
and are responsive to cellular stress, including metabolic
and oxidative stress. ER stress can be triggered by hypoxia,
nutrient deprivation, perturbation of redox status, aberrant
Ca2+ regulation, viral infection, failure of posttranslational
modifications, and increased protein synthesis and/or
accumulation of unfolded or misfolded proteins in the ER
[40]. Gain- and loss-of-function studies showed that
PDIAG6 protected cardiac myocytes against simulated
ischemia/reperfusion-induced death and this protection is
dependent on the oxidoreductase activity of PDIA6 [41].

ER stress is a pathologic mechanism in a variety of
chronic diseases. ER stress inhibition reduces cardiac
damage and improves vascular function in hypertension
[42]. The position of Txndc7 corresponds to genome
region where small QTL for basal blood pressure may be
suggested (Figure 4). According to established statistical
approaches this locus for blood pressure can’t be consid-
ered as significant or even suggestive. The locus is charac-
terized by LOD score 1.37, and is accounting 4,9% of the
trait variability. From the other side, some researchers
agree that many small QTL are smeared across the gen-
ome and many small QTL effects control polygenic trait
variation [43-45]. Based on this, we may suggest that the
decreased expression of the Txndc7 in ISIAH kidney prob-
ably doesn’t affect the kidney weight but may cause the
enhanced cellular ER stress, which may contribute to vas-
cular complications and development of stress-induced
hypertension in ISIAH rats.

Oact2 (or Mboat2), O-acyltransferase (membrane
bound) domain containing 2 is acyltransferase, which
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mediates the conversion of lysophosphatidylcholine into
phosphatidylcholine. Phosphatidylcholine is a major
component of cellular membranes and is the most
abundant phospholipid in kidney cortical tubules [46].
Its increased biosynthesis was found during renal
growth following unilateral nephrectomy [47]. Oact2
was identified as one of the genes with high predictive
power (87%) in segregating malignant from benign
lesions [48]. Oact?2 is localized in chromosomal region
where the QTL for kidney dilation (Kiddil4) (31.9-94.3
Mb) associated with the degree of dilation of the renal
pelvis in rats with congenital hydronephrosis [49] and
QTL for renal function (Rf14) (44-90 Mb) associated
with the salt-loaded renal blood flow [35] were found.
The presence of two ISIAH alleles in the QTL for abso-
lute and relative kidney weight on Chr.6 in F, (ISIAH x
WAG) hybrid males caused the significant decrease in
kidney weight and in relative kidney weight [8](Supple-
ment, Table 4). Based on that we may suggest that
Oact2 may be considered as a candidate gene in QTL
and its downregulation in ISIAH renal medulla may
play protective role against the hyperplastic process in
hypertensive kidney.

Wwecl (Chr.10, Figure 5) encodes KIBRA protein, which
is predominantly expressed in the kidney and brain in the
adult organism [50]. In the kidney, KIBRA is expressed in
glomerular podocytes, in some tubules, and in the collect-
ing duct [51]. KIBRA regulates epithelial cell polarity by
suppressing apical exocytosis through direct inhibition of
aPKC kinase activity [52]. In renal podocytes, KIBRA/
WWC1 has an impact on targeted cell migration and links
polarity complexes to the cytoskeleton [51]. KIBRA regu-
lates precise mitosis [53], cell-cycle progression [54], and it
is known as an upstream regulator of tumor suppressor
Hippo pathway that regulates cell proliferation and apop-
tosis [55]. Hippo signaling is an evolutionarily conserved
signaling pathway that controls organ size from flies to
humans [56]. Hippo-Yap pathway has been shown to play
a key role in controlling organ size, primarily by inhibiting
cell proliferation and promoting apoptosis. Overexpression
and knockdown studies demonstrate that KIBRA pro-
motes the collagen-stimulated activation of the MAPK
cascade that is involved in various cellular functions,
including cell proliferation, differentiation and migration
[57]. KIBRA knockdown impairs cell migration and prolif-
eration in breast cancer cells [58]. Wwcl is localized in
QTL for relative kidney mass (Kidm21) found earlier in
the Lyon hypertensive rats [59]. The presence of two
ISIAH alleles in the QTL for absolute and relative kidney
weight on Chr.10 in F, (ISIAH x WAG) hybrid males
caused the significant increase in kidney weight [8]. Based
on this, we may suggest that WwcI may be considered as
a candidate gene in QTL on Chr.10 for kidney weight and
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its upregulation in ISIAH renal cortex may play important
role in the renal mass gain.

Gm2a (Chr.10, Figure 5) is a lysosomal protein related
to lipid transporter activity [60]. It may participate in
vesicular transport in collecting duct intercalated cells
[61] but nothing is known about its influence on the
renal mass.

