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Abstract

A statistically robust and biologically-based approach for analysis of microarray data is described that
integrates independent biological knowledge and data with a global F-test for finding genes of interest that
minimizes the need for replicates when used for hypothesis generation. First, each microarray is
normalized to its noise level around zero. The microarray dataset is then globally adjusted by robust linear
regression. Second, genes of interest that capture significant responses to experimental conditions are
selected by finding those that express significantly higher variance than those expressing only technical
variability. Clustering expression data and identifying expression-independent properties of genes of
interest including upstream transcriptional regulatory elements (TREs), ontologies and networks or
pathways organizes the data into a biologically meaningful system. We demonstrate that when the number
of genes of interest is inconveniently large, identifying a subset of "beacon genes" representing the largest
changes will identify pathways or networks altered by biological manipulation. The entire dataset is then
used to complete the picture outlined by the "beacon genes." This allow construction of a structured
model of a system that can generate biologically testable hypotheses. We illustrate this approach by
comparing cells cultured on plastic or an extracellular matrix which organizes a dataset of over 2,000 genes
of interest from a genome wide scan of transcription. The resulting model was confirmed by comparing
the predicted pattern of TREs with experimental determination of active transcription factors.
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Background

Microarrays are widely used to overview gene expression
landscapes under different experimental conditions. Since
their initial appearance microarrays developed into very
dependable tools with good inter- and intra-platform
reproducibility [1,2]. Although numerous attempts to
unify microarray analysis workflow were made, each man-
ufacturer has its own methods for processing large quan-
tities of data, and there is no general consensus as to the
best means to analyze microarray data, and probably
never will be. Each experimental situation is different, and
different designs may be necessary for hypothesis testing
as compared to hypothesis generation. With the former,
one biological system is compared with another, and the
significance of differences is statistically tested using a t-
test, generally with the assumption that each biological
sample is homogeneous. In such experiments statistical
power becomes the driving consideration. In hypotheses
generating experiments, a number of biological situations
are compared, for example a series of different cell lines, a
time course study or a dose-response study. The biological
samples may not be homogeneous. Cost becomes a major
consideration because the number of replicates needed to
test hypotheses may make experiments prohibitive. Thus,
there is a need for analytical approaches to use under
hypothesis-generating conditions that are based on sound
statistical principles but which nonetheless reduce the
number of replicates needed to assemble at least a prelim-
inary global picture of the effect of a particular biological
situation on gene expression [3].

We present here a statistically robust approach for analyz-
ing the changes in the transcriptome that is driven by the
underlying biology. Previous work by I. Dozmorov
showed that approaches based on separating variability in
expression of genes into biological and technical sources
provide an alternative means of identifying "genes of
interest" for further analysis [4-7]. Under the assumption
that in any experiment most genes do not change expres-
sion, the F-test is used to identify genes that express more
variability than the overall technical variability of the sys-
tem. This set of genes is referred to as "hypervariable
genes," and has been assumed to reflect the relevant bio-
logical variables in the system. In this communication we
have added a number of in silico tests based upon proper-
ties of these genes that do not depend upon expression.
These additional analyses confirmed that at the level of
transcriptional regulatory networks this approach does
identify important genes that can then be assembled into
networks of functions, transcriptional regulation and with
previous knowledge. This represents a further extension of
work published in our laboratory that included only in sil-
ico analyses [8,9].
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We applied this method to examining the effect of cancer
remodeled extracellular matrix (ctECM) on bladder papil-
loma-derived cell line (RT4) as they grow over the course
of several days on a ctECM after having been transferred
from culture on plastic [10]. Papillomas represent a very
early premalignant change, and determining how a
crECM can drive them toward malignancy could identify
novel targets for therapy. Genes exhibiting major changes
in expression introduced by crECM were selected and
their functions examined. Two overlapping canonical
pathways were identified as the main targets. Finally, tran-
scription factors regulating the genes of interest were
found and their validity proven by additional experimen-
tal method. Such integrative approach may reveal new
roles of unknown genes [11], new drug targets [3], and
lead to clinical tests [12].

