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Abstract
Background: Genome-wide association studies (GWAS) aim to identify genetic variants (usually
single nucleotide polymorphisms [SNPs]) across the entire human genome that are associated with
phenotypic traits such as disease status and drug response. Highly accurate and reproducible
genotype calling are paramount since errors introduced by calling algorithms can lead to inflation
of false associations between genotype and phenotype. Most genotype calling algorithms currently
used for GWAS are based on multiple arrays. Because hundreds of gigabytes (GB) of raw data are
generated from a GWAS, the samples are typically partitioned into batches containing subsets of
the entire dataset for genotype calling. High call rates and accuracies have been achieved. However,
the effects of batch size (i.e., number of chips analyzed together) and of batch composition (i.e., the
choice of chips in a batch) on call rate and accuracy as well as the propagation of the effects into
significantly associated SNPs identified have not been investigated. In this paper, we analyzed both
the batch size and batch composition for effects on the genotype calling algorithm BRLMM using
raw data of 270 HapMap samples analyzed with the Affymetrix Human Mapping 500 K array set.

Results: Using data from 270 HapMap samples interrogated with the Affymetrix Human Mapping
500 K array set, three different batch sizes and three different batch compositions were used for
genotyping using the BRLMM algorithm. Comparative analysis of the calling results and the
corresponding lists of significant SNPs identified through association analysis revealed that both
batch size and composition affected genotype calling results and significantly associated SNPs. Batch
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size and batch composition effects were more severe on samples and SNPs with lower call rates
than ones with higher call rates, and on heterozygous genotype calls compared to homozygous
genotype calls.

Conclusion: Batch size and composition affect the genotype calling results in GWAS using
BRLMM. The larger the differences in batch sizes, the larger the effect. The more homogenous the
samples in the batches, the more consistent the genotype calls. The inconsistency propagates to
the lists of significantly associated SNPs identified in downstream association analysis. Thus, uniform
and large batch sizes should be used to make genotype calls for GWAS. In addition, samples of high
homogeneity should be placed into the same batch.

Background
Genome-wide association studies (GWAS) aim to identify
genetic variants of single nucleotide polymorphisms
(SNPs) across the entire human genome that are associ-
ated with phenotypic traits, such as disease status and
drug response. The International HapMap project deter-
mined genotypes of over 3.1 million common SNPs in
human populations and computationally assembled
them into a genome-wide map of SNP-tagged haplotypes
[1,2]. Concurrently, high-throughput SNP genotyping
technology advanced to enable simultaneous genotyping
of hundreds of thousands of SNPs. These advances com-
bine to make GWAS a feasible and a promising research
field for associating genotypes with various disease sus-
ceptibilities and health outcomes. Recently, GWAS was
successfully applied to identify common genetic variants
associated with a variety of phenotypes [3-31]. Many of
these studies used the Affymetrix GeneChip Human Map-
ping 500 K array set [5,6,11]. The genomic DNA for one
of the arrays is cleaved with the Nsp I restriction enzyme
and ~262,000 SNPs are interrogated. The second chip uses
Sty I – cleaved genomic DNA and ~238,000 SNPs are ana-
lyzed. Genotypes from Affymetrix GeneChip Human
Mapping 500 K array set data are usually determined by
the calling algorithm BRLMM [32] embedded in Affyme-
trix software packages. Algorithms developed by other
laboratories such as PLASQ [33], GEL [34], CRLMM [35],
SNiPer-HD [36], MAMS [37], and CHIAMO [11] are also
utilized.

The MPAM algorithm was developed for analysis of raw
data (i.e., the CEL files) from the first generation of
Affymetrix Mapping 10 K array and is based on clustering
of chips for each SNP by modified partitioning around
medoids [38]. MPAM was error prone for SNPs with miss-
ing genotype groups or low minor allele frequency, a
problem more pronounced on the second generation of
Affymetrix Mapping 100 K array. This prompted Affyme-
trix to develop a new dynamic model based calling algo-
rithm called DM for Mapping 100 K array data [39]. DM
is a single-chip calling algorithm and usually calls geno-
types with high overall call rate and accuracy. However,
the algorithm exhibited a higher misclassification rate for

heterozygous genotypes than for homozygous genotypes.
To improve data analyses for genotyping arrays, the multi-
chip genotype calling algorithm RLMM was developed.
RLMM is based on a robustly fitted, linear model that
employs Mahalanobis distance for classification [40].
RLMM achieved a higher call rate than DM. With the
release of the Mapping 500 K SNP array set, Affymetrix
extended the RLMM model to BRLMM by adding a Baye-
sian step that provided improved estimates of cluster cent-
ers and variances. The DM and GEL algorithms operate on
a single chip, while all others use multiple chips to call
genotypes.