Cadps (Chr.15, Figure 6) is a Ca++-dependent secretion
activator. It is required for optimal vesicle exocytosis in
neurons and endocrine cells [62]. It regulates catechola-
mine release from neuroendocrine cells through the inter-
action with dopamine D2 receptor [63]. The deletion of
CADPS alleles causes the deficit in catecholamine secre-
tion [64]. Dopamine receptors of DA-2 subtypes are loca-
lized in sympathetic nerve terminals innervating the renal
blood vessels. Some selective DA-2 receptor agonists are
effective antihypertensive agents [65]. CADPS is one of the
positional candidate genes in human blood pressure quan-
titative trait loci [66]. Genetic down-regulation of genes
related to the adrenergic system (including Cadps) might
play a role in splanchnic vasodilation of portal hyperten-
sion [67]. Cadps location corresponds to chromosomal
region characterized by a very low LOD score 1.01 for
blood pressure level at stress in ISIAH rats (Figure 6). But,
as we agree that many small QTL effects control polygenic
trait variation, we suggest that Cadps downregulation may
be a part of adaptive mechanism against BP elevation at
stress in ISIAH rats.

Iscal (Chr.17, Figure 7) is implicated in the biogenesis
of iron-sulfur clusters. Iron-sulfur clusters are integral
parts of proteins that participate in oxidation-reduction
reactions and catalysis [68,69]. It is known, that iron is
essential for healthy life and is involved in numerous
metabolic processes including cell growth and prolifera-
tion [70]. However, no relations between Iscal and kid-
ney weight were reported.

Several other genes with differential expression and
unknown functions were also detected in the QTL for
kidney weight on Chr.15 and Chr.17 (Figures 6 - 7). The
further studies are needed to define their functions
which probably may be related to increased kidney
weight and structure abnormalities in ISIAH rats.

Genes in QTL for relative kidney weight

In the current study, the QTL for relative kidney weight
on Chr.3 contained the only differentially expressed
gene (Figure 8). It was Mmadhc gene. Its expression
was significantly decreased in hypertensive ISIAH
kidney.

Mmadhc is related to cobalamin (Cbl, vitamin B12)
transport and metabolism, the defects of which may
cause methylmalonic aciduria, homocystinuria, or both
[71,72]. Patients with methylmalonic aciduria often
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develop chronic renal failure (CRF) [73]. Kidney weight
per unit of body weight was significantly greater in the
Cbl-deficient rats compared with the two Cbl-sufficient
control groups [74]. Mmadhc is localized in chromoso-
mal region where the QTL for kidney mass (Kidm13)
was found in the Lyon hypertensive rats [59]. The pre-
sence of two ISIAH alleles in the QTL for relative kid-
ney weight on Chr.3 in F, (ISIAH x WAG) hybrid
males caused the significant increase in relative kidney
weight [8](Supplement, Table 4). We suggest that
decrease in Mmadhc expression may contribute to the
increase in relative kidney weight in ISIAH rats due to a
possible abnormal cobalamin transport and metabolism.

The chromosome 6 was characterized by QTL com-
mon for absolute and relative kidney weight (Figure 4).
The genes differentially expressed in ISIAH and WAG
kidney and located in QTL on Chr.6 were discussed
above.

Ptprb (Chr.7, Figure 9) is a receptor protein tyrosine
phosphatase beta. It is a receptor for heparin affin regu-
latory peptide (HARP), which is a growth factor that has
a potent role in tumor growth and angiogenesis. RPTPB
down-regulation interrupts HARP signaling in human
umbilical vein endothelial cells and abolishes its biologi-
cal activity on cell migration and differentiation [75].
Ptprb expression mediates deafferentation-induced
synaptogenesis [76] and regulates sodium channel mod-
ulation in brain neurons [77].

The earlier studies have demonstrated adrenergic
nerve terminals in direct contact with basal membranes
of mammalian renal tubular epithelial cells. The stimu-
lation of renal sympathetic nerves produces an increase
in renal tubular sodium reabsorption without alterations
in glomerular filtration rate, renal blood flow, or intrare-
nal distribution of blood flow [78]. As soon as the statis-
tically significant plasma sodium increase was found in
ISIAH rats as compared to normotensive WAG [79], we
may suggest that the decreased expression of Ptprb in
ISIAH kidney may be adaptive against the excessive
renal sodium retention but probably doesn’t influence
the kidney weight.