Results

The workflow chart of our approach is shown in Figure 1.
The normalization process is presented because it is differ-
ent from most approaches using normalization to the
mean, median, or housekeeping genes. The frequency his-
togram of the un-normalized expression values yielded a
bimodal, right-skewed curve as shown on Figure 2A[9].
The distribution around the peak near zero was fitted to a
Gaussian curve, providing a measure of the variability
around zero that can be used to identify genes expressed
significantly above zero. The zero point itself is slightly
above zero because of non-specific binding. Interestingly,
the array contained completely blank spots, which show
up as a sharp peak exactly around zero, as well as a large
number of spots of the solvent (3x SSC) the long oligo
clones are contained in. The average of those points corre-
sponds almost exactly to the zero point established from
the entire array by the method above. The standard devia-
tion of this peak is used to normalize all the expression
data. Normalizing expression to the uncertainty in zero
allows for a ready determination for the threshold of non-
zero expression. Thus, expression value of "3" corre-
sponds to 3 standard deviations (SD) above the zero point
and corresponds to the valley in the total distribution.
With this value, the p-value of a false positive assignment
of expression vs. non-expression is < 0.001. With a thresh-
old of 5 SD, the p-value for a false positive is p < 2.87 x
107. The arrays were then Logl0 transformed and glo-
bally adjusted to each other by robust linear regression,
which assumes that the expression of most genes is not
altered in the experiment and down-weights the effect on
global expression of those that do change. Box plots (Fig-
ure 2B) graphically show this adjustment. Full sets of raw
and transformed data are available on Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/),
accession number GSE9291.
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Schematic diagram of steps in microarray analysis.
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Figure 2

Identification of noise level and microarray adjust-
ment. A) Frequency histogram of gene expression level
from one microarray dataset. The first peak in the bimodal
distribution represents the normal distribution of system
noise centered around zero. Genes expressed 3 SD above
noise level are defined as expressed genes. B) Box plots of
microarray datasets before and after linear regression, values
are logl0 transformed.

Gene expression dynamics

Genes expressed 5 SD above background were considered
highly significantly expressed. While this choice is arbi-
trary, 5 SD above background was selected to focus on
highly expressed genes and to minimize false positives by
eliminating the noisy low-expressed genes. Of the 21,308
unique probes represented on the array, a total of 15,287
were expressed at 5 SD above background on the two
arrays from cells grown on plastic and on the nine arrays
from cells grown on ctECM. The next step is to identify
genes whose expression level responds to crECM. The
total variance in expression of any gene is the sum of the
technical variance (variance due to the measurement
itself), Vt, the relevant biology, Vr, and the irrelevant biol-
ogy Vi. Vi may be attributed to deviations in preparation
of biological samples or other biological factors not
related to the biology of interest. Genes that do not
respond to the biological variables will express only tech-
nical variability and can effectively serve as "housekeeping
genes" or a reference set against which genes that do
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Figure 3

Identification of hypervariable and differentially
expressed genes. A) Frequency histogram of variances of
genes across timecourse. The normal distribution of low-var-
iable genes identified from the left part of the histogram; the
white vertical line marks the threshold for hypervariable
genes expressed 3.8 SD above distribution of constant genes
expressing only technical variability. B) Log|0 ratio of average
gene expression of cells grown on plastic and crECM is pre-
sented as a frequency histogram. Ratio values > 2 or < -2
were truncated and set to 2 and -2, respectively.