High call rate and accuracy of genotype calling are impor-
tant and essential issues for success of GWAS, since errors
introduced in the genotypes by calling algorithms can
inflate false associations and may lose true associations
between genotype and phenotype. Each of the algorithms
was reported to have a high successful call rate and accu-
racy, or more precisely, high concordance with genotypes
determined by the International HapMap Consortium on
the HapMap samples. With the exception of DM and GEL,
the algorithms require data from multiple chips (i.e., a
batch) to make genotype calls. A GWAS usually involves
analyses of thousands of samples that generate thousands
of raw data files (i.e., CEL files). The raw data file for one
sample (two CEL files for Affymetrix Mapping 500 K array
set: one from Nsp-digested genomic DNA and one from
Sty-digested DNA) is about 130 MB in size. Computer
memory (RAM) limits make it unfeasible to analyze all
CEL files in a GWAS in one single batch on a single com-
puter. The samples are, therefore, divided into many
batches for genotype calling. Affymetrix suggests 40 to 96
CEL files for a batch for the BRLMM method. To date, the
effects on genotype calls caused (potentially) by changing
the number and specific combinations of CEL files in
batches and propagation of the effects to the downstream
association analysis have not been investigated.

Since BRLMM is recommended by Affymetrix, we ana-
lyzed the effect of batch size and composition on the abil-
ity of the BRLMM algorithm to consistently call the 270
samples from the International HapMap project.
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Results
Batch size effect
Batch size effect was assessed by comparing the genotypes
called from BS1, BS2, and BS3 (see Methods) for call rate
and concordance. The overall call rates, defined as the
proportion of successful calls to the total number of calls
(successful calls plus missing calls) for BS1, BS2, and BS3
were 99.48%, 99.50%, and 99.49%, respectively. How-
ever, overall call rates are not informative enough to assess
the distribution of missed calls on the chip. Batch size
effect on genotype calling rates are best compared using
one-against-one comparisons of distributions of call rates
on individual samples and SNPs. These distributions were
calculated from data of samples and SNPs generated from
the calling results of the experiments with three batch
sizes (BS1, BS2, and BS3).

The comparison of call rates of samples using MA-like
plots is shown in Figure 1. The average call rate of two gen-
otype calling results (x-axis) from experiments with two
different batch sizes were plotted against the difference of
call rates between the two experiments (large batch size –
small batch size; y-axis). The horizontal dotted lines at y =
0 represent the expected locations of samples if the miss-
ing calls on each sample were exactly the same in the two
experiments. Data points above this line are the samples
having fewer missing calls (i.e., higher call rate) in the
experiment with the larger batch size than in the experi-
ment with the smaller batch size. Data points beneath this
line indicate samples having fewer missing calls in the
experiment with smaller batch size than in the experiment
with the larger batch size. The perpendicular distance
from a data point to this line is the difference in call rate
of a sample between the two experiments. Figure 1A com-
pares the results of BS1 with BS2; 1B compares the results
of BS1 with BS3; and 1C compares the results of BS2 with
BS3. Data points at lower average call rates are more dis-
tant from the calculated equivalent call rate (dotted line)
than the data points at higher average call rates. Thus,
batch size affected lower call rates more severely than
higher call rates. Furthermore, data points in Figure 1B
(BS1 versus BS3) are farther away from the dotted line
when compared with the data points in Figure 1A (BS1
versus BS2), which, in turn, were farther away from the
dotted line when compared with Figure 1C (BS2 versus

BS3). The values of  (see Methods) were 0.0304, 0.0416,
and 0.0257 for comparisons shown in Figure 1A, B, and
1C, respectively, that are related to the corresponding dif-
ferences of batch sizes of the compared experiments, 45
(90 – 45), 60 (90 – 30), and 15 (45 – 30). The p-values for
comparisons in Figure 1A, B, and 1C are 1.736 × 10-6,

D

MA-like plots for comparing call rates of samples between two experiments with different batch sizesFigure 1
MA-like plots for comparing call rates of samples 
between two experiments with different batch sizes. 
The empty circles depict the 270 samples. The x-axes repre-
sent average call rates of individual samples in two experi-
ments with different batch sizes. The horizontal dotted lines 
indicate where values of the expected call rates are the same 
in the two compared experiments. A: Comparison between 
BS1 and BS2. The y-axis represents call rate in BS1 – call rate 
in BS2. B: Comparison between BS1 and BS3. The y-axis rep-
resents call rate in BS1 – call rate in BS3. C: Comparison 
between BS2 and BS3. The y-axis represents call rate in BS2 
– call rate in BS3.
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0.0296, and 0.0116, respectively, indicating that call rates
on samples between calling batch sizes are statistically dif-
ferent.