In the current study, we showed that all loci found for
absolute and relative kidney weight didn’t overlap with
significant or suggestive loci for BP traits (Figure 3, 4, 5,
6, 7, 8, 9). So, the genes differentially expressed in
ISIAH and WAG kidneys and located in these QTL
regions associated with absolute and relative kidney
weight shouldn’t substantially influence the BP level in
the 6 month-old ISIAH rats. However, we consider that
in some cases small effects may be suggested and that is
in a good agreement with the recent insights into
genetic architecture of complex diseases [80]. These
loci, one by one, have a little association with the blood
pressure. However, one can expect that the summation
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of their effects in a whole genome can result in much
more higher levels of the association.

Earlier we described several loci common for relative
kidney weight and blood pressure traits in QTL analysis
of F, (ISIAH x WAG) hybrid males aged 3-4 month old
[8]. We suggested the important role of kidney function
in early stage of hypertension manifestation in ISIAH
rats and switching to other mechanisms leading to
genetic control of BP level in the 6-month-old rats. It
was shown that the significant QTL on chromosome 1
was common for arterial blood pressure at rest and
under the emotional stress conditions and for relative
spleen weight in the 6-month-old F,(ISTAHXWAG) rats.
These results suggest that the manifestation of the
stress-sensitive arterial hypertension in ISIAH rats of
that age may be under the genetic control of the deter-
minants related to the spleen function [81]. This
dynamic change of QTL effects during a time course
might reflect the process of stress-sensitive hypertension
development.

Earlier some authors reported that a phenotype having
some genetic component may be affected by different
genetic loci at different age. It was considered highly
plausible and was shown in different organisms: rats
[82,83], chicken [84], humans [85]. The dynamic change
of QTL effects during the time course of growth points
out that early and late growth, at least to some extent,
have different genetic regulation [84].

The distinct kidney mass QTLs independent of those
controlling BP were found earlier in studies of different
models of hypertensive rats [2,86]. These and our studies
suggest that kidney mass can be controlled by physiologic
mechanisms different from those responsible for BP. As
soon as the kidney mass has been viewed as a significant
risk factor for the progression of renal diseases [87] the
discovery of individual kidney mass QTLs may help to
identify the mechanisms underlying renal hypertrophy
independent of hypertension.

Conclusion

The differentially expressed genes found in QTL may
relate not only to the traits under study, but to other
interstrain differences as well. However, the QTL/micro-
array approach and the knowledge-driven filtering of the
list of candidates helped to determine several positional
candidate genes in the QTL for absolute and relative
kidney weight, which may be related to the structural
and mass changes in hypertensive ISIAH kidney. These
were Mmadhc, Ptpro, Oact2 and Wwcl.

The rationale behind QTL/microarray studies is that
causative genes may have polymorphisms causing differ-
ences in their level of expression that translate into
varying amounts of mRNA and ultimately varying
amounts of functional proteins, leading to observable
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phenotypes [88]. From the other side the differential
transcription of the QTL-associated candidate genes
may be a result of the trans-regulation mechanism.

The further experimental validation of causative genes
and detection of polymorphisms will provide opportu-
nities to significantly advance our understanding of the
underlying nature of structural and mass changes in
hypertensive ISIAH kidney.

Competing interests
The authors report no conflicts of interest. The authors alone are responsible
for the content and writing of the paper.

Authors’ contributions

OR carried out the QTL analysis, performed the statistical analysis and
drafted the manuscript. SS carried out the QTL analysis, participated in the
statistical analysis and drafted the manuscript. LK performed hierarchical
cluster analyses and heatmaps construction. AM conceived of the study,
participated in its design and coordination and helped to draft the
manuscript.

Acknowledgements

The authors are grateful to JSC Genoanalytica (Moscow, Russia) for
conducting the array hybridization experiment and the primary statistical
analysis of the hybridization results. This work has been supported by the
Russian Science Foundation. The study was conducted in the Center for
Genetic Resources of Laboratory Animals at the Institute of Cytology and
Genetics SB RAS (RFMEFI61914X0005). Computer calculations were
supported by SSCC SB RAS.

Declarations

Publication of this article has been funded by the RSF 14-14-00269 grant.
This article has been published as part of BMC Genetics Volume 16
Supplement 1, 2015: Selected articles from the IX International Conference
on the Bioinformatics of Genome Regulation and Structure\Systems Biology
(BGRS\SB-2014): Genetics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenet/supplements/16/51.

Authors’ details

"Institute of Cytology and Genetics, Siberian Branch of Russian Academy of
Sciences, Novosibirsk, 630090 Russia. *Novosibirsk State University,
Novosibirsk, 630090 Russia.

Published: 2 February 2015

References

1. Mullins LJ, Bailey MA, Mullins JJ: Hypertension, kidney, and transgenics: a
fresh perspective. Physiol Rev 2006, 86:709-46.