respond can be identified with an F-test. Genes responsive
to the biology generally show high variability that likely is
systematic across the experiment. The overall mean tech-
nical variability was determined from the mode of the fre-
quency distribution histogram of standard deviation of
the data set (Figure 3A) and was 8.41% with a standard
deviation of 6.75%. Thus, genes with relative standard
deviations exceeding 3 SD above the mean (28.56%) were
defined as hypervariable. A total of 3462 hypervariable
(HV) genes were identified. However, the lack of repli-
cates leads to an excessive sensitivity to single outliers. A
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Figure 4

Visualization of changes in gene expression level
identified by microarray analysis. A) Schematic graphs of
main changes observed in the system from clustering of
hypervariable genes. B) Part of clustering heatmap of "bea-
con" state change genes: P |, P 2 — duplicate gene expression
profiles of RT4 cells grown on plasticc M 0.5, M |, M 2 etc. —
cells grown on crECM for the indicated number of days. Red/
green intensity indicates level of gene expression, up-/down-
regulated, respectively.

second screening by a leave-one-out method [13] mini-
mized false positives due to a single data point. A total of
2743 HV genes were judged to be hypervariable (p < 6.7 x
10°) and, presumably, represent all the genes that
respond to the presence of a ctECM. This approach has
proven reliable in identifying a set of genes of interest with
minimal need for replicates as compared to methods
based on t-tests [4,9].

Visualization of gene expression changes

For easy visualization of up- and downregulated genes
their expression values were antilog-transformed and nor-
malized around zero with standard deviation equal to 1.
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They were organized into 3 clusters by K-means clustering
with 1000 runs and a similarity metric as correlation
(uncentered). Increasing number of clusters yielded simi-
lar clusters differing only in amplitude, while using 2 clus-
ters failed to distinguish the obvious dynamics. The
results were visualized with Java TreeView program
http://jtreeview.sourceforge.net/ [14,15] (data not
shown). The clustering of hypervariable genes demon-
strated that the vast majority of the biological variability
was between cells grown on plastic and on the ctECM, and
with the main pattern being a change in state of expres-
sion, i.e. from off to on or vice versa. After the first 12
hours on the ctfECM, little variability in gene expression
was observed. This indicates the changes of gene expres-
sion level occurred within the first 12 hours in cells grown
on ctECM, which in turn drives phenotypic changes (Fig-
ure 4). That later time points are not different from the
earlier ones indicates no new biological processes such as
cell death were introduced over the time course of the
experiment.

This represents a very large set of genes of interest, and
other than determining ontologies, such a large number is
inconvenient to interpret. We therefore focused on the
genes showing the largest changes, considering they could
serve as "beacons" to draw our attention to the changes in
underlying processes. Because the dynamics of gene
expression exhibit mainly a change in state between cells
growing on plastic vs. ctECM, the set of hypervariable
genes was filtered to identify the genes that are expressed
below noise level on plastic and highly expressed on
caECM ("off-on" genes) and vice versa ("on-off" genes)
(Figure 4A). The two arrays of gene expression on plastic
and nine arrays of timecourse on ctECM were each aver-
aged and genes with average expression level on plastic <
0 and on crECM > 1 (Log10 scale, average identifies geo-
metric mean) were selected as "off-on" genes. The oppo-
site criteria were applied to identify "on-oft" genes. Using
these stringent criteria, a total of 877 unique "off-on"
genes were turned on by the crECM, whereas a total of 74
unique "on-off" genes were shut down by the crECM. The
validity of this approach was tested in the next section.

Beside the main dynamic of state change genes a smaller
number of genes showed change in level. Figure 3B shows
the distribution of the ratio of expression of genes from
cells grown on plastic to those grown on crECM. The
standard deviation of this ratio is 0.2, and 3 standard devi-
ations (0.6) corresponds to a 3-fold difference. A total of
241 genes were identified that were expressed at least 5 SD
above background in cells grown on plastic and showed at
least a 3-fold increase in expression. Only 67 genes
showed the opposite pattern being highly expressed on
plastic and decreasing 3-fold but still expressed above
noise.