The comparisons of the call rates for individual SNPs are
depicted by MA-like plots in Figure 2. Figure 2A compares
the results of BS1 with BS2; 2B compares the results of BS1
with BS3; and 2C compares the results of BS2 with BS3.
The trend is similar to that observed in Figure 1 that batch
size affected lower call rates more severely than higher call

rates for individual SNPs. The  values were calculated to
be 0.1563, 0.1982, and 0.1467 for the comparisons
shown in Figure 2A, B, and 2C, respectively. They were
positively correlated with the differences of batch sizes of
the compared experiments, 45, 60, and 15, respectively.
The p-values for comparisons in Figure 2A, B, and 2C are
2.2 × 10-16, indicating that the difference of call rates on
SNPs between calling batch sizes are statistically signifi-
cant.

Comparing call rates in experiments with different batch
sizes can only assess the batch size effect on missing calls.
Since three genotypes (homozygote, heterozygote, and
variant homozygote) are possible for a genotype call, we
determined the effect of batch size on the ability to con-
sistently call the genotype. To evaluate the batch size effect
on successful calls, concordance of successful genotype
calls between experiments with different batch sizes was
analyzed (Table 1). Batch size affected successful genotype
calls since the concordances were not 100% and hetero-
zygous genotype concordances were more affected than
homozygous genotype concordances. The largest differ-
ence in batch size (60, BS1 versus BS3) led to the lowest
concordances (99.986% overall concordance). However,
the concordances for BS2 versus BS3 were slightly lower
than for BS1 versus BS2, even though the difference of
batch sizes for BS2 versus BS3 (45 – 30 = 15) is smaller
than that for BS1 versus BS2 (90 – 45 = 45). This result is
likely due to the relatively large difference in the number
of arrays in the batch (BS1 = 90 arrays and BS3 = 30
arrays). High concordance of genotype calls depends on
the difference between batch sizes as well as the actual
batch sizes themselves.

Batch composition effect
The overall call rate based on all CEL files of the 270 Hap-
Map samples for BC1, BC2, and BC3 (see Methods) were
99.48%, 99.43%, and 99.41%, respectively. The genetic
homogeneity of the batches in BC1 (samples from 1 pop-
ulation group) is higher than that of BC2 (samples from 2
population groups) which, in turn, is higher than that of
BC3 (samples from 3 population groups). The batch sizes
were the same for all of the three experiments. Thus,

D

MA-like plots for comparing call rates of SNPs between two experiments with different batch sizesFigure 2
MA-like plots for comparing call rates of SNPs 
between two experiments with different batch sizes. 
The empty circles depict 500,568 SNPs. The x-axes repre-
sent average call rates of individual SNPs in two experiments 
with different batch sizes. The horizontal dotted lines indi-
cate the expected locations of SNPs where the call rates in 
the two compared experiments were exactly same. A: Com-
parison between BS1 and BS2. The y-axis represents call rate 
in BS1 – call rate in BS2. B: Comparison between BS1 and 
BS3. The y-axis represents call rate in BS1 – call rate in BS3. 
C: Comparison between BS2 and BS3. The y-axis represents 
call rate in BS2 – call rate in BS3.
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higher call rates were obtained when genotype calling was
conducted with samples of higher genetic homogeneity.
The effect of batch homogeneity was relatively minor by
this measure. Because the distribution of missing calls on
samples and SNPs was more informative for assessing
batch effect in our first experiments (BS studies), we exam-
ined the distribution of call rates in the BC experiments.

The comparisons of call rates on samples are depicted by
MA-like plots (Figure 3). Figure 3A compares the results of
BC1 with BC2; 3B compares the results of BC1 with BC3;
and 3C compares the results of BC2 with BC3. It can be
seen that most of the data points are above the dotted
lines, indicating fewer missing genotypes (i.e., higher call
rate) when samples in batches are of higher genetic homo-
geneity. Batch composition had a larger effect when the
call rate was lower. Moreover, the level of batch composi-
tion effects was related to differences in the genetic homo-
geneity of samples in the compared batch compositions.