2. Hamet P, Pausova Z, Dumas P, Sun YL, Tremblay J, Pravenec M, Kunes J,
Krenova D, Kren V: Newborn and adult recombinant inbred strains: a tool
to search for genetic determinants of target organ damage in
hypertension. Kidney Int 1998, 53:1488-92.

3. Pravenec M, Kren V, Krenova D, Zidek V, Simakova M, Musilova A, Vorlicek J,
Lezin ES, Kurtz TW: Genetic isolation of quantitative trait loci for blood
pressure development and renal mass on chromosome 5 in the
spontaneously hypertensive rat. Physiol Res 2003, 52:285-9.

4. Dornas WG, Silva ME: Animal models for the study of arterial
hypertension. J Biosci 2011, 36:731-7.

5. Markel AL: Development of a new strain of rats with inherited stress-
induced arterial hypertension. In Genetic hypertension. Volume 218.
London: Colloque INSERM;Sassard J 1992:405-407.

6. Markel AL, Maslova LN, Shishkina GT, Bulygina VW, Machanova NA,
Jacobson GS: Developmental influences on blood pressure regulation
in ISIAH rats. In Development of the hypertensive phenotype: basic and
clinical studies. Volume 19. Amsterdam-Lausanne-NewYork-Oxford-
Shannon-Singapore-Tokyo: Elsevier;MicCarty R, Blizard DA, Chevalier RL
1999:493-526.

22.

23.

24.

25.

26.

27.

28.

29.

Page 11 of 13

Redina OE, Machanova NA, Efimov VM, Markel AL: Rats with inherited
stress-induced arterial hypertension (ISIAH strain) display specific
quantitative trait loci for blood pressure and for body and kidney
weight on chromosome 1. Clin Exp Pharmacol Physiol 2006, 33:456-64.
Redina OE, Smolenskaya SE, Maslova LN, Markel AL: The genetic control of
blood pressure and body composition in rats with stress-sensitive
hypertension. Clin Exp Hypertens 2013, 35:484-95.

Pomp D, Allan MF, Wesolowski SR: Quantitative genomics: exploring the
genetic architecture of complex trait predisposition. J Anim Sci 2004,
82(E-Suppl):£300-312.

Kwitek-Black AE, Jacob HJ: The use of designer rats in the genetic
dissection of hypertension. Curr Hypertens Rep 2001, 3:12-18.

Drake TA, Schadt EE, Lusis AJ: Integrating genetic and gene expression
data: application to cardiovascular and metabolic traits in mice. Mamm
Genome 2006, 17:466-79.

Redina OE, Smolenskaya SE, Abramova TO, Ivanova LN, Markel AL:
Differential transcriptional activity of kidney genes in hypertensive ISIAH
and normotensive WAG rats. Clinical and Experimental Hypertension 2014,
DOI: 10.3109/10641963.2014.954711.

Redina OE, Smolenskaya SE, Maslova LN, Markel AL: Genetic Control of the
Corticosterone Level at Rest and Under Emotional Stress in ISIAH Rats
with Inherited Stress-Induced Arterial Hypertension. Clin Exp Hypertens
2010, 32:364-71.

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE,
Newburg L: MAPMAKER: an interactive computer package for
constructing primary genetic linkage maps of experimental and natural
populations. Genomics 1987, 1:174-81.

Basten CJ, Weir BS, Zeng Z-B: Zmap-a QTL cartographer. In Proceedings of
the 5th World Congress on Genetics Applied to Livestock Production:
Computing Strategies and Software. Volume 22. Guelph, Ontario, Canada:
Organizing Committee, 5th World Congress on Genetics Applied to
Livestock Production;Smith C, Gavora JS, Benkel B, Chesnais J, Fairfull W,
Gibson JP, Kennedy BW, Burnside EB 1994.65-66.

Basten CJ, Weir BS, Zeng Z-B: QTL Cartographer, Version 1.17. Department
of Statistics, North Carolina State University, Raleigh, NG, 2004.

Churchill GA, Doerge RW: Empirical Threshold Values for Quantitative
Trait Mapping. Genetics 1994, 138:963-971.

Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for
interpreting and reporting linkage results. Nat Genet 1995, 11:241-7.
Fine L: The biology of renal hypertrophy. Kidney Int 1986, 29:619-34.
Nyengaard JR, Bendtsen TF: Glomerular number and size in relation to age,
kidney weight, and body surface in normal man. Anat Rec 1992, 232:194-201.
Shmerling MD, Filiushina EE, Lazarev VA, Buzueva Il, Markel” AL,

lakobson GS: Ultrastructural changes of kidney corpuscles in rats with
hereditary stress-induced arterial hypertension [Article in Russian].
Morfologiia 2001, 120:70-74.