http://www.biomedcentral.com/1471-2105/9/S9/S4

Gene ontology analysis and visualization

The ontologies of the genes of interest were examined
using the Database for Annotation, Visualization and
Integrated Discovery (DAVID, http://
david.abcc.ncifcrf.gov/) [16] tool, which examines all the
functions represented by each gene in a gene list and iden-
tifies groups that share ontologies. The over-represented
ontologies form the basis for identifying functional proc-
esses represented in the change of state induced by a
crECM. Several parameters can be adjusted to achieve a
reasonable and comprehensive set of ontologies and asso-
ciated genes. For the 877 "off-on" genes the following
parameters were set: Similarity term overlap: 5; Similarity
threshold: 0.5; Initial group membership: 5; Final group
membership: 5; Multiple linkage threshold: 0.5, which is
equal to the "Highest" stringency setting in DAVID. After
examining the results provided by different stringencies,
the above set was selected because the picture presented
overall affinities without too many groups but provided
sufficient detail to build a conceptual model of the effect
of ctECM on progressing urothelial cells.

Out of the 877 "off-on" genes 190 clustered into 12 clus-
ters of ontologies at highest stringency and 86 did not
have recognized ontologies. These 86 unannotated genes
likely represent either novel processes not currently iden-
tified or genes whose participation in known processes
has not yet been discovered [11]. The remaining 601 were
predominantly distributed among "related genes" that
shared some ontological features with one or more of the
12 clusters but did not rise above the threshold of signifi-
cance. Some were entirely irrelevant and showed no simi-
larity to any of the clusters. This step is illustrated in Table
1 along with significantly over-represented TREs shared by
all members of each cluster.

Examination of 241 level-change genes increased on
ECM by medium stringency ontological analysis of
these genes found five clusters of functions, three of which
were similar to those for state change.

The 74 genes that were shut off and the 64 genes that were
3-fold down-regulated on ctECM were less informative
than were those that were turned on or up-regulated. At
same stringency as was used for "off-on" genes, one over-
represented cluster was identified in the genes that were
shut off and consisted of 6 transcription factors sharing
homeobox ontology. Decreasing the stringency to
"medium" (the default for DAVID) increased the number
of genes in the cluster to 10 but did not add clusters.
Genes that were down-regulated at least 3-fold yielded
two clusters under medium stringency.

The validity of the selection of "beacon genes" was tested

by comparing the ontological clusters observed with the
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Table I: Major functional groups overrepresented among state-change genes and corresponding overrepresented TREs. The groups
are presented according to the order of significance identified by DAVID. Overrepresented TREs marked in bold are either "off-on"
TFs or increased their level; regular — not present in Panomics set; italics — not present under either condition.

Functional group Number of genes

Major Gene Ontologies

Overrepresented TREs

Gene expression, RNA processing and protein synthesis

12 73 Transcription factors

7 5 Translation initiation factors

9 6 RNA processing — ribosome biogenesis
I 8 Zinc binding

Cell signaling proteins

3 16 G-protein receptor
2 7 GABA receptor/ion channels
6 9 lon channels, K
Post-translational modification and regulatory control
8 5 Glycosyltransferases
10 28 Kinases
Cell-ECM adhesion
4 4 Cadherins
Immune function associated with suppression of effector T-cells
| 15

Transmembrane proteins of unknown significance
5 14 Transmembrane proteins

Transmembrane immunoglobulin-like proteins

v-Maf, SOX-9, FOX]J2, CP2, HFH-3, Elk-1, NRF-2,
AREB6

NGFI-C, GR, HNF-4, YY1, Elk-1, NRF-2, v-Myb,
NF-xB, TATA, c-Myc

MIF-1, Tax/CREB

N-Myc

CDP, CR3+HD, CRE-BPI, CCAAT
HNF-33, CDP CR3+HD, E2, NF-xB, USF

NF-«B, v-Maf, RSRFC4, FOX]2, AP-1, Pax-4,
USF, CDP, Brn-2

AP-1

entire set of 2743 HV genes. A total of 17 clusters was seen,
all of which were identified using the "beacon" genes. This
demonstrates that the smaller data set of state- and level-
change genes will identify all the processes seen in the
larger set of HV genes.