Filyushina EE, Shmerling MD, Buzueva II, Lazarev VA, Markel AL,

Yakobson GS: Structural characteristics of renomedullary interstitial cells
of hypertensive ISIAH rats. Bull Exp Biol Med 2013, 155:408-12.

Hoffman P, Tabakoff B: Gene expression in animals with different acute
responses to ethanol. Addict Biol 2005, 10:63-9.

Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, Peng J,
Pelinkova K, Tremblay J, Hamet P, et al: Dynamic genetic architecture of
metabolic syndrome attributes in the rat. Physiol Genomics 2005,
21:243-52.

Pravenec M, Zidek V, Musilova A, Kren V, Bila V, Di Nicolantonio R:
Chromosomal mapping of a major quantitative trait locus regulating
compensatory renal growth in the rat. J/ Am Soc Nephrol 2000, 11:1261-5.
Komuro A, Saeki M, Kato S: Npw38, a novel nuclear protein possessing a
WW domain capable of activating basal transcription. Nucleic Acids Res
1999, 27:1957-65.

Llorian M, Beullens M, Andre’s |, Ortiz JM, Bollen M: SIPP1, a novel pre-
mRNA splicing factor and interactor of protein phosphatase-1. Biochem J
2004, 378:229-38.

Fathallah-Shaykh HM, He B, Zhao LJ, Engelhard HH, Cerullo L, Lichtor T,
Byrne R, Munoz L, Von Roenn K, Rosseau GL, et al: Genomic expression
discovery predicts pathways and opposing functions behind
phenotypes. J Biol Chem 2003, 278:23830-3.

Kuznetsova T, Mischak H, Mullen W, Staessen JA: Urinary proteome
analysis in hypertensive patients with left ventricular diastolic
dysfunction. Eur Heart J 2012, 33:2342-50.


http://www.biomedcentral.com/bmcgenet/supplements/16/S1
http://www.ncbi.nlm.nih.gov/pubmed/16601272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16601272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9607180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9607180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9607180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12790759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12790759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12790759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21857120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21857120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16700878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16700878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16700878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16700878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23302051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23302051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23302051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15471811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15471811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11177702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11177702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21029000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21029000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21029000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3692487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3692487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3692487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7851788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7851788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7581446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7581446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2422432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1546799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1546799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12016771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12016771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24137614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24137614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15849020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15849020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10864582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10864582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10198427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10198427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14640981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14640981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12700229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12700229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12700229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22789915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22789915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22789915?dopt=Abstract

Redina et al. BMC Genetics 2015, 16(Suppl 1):S1
http://www.biomedcentral.com/1471-2156/16/51/S1

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51

Lin H, Decuypere E, Buyse J: Oxidative stress induced by corticosterone
administration in broiler chickens (Gallus gallus domesticus) 1. Chronic
exposure. Comp Biochem Physiol B Biochem Mol Biol 2004, 139:737-44.

de Nadal E, Ammerer G, Posas F: Controlling gene expression in response
to stress. Nat Rev Genet 2011, 12:833-45.

Morel Y, Barouki R: Repression of gene expression by oxidative stress.
Biochem J 1999, 342:481-96.

Thomas PE, Wharram BL, Goyal M, Wiggins JE, Holzman LB, Wiggins RC:
GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-
tyrosine phosphatase. Identification, molecular cloning, and
characterization in rabbit. J Biol Chem 1994, 269:19953-62.

Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, Misek DE,

Kuick RD, Wiggins RC: Podocyte hypertrophy, “adaptation,” and
“decompensation” associated with glomerular enlargement and
glomerulosclerosis in the aging rat: prevention by calorie restriction.

J Am Soc Nephrol 2005, 16:2953-66.

Moreno C, Dumas P, Kaldunski ML, Tonellato PJ, Greene AS, Roman RJ,
Cheng Q, Wang Z, Jacob HJ, Cowley AWJ: Genomic map of cardiovascular
phenotypes of hypertension in female Dahl S rats. Physiol Genomics 2003,
15:243-57.

Wharram BL, Goyal M, Gillespie PJ, Wiggins JE, Kershaw DB, Holzman LB,
Dysko RC, Saunders TL, Samuelson LC, Wiggins RC: Altered podocyte
structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension
and low glomerular filtration rate. J Clin Invest 2000, 106:1281-90.

Barisoni L, Kriz W, Mundel P, D'Agati V: The dysregulated podocyte
phenotype: a novel concept in the pathogenesis of collapsing idiopathic
focal segmental glomerulosclerosis and HIV-associated nephropathy.

J Am Soc Nephrol 1999, 10:51-61.

Kim YH, Goyal M, Wharram B, Wiggins J, Kershaw D, Wiggins R: GLEPP1
receptor tyrosine phosphatase (Ptpro) in rat PAN nephrosis. A marker of
acute podocyte injury. Nephron 2002, 90:471-6.

Pravenec M, Zidek V, Simakova M, Vorlicek J, Kren V: Linkage mapping of
the Fos cellular oncogene (Fos) to rat chromosome 6 and its possible
role in the regulation of compensatory renal growth. Folia Biol (Praha)
1998, 44:151-3.

Mei Y, Thompson MD, Cohen RA, Tong X: Endoplasmic Reticulum Stress
and Related Pathological Processes. J Pharmacol Biomed Anal 2013,
1:1000107.

Vekich JA, Belmont PJ, Thuerauf DJ, Glembotski CC: Protein disulfide
isomerase-associated 6 is an ATF6-inducible ER stress response protein
that protects cardiac myocytes from ischemia/reperfusion-mediated cell
death. J Mol Cell Cardiol 2012, 53:259-67.

Kassan M, Gala'n M, Partyka M, Saifudeen Z, Henrion D, Trebak M,
Matrougui K: Endoplasmic reticulum stress is involved in cardiac damage
and vascular endothelial dysfunction in hypertensive mice. Arterioscler
Thromb Vasc Biol 2012, 32:1652-61.

Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value
using genome-wide dense marker maps. Genetics 2001, 157:1819-29.
Meuwissen TH: Accuracy of breeding values of ‘unrelated’ individuals
predicted by dense SNP genotyping. Genet Sel Evol 2009, 41:35.

Clark SA, Hickey JM, van der Werf JH: Different models of genetic
variation and their effect on genomic evaluation. Genet Sel Evol 2011,
43:18.

Wirthensohn G, Lefrank S, Wirthensohn K, Guder WG: Phospholipid
metabolism in rat kidney cortical tubules. I. Effect of renal substrates.
Biochim Biophys Acta 1984, 795:392-400.

Hise MK, Harris RH, Mansbach CMn: Regulation of de novo
phosphatidylcholine biosynthesis during renal growth. Am J Physiol 1984,
247:F260-6.

Basil CF, Zhao Y, Zavaglia K, Jin P, Panelli MC, Voiculescu S, Mandruzzato S,
Lee HM, Seliger B, Freedman RS, et al: Common cancer biomarkers. Cancer
Res 2006, 66:2953-61.

Kota L, Schulz H, Falak S, Hu"bner N, Osborne-Pellegrin M: Localization of
genetic loci controlling hydronephrosis in the Brown Norway rat and its
association with hematuria. Physiol Genomics 2008, 34:215-24.

Schneider A, Huentelman MJ, Kremerskothen J, Duning K, Spoelgen R,
Nikolich K: KIBRA: A New Gateway to Learning and Memory? Front Aging
Neurosci 2010, 2:4.

Duning K, Schurek EM, Schluter M, Bayer M, Reinhardt HC, Schwab A,
Schaefer L, Benzing T, Schermer B, Saleem MA, et al: KIBRA modulates
directional migration of podocytes. J Am Soc Nephrol 2008, 19:1891-903.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Page 12 of 13

Yoshihama Y, Sasaki K, Horikoshi Y, Suzuki A, Ohtsuka T, Hakuno F,
Takahashi S, Ohno S, Chida K: KIBRA suppresses apical exocytosis through
inhibition of aPKC kinase activity in epithelial cells. Curr Biol 2011,
21:705-11.

Zhang L, lyer J, Chowdhury A, Ji M, Xiao L, Yang S, Chen Y, Tsai MY,

Dong J: KIBRA regulates aurora kinase activity and is required for precise
chromosome alignment during mitosis. J Biol Chem 2012, 287:34069-77.
JiM, Yang S, Chen Y, Xiao L, Zhang L, Dong J: Phospho-regulation of
KIBRA by CDK1 and CDC14 phosphatase controls cell-cycle progression.
Biochem J 2012, 447:93-102.

Yoshihama Y, lzumisawa Y, Akimoto K, Satoh Y, Mizushima T, Satoh K,
Chida K, Takagawa R, Akiyama H, Ichikawa Y, et al: High expression of
KIBRA in low atypical protein kinase C-expressing gastric cancer
correlates with lymphatic invasion and poor prognosis. Cancer Sci 2013,
104:259-65.

Pan D: Hippo signaling in organ size control. Genes Dev 2007, 21:886-97.
Hilton HN, Stanford PM, Harris J, Oakes SR, Kaplan W, Daly RJ, Ormandy CJ:
KIBRA interacts with discoidin domain receptor 1 to modulate collagen-
induced signalling. Biochim Biophys Acta 2008, 1783:383-93.