Pathway analysis

Having preliminary understanding of functions repre-
sented by state change genes, they were probed for mem-
bership in canonical pathways by Ingenuity® Pathway
Analysis (IPA, http://www.ingenuity.com/). IPA maps
each gene identifier to its corresponding gene object in the
Ingenuity® Pathways Knowledge Base, and generates mul-
tiple biological networks with associated ontologies from
a list of focus genes, as well as general gene ontologies
overrepresented. IPA canonical pathways analysis identi-
fied the most significant known biological pathways for a
given set of genes. For identification of a significant
canonical pathway or pre-defined network of genes it is
only necessary to identify a single member as significant,
hence the term "beacon" genes. The participation of other
members of the network is checked manually against the
entire data set to ensure they are expressed, or show a
smaller change than the "beacon" genes threshold [9].
Pathways or connections involving genes that are not
expressed are deleted. This process is particularly helpful
in cases where a large number of genes of interest has been
discovered. The smaller, more tractable set of "beacon"
genes are used to draw attention to processes, and all the

details are filled in with the entire data set as is shown
below.

Of the 877 "off-on" genes 165 failed to map and represent
unannotated genes about which little or nothing is
known. The difference in annotation with the DAVID is
due to IPA being curated. Of the 86 not annotated by
DAVID 74 also were not annotated by IPA. Of the 714
mapped genes, 151 fit into various cell signaling processes
and 133 were involved with cellular growth and prolifer-
ation. More informative were interconnected canonical
pathways, many of which overlap. Any one gene may
exhibit multiple functions and participate in multiple
pathways. The most significant canonical pathways iden-
tified were the interconnected G-protein and NF-kB sign-
aling networks (22 "beacon" genes combined). An NF-xB
network is shown in Figure 5 with the gene expression
dynamics indicated with a color code. When compared
back against the set of HV genes and expressed genes,
every member of the network was expressed, and many
were found in the set of HV genes, which meant they
showed smaller changes than the "beacons."

Identification of potential transcriptional networks

Genes sharing similar ontologies may be regulated by one
or more common transcription factors. "Off-on" genes
clustered by DAVID were tested for the presence of com-
mon transcription regulatory elements (TREs) upstream
of the transcribed genes in each ontological cluster by the
web-based program Promoter Analysis and Interaction
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The NFkB canonical signaling pathway from IPA. Dark red > 3-fold increase in gene expression; light red < 3-fold
increase in gene expression; dark green — > 3-fold decrease in gene expression; light green — < 3-fold decrease in gene expres-
sion; gray — unchanged gene expression; no color — gene not in array. Gene symbols with a single border represent single
genes. Double border represent a complex of genes or the possibility that alternative genes might act in the pathway.
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Network Toolset, v.3.5 (PAINT, http://www.dbi.tju.edu/
dbi/tools/paint/) [17]. PAINT queries the Transfac™ data-
base and calculates the probability that the TREs identi-
fied in a given list of genes differ from TREs in a random
sample of genes. In this case, the basis of partitioning into
ontological clusters being driven by particular transcrip-
tion factors was tested by comparing the TREs found in
each cluster against the entire list of 21 K genes present in
the microarray. This provided a map of TREs significantly
overrepresented in a given cluster against a significance
threshold of p < 0.05. For more reliable results filtering
with a false discovery rate (FDR) < 0.3 criterion was used,
when specified. An example identifying the significantly
overrepresented TREs in cluster 1 is shown in Figure 6A.
The over-represented TREs are also summarized in Table 1
by cluster. The probability of a random collection of genes
sharing a common TRE is less than 0.05. Thus the finding
that a set of genes contains common TREs or fit into
known networks supports that they are neither randomly
selected by chance, nor the product of technical error to
within the limits of statistical testing.