Yang S, Ji M, Zhang L, Chen Y, Wennmann DO, Kremerskothen J, Dong J:
Phosphorylation of KIBRA by the extracellular signal-regulated kinase
(ERK)-ribosomal S6 kinase (RSK) cascade modulates cell proliferation and
migration. Cell Signal 2014, 26:343-51.

Bilusic M, Bataillard A, Tschannen MR, Gao L, Barreto NE, Vincent M,

Wang T, Jacob HJ, Sassard J, Kwitek AE: Mapping the genetic
determinants of hypertension, metabolic diseases, and related
phenotypes in the lyon hypertensive rat. Hypertension 2004, 44:695-701.
Kuwana T, Mullock BM, Luzio JP: Identification of a lysosomal protein
causing lipid transfer, using a fluorescence assay designed to monitor
membrane fusion between rat liver endosomes and lysosomes. Biochem
J 1995, 308:937-46.

Mundel TM, Heid HW, Mahuran DJ, Kriz W, Mundel P: Ganglioside GM2-
activator protein and vesicular transport in collecting duct intercalated
cells. J Am Soc Nephrol 1999, 10:435-43.

Daily NJ, Boswell K, James DJ, Martin TF: Novel interactions of CAPS (Ca2
+-dependent activator protein for secretion) with the three neuronal
SNARE proteins required for vesicle fusion. J Biol Chem 2010, 285:35320-9.
Binda AV, Kabbani N, Levenson R: Regulation of dense core vesicle
release from PC12 cells by interaction between the D2 dopamine
receptor and calcium-dependent activator protein for secretion (CAPS).
Biochem Pharmacol 2005, 69:1451-61.

Liu Y, Schirra C, Stevens DR, Matti U, Speidel D, Hof D, Bruns D, Brose N,
Rettig J: CAPS facilitates filling of the rapidly releasable pool of large
dense-core vesicles. J Neurosci 2008, 28:5594-601.

Lokhandwala MF, Amenta F: Anatomical distribution and function of
dopamine receptors in the kidney. FASEB J 1991, 5:3023-30.

Tomaszewski M, Padmanabhan S, Miller WH, Lee WK, Dominiczak AF:
Genetic factors. In Manual of Hypertension of the European Society of
Hypertension. Volume Part 2. United Kingdom: Informa Healthcare;Mancia G,
Grassi G, Kjeldsen SE 2008:84-93.

Coll M, Genesca J, Raurell |, Rodri'guez-Vilarrupla A, Meji'as M, Otero T,

Oria M, Esteban R, Guardia J, Bosch J, et al: Down-regulation of genes
related to the adrenergic system may contribute to splanchnic
vasodilation in rat portal hypertension. J Hepatol 2008, 49:43-51.

Rouault TA, Klausner RD: Iron-sulfur clusters as biosensors of oxidants and
iron. Trends Biochem Sci 1996, 21:174-7.

Wang J, Pantopoulos K: Regulation of cellular iron metabolism. Biochem J
2011, 434:365-81.

Xiong W, Wang L, Yu F: Regulation of cellular iron metabolism and its
implications in lung cancer progression. Med Oncol 2014, 31:28.

Coelho D, Suormala T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold RF,
Baumgartner MR, Fowler B: Gene identification for the cbID defect of
vitamin B12 metabolism. N Engl J Med 2008, 358:1454-64.

Mah W, Deme JC, Watkins D, Fung S, Janer A, Shoubridge EA,

Rosenblatt DS, Coulton JW: Subcellular location of MMACHC and
MMADHC, two human proteins central to intracellular vitamin B(12)
metabolism. Mol Genet Metab 2013, 108:112-8.

Morath MA, Okun JG, Muller 1B, Sauer SW, Horster F, Hoffmann GF,

Kolker S: Neurodegeneration and chronic renal failure in methylmalonic
aciduria-a pathophysiological approach. J Inherit Metab Dis 2008,
31:35-43.


http://www.ncbi.nlm.nih.gov/pubmed/15581806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15581806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15581806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22048664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22048664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10477257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7519601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7519601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7519601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16120818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16120818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16120818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14532335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14532335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11086029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11086029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11086029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9890309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9890309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9890309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11961407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11961407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11961407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10732705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10732705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10732705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24611136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24611136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22609432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22609432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22609432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22609432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22539597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22539597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19519896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19519896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21575265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21575265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6477951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6477951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6087680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6087680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16540643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18523158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18523158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18523158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20552044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18596123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18596123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21497093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21497093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22904328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22904328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22784093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22784093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23163744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23163744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23163744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17437995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18190796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18190796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24269383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24269383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24269383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15452030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15452030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15452030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8948454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8948454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8948454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10073593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10073593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10073593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20826818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20826818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20826818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15857609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15857609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15857609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18495893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18495893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1683844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1683844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18457899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18457899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18457899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8871401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8871401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21348856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24861923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24861923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23270877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23270877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23270877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846917?dopt=Abstract