The predictions of PAINT were tested using an independ-
ent experimental assay that measured the DNA binding
activity of transcription factors using TranSignal Protein/
DNA Combo Arrays. This array allows estimation of bind-
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Figure 6

Transcription factor activity identified in silico and in
vivo. A) Example of TREs overrepresented in first ontologi-
cal cluster. Several genes (vertical) share common TREs
(horizontal), highlighted by red. Results were filtered to
show only TREs overrepresented at p < 0.05 and FDR < 0.3.
TREs in bold show a significant increase in expression on
crECM compared to plastic confirmed by transcription factor
array experiment. B) Example of changes in binding activity of
a few TFs on plastic and crECM. Gray/black bars show bind-
ing activity on plastic/crECM, respectively.
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ing activity of 345 TFs. We found a number of up-regu-
lated transcription factors on ctECM. The bar diagram in
Figure 6B compares the activity of selected transcription
factors in cells grown on plastic vs. ctECM. The majority
of transcription factors that showed large changes in activ-
ity were also identified by PAINT as driving up- or down-
regulated clusters of genes, the results are shown in Table
1 with TREs confirmed by Panomics array highlighted in
bold. Depending on stringency, between 5 and 13 tran-
scription factors were shut off and between 25 and 40
were activated by the ctECM. Supplemental table S1 in
Additional file 1 shows DNA binding activity of all tran-
scription factors in cells grown on plastic or ccECM. Most
of the changes were "off-on," as was observed for the
mRNAs of the downstream genes. Some transcription fac-
tors were active in cells growing under both conditions.

Conclusion

In this study we present a self-guided approach for analyz-
ing a complex biological change by microarrays and illus-
trate its use to describe the complex change in gene
expression that occur when papilloma cells are placed on
a ctECM. The flowchart of each step of this approach is
shown in Figure 1. We also confirm the validity of the
integrated approach by independent verification of the
predictions of transcriptional regulatory networks. With a
very complex biological system mobility more than 2000
genes identified as significantly varying, we show that the
essential elements of the change in the large scale picture
of the biology can be captured in a smaller subset of "bea-
con" genes. Analysis of this more concise set of "beacons"
facilitates mapping the gene expression dynamics onto
known processes [18]. We wish to emphasize that the
resulting biological picture does not derive solely from
indentifying only a few key genes. This approach also
requires that all members of a pathway be expressed,
which is determined by comparing putative networks or
canonical pathways against the entire dataset of expressed
genes. Genes showing smaller changes than shown by the
"beacons" are identified against the set of HV genes.

The approach also is statistically robust. Expression is
judged against the uncertainty of the zero point, and the
threshold can be selected either to minimize false nega-
tives or false positives. The need for replicates, and there-
fore the cost of experiments, is minimized using a global
F-test against the variance of the system as a whole with a
p-value standard of 1/N that minimizes false positive
identification of significant genes. The HV gene approach
is best suited to providing an overall description for
hypothesis generation with multiple biological variables
as opposed to hypothesis-testing in a two-state system
(e.g. treated and control).
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In summary, this article demonstrates an approach to
microarray analysis that organizes the findings into a bio-
logically based model that should in turn, facilitate gener-
ation and testing of hypotheses because the analysis itself
is structured around the properties of biological system. In
this case, the findings suggest that G-protein signaling
plays a major role in the modulation of phenotype by
crECM, that the cells are differentiated and acquire spe-
cialized functions (e.g. immune function and transmem-
brane proteins) and that several transcription factors
regulate the process.

Methods

The RT4 bladder transitional cell papilloma cell line
(American Type Culture Collection, Manassas Virginia)
was cultured on plastic and on cancer-remodeled ECM,
Matrigel™ (ctECM), and RNA was isolated as described
previously using the RNAeasy kit (QIAGEN Inc., Valencia,
CA) [8,19].