Redina et al. BMC Genetics 2015, 16(Suppl 1):S1 Page 13 of 13
http://www.biomedcentral.com/1471-2156/16/51/S1

74. Nakao M, Kono N, Adachi S, Ebara S, Adachi T, Miura T, Yamaji R, Inui H,
Nakano Y: Abnormal increase in the expression level of proliferating cell
nuclear antigen (PCNA) in the liver and hepatic injury in rats with
dietary cobalamin deficiency. J Nutr Sci Vitaminol (Tokyo) 2006, 52:168-73.

75. Polykratis A, Katsoris P, Courty J, Papadimitriou E: Characterization of
heparin affin regulatory peptide signaling in human endothelial cells.

J Biol Chem 2005, 280:22454-61.

76. Harris JL, Reeves TM, Phillips LL: Phosphacan and receptor protein
tyrosine phosphatase beta expression mediates deafferentation-induced
synaptogenesis. Hippocampus 2011, 21:81-92.

77. Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, Scheuer T,

Catterall WA: A sodium channel signaling complex: modulation by
associated receptor protein tyrosine phosphatase beta. Nat Neurosci
2000, 3:437-44.

78. DiBona GF, Zambraski EJ, Aguilera AJ, Kaloyanides GJ: Neurogenic control
of renal tubular sodium reabsorption in the dog: a brief review and
preliminary report concerning possible humoral mediation. Circ Res 1977,
40:1127-30.

79. Fedoseeva LA, Riazanova MA, Antonov EV, Dymshits GM, Markel” AL: Renin-
angiotensin system gene expression in the kidney and in the heart in
hypertensive ISIAH rats. [Article in Russian]. Biomed Khim 2011, 57:410-9.

80. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,
McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al: Finding the
missing heritability of complex diseases. Nature 2009, 461:747-53.

81. Redina OE, Smolenskaya SE, Abramova TO, Markel AL: Genetic Loci for
Spleen Weight and Blood Pressure in ISIAH Rats with Inherited Stress-
Induced Arterial Hypertension. Molecular Biology 2014, 48:351-358.

82. Samani NJ, Gauguier D, Vincent M, Kaiser MA, Bihoreau MT, Lodwick D,
Wallis R, Parent V, Kimber P, Rattray F, et al: Analysis of quantitative trait
loci for blood pressure on rat chromosomes 2 and 13. Age-related
differences in effect. Hypertension 1996, 28:1118-22.

83. Garrett MR, Dene H, Rapp JP: Time-course genetic analysis of albuminuria
in Dahl salt-sensitive rats on low-salt diet. / Am Soc Nephrol 2003,
14:1175-87.

84. Carlborg O, Kerje S, Schu"tz K, Jacobsson L, Jensen P, Andersson L: A global
search reveals epistatic interaction between QTL for early growth in the
chicken. Genome Res 2003, 13:413-21.

85. Beck SR, Brown WM, Williams AH, Pierce J, Rich SS, Langefeld CD: Age-
stratified QTL genome scan analyses for anthropometric measures. BMC
Genet 2003, 4:531.

86. Duong C, Charron S, Xiao C, Hamet P, Me'nard A, Roy J, Deng AY: Distinct
quantitative trait loci for kidney, cardiac, and aortic mass dissociated
from and associated with blood pressure in Dahl congenic rats. Mamm
Genome 2006, 17:1147-61.

87. Brenner BM, Mackenzie HS: Nephron mass as a risk factor for progression
of renal disease. Kidney Int Suppl 1997, 63:5124-7.

88. Verdugo RA, Farber CR, Warden CH, Medrano JF: Serious limitations of the
QTL/microarray approach for QTL gene discovery. BMC Biol 2010, 8:96.

doi:10.1186/1471-2156-16-S1-S1

Cite this article as: Redina et al: Candidate genes in quantitative trait
loci associated with absolute and relative kidney weight in rats with
Inherited Stress Induced Arterial Hypertension. BMC Genetics 2015
16(Suppl 1):S1.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/16967760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16967760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16967760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20014386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20014386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20014386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10769382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10769382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/870221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/870221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/870221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22066266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22066266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22066266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8952608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8952608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8952608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12707388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12707388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12618372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12618372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12618372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14975099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14975099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17143582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17143582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17143582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9407439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9407439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20624276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20624276?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Animals
	Linkage and statistical analysis
	Microarray experiments
	Microarray data extraction, normalization, and analyses

	Results and discussion
	Genes in QTL for kidney weight
	Genes in QTL for relative kidney weight

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