Microarray data were obtained using a spotted array from
cells cultured on plastic (two arrays) and across 9 days
time course of growth on ctECM, as previously described
[9]. Cy3 labeled cDNA was synthesized and hybridized
onto glass arrays spotted with 22,464 long oligos (~70
mers) from the UniGene database of functionally known
genes.

Expression data were normalized to the variability around
the zero point, as described previously [5,7]. Genes were
considered to be expressed if their expression normalized
to the S.D. of zero point exceeded 3.0 (p < 0.001). The
arrays were then globally adjusted to each other by robust
linear regression. Genes expressing higher variability than
the technical variability of the system (hypervariable, or
HV genes) were identified as described previously [4] and
as shown in Figure 3B. Two thresholds were used. HV
genes showed relative standard deviations > 3.8 SD above
that of the population mode (p < 6 .7 x 10-5). This value
is 1/N, where N is the number of expressed genes
(~15,000). A more stringent criterion of > 5 SD (p < 2.87
x 107) was also used to identify a subset of very HV, or
"beacon" genes. Their expression profiles were clustered
by the Cluster 3.0 program http://
boni.ims.tokyo.ac.jvmdehoon/software/cluster/soft-

ware.htm[20]. Hierarchical clustering identified major
patterns of gene expression changes; further clustering of
selected "beacon" genes was done using K-means cluster-
ing, k = 3, which was selected as described below. Signifi-
cantly over-represented gene ontologies were identified
using the Database for Annotation, Visualization and
Integrated Discovery (DAVID, http://
david.abcc.nciferf.gov/) [16]. Biologically relevant net-
works were assembled from identified clusters and groups
of common genes by using Ingenuity Pathways Analysis

http://www.biomedcentral.com/1471-2105/9/S9/S4

(IPA, http://www.ingenuity.com/). Each gene identifier

was mapped to its corresponding gene object in the Inge-
nuity Pathways Knowledge Base. Genes were not weighted
by expression levels, and biological networks were built
on this assumption. Analysis of common TREs shared by
genes in each ontological cluster was performed by using
the web-based program PAINT http://www.dbi.tju.edu/
dbi/tools/paint/[17] against whole list of genes in micro-
array.

Additional assessment of the DNA binding activity of
transcription factors using TranSignal Protein/DNA
Combo Arrays (spin column version, # MA1215, Panom-
ics, Redwood City, CA) was conducted according to the
manufacturer's protocol. Briefly, cell nuclear extracts were
incubated with biotin-labeled oligonucleotides that pos-
sess consensus DNA binding sites for 345 transcription
factors. The protein bound probes were isolated by using
a spin column and then hybridized to the DNA/protein
array. After the DNA/protein array was washed, the array
was incubated with detection solution and images of the
chemiluminescent signal were captured using an Alpha
Imager (Alpha Innotech, San Leandro, CA) and quanti-
tated by using AlphaFase software and standardized
against biotinylated DNA spots on the membrane. The
results are linear between 0 and 100 units. In order to
detect low expression transcription factor activity, two
exposure times were used, 8 and 25 min. Values were
adjusted for exposure so that all values were measured
within the linear range of the assay. A histogram of expres-
sion data was plotted and was found to be bimodal, with
one mode centered about zero. Background subtraction
was performed by calculating the standard deviation of
this distribution and subtracting 3 standard deviations
above the mode from all expression values, approximately
6 units.
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cDNA - complementary deoxyribonucleic acid; ctECM -
cancer-remodeled extracellular matrix; DAVID - Database
for Annotation, Visualization and Integrated Discovery;
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FDR - false discovery rate; HV - hypervariable genes; IPA
- Ingenuity® Pathway Analysis; mRNA -messenger ribonu-
cleic acid; PAINT - Promoter Analysis and Interaction
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