We quantified genetic homogeneity as , where n

is number of population groups of samples in a batch
composition. The values of GH are 1, 0.5 and 0.33 for

BC1, BC2, and BC3, respectively. The  values of the
comparisons in Figure 3A, B, and 3C are 0.0552, 0.0774,
and 0.0373, respectively. These values are positively corre-
lated with the corresponding GH differences between the
compared experiments, (1 – 0.5 = 0.5), (1 – 0.33 = 0.67),
and (0.5 – 0.33 = 0.17). The p-values for all comparisons
are 2.2 × 10-16. Therefore, the call rates on samples
between calling batch compositions are statistically differ-
ent.

The comparisons of call rates on SNPs for BC1 versus BC2,
BC1 versus BC3, and BC2 versus BC3 are shown in Figure
4A, B, and 4C, respectively. Data points at lower average
call rate were farther away from the dotted line than the

data points at higher average call rate; that is, batch com-
position affected SNPs with lower call rates more severely
than SNPs with higher call rates. Furthermore, more SNPs
are above rather than below the calculated equivalent call
rates (dotted line) indicating fewer missing genotypes per
SNP (i.e., higher call rate) when samples in calling batches
are of higher genetic homogeneity. Moreover, it was fur-
ther confirmed that the level of batch composition effects
was related to differences in genetic homogeneity of sam-

ples in the compared batch compositions. The  values
are 0.2046, 0.2384, and 0.1749 for comparisons shown in
Figure 4A, B, and 4C, respectively, that are related to the
corresponding GH differences between the compared
experiments: 0.5, 0.67, and 0.17. The p-values for all com-
parisons are 2.2 × 10-16, confirming that the call rates on
SNPs between calling batch compositions are statistically
different.

To evaluate batch composition effect on successful geno-
type calls, concordance of successful genotype calls
between experiments with different batch compositions
was analyzed (Table 2). Batch composition not only
affected the genotype calls but was more pronounced at
heterozygous genotypes compared with homozygous gen-
otypes, since the concordance for heterozygous genotype
calls were lower than the corresponding concordance for
homozygous genotype calls. Moreover, the concordance
of successful genotype calls between the compared batch
compositions were negatively related to genetic homoge-
neity differences between the batch compositions. For
example, overall concordances were 99.986%, 99.980%,
and 99.991% for BC1 versus BC2, BC1 versus BC3, and
BC2 versus BC3, respectively. These are in opposite order
of the GH differences of the compared experiments, that
is, 0.5, 0.67, and 0.17 for BC1 versus BC2, BC1 versus
BC3, and BC2 versus BC3, respectively.

GH n= 1

D

D

Table 1: Concordance of calls between batch sizes

Comparison BS1 vs BS2 BS1 vs BS3 BS2 vs BS3

Successful Calls for Both SNPs 134258764 134187584 134265847
% 99.338 99.285 99.343

Concordant Calls (All) SNPs 134248899 134187584 134253973
% 99.993 99.986 99.991

Concordant Calls (Hom) SNPs 98179772 98136394 98204063
% 99.997 99.993 99.995

Concordant Calls (Het) SNPs 36069127 36031744 36049910
% 99.981 99.964 99.980

Successful calls for both: SNP genotypes successfully called in both of the compared experiments; Concordant calls (All): same genotype called in 
both of the compared experiments; Concordant calls (Hom): homozygous genotype called in both of the compared experiments; Concordant calls 
(Het): heterozygous genotype called in both of the compared experiments.
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MA-like plots for comparing call rates of samples between two experiments with different batch compositionsFigure 3
MA-like plots for comparing call rates of samples 
between two experiments with different batch com-
positions. The empty circles depict the 270 samples. The x-
axes represent average call rates of individual samples in two 
experiments with different batch compositions. The horizon-
tal dotted lines indicate the expected locations of samples 
where the call rates in the two compared experiments were 
exact same. A: Comparison between BC1 and BC2. The y-
axis represents call rate in BC1 – call rate in BC2. B: Com-
parison between BC1 and BC3. The y-axis represents call 
rate in BC1 – call rate in BC3. C: Comparison between BC2 
and BC3. The y-axis represents call rate in BC2 – call rate in 
BC3.

MA-like plots for comparing call rates of SNPs between two experiments with different batch compositionsFigure 4
MA-like plots for comparing call rates of SNPs 
between two experiments with different batch com-
positions. The empty circles depict 500,568 SNPs. The x-
axes represent average call rates of individual SNPs in two 
experiments with different batch compositions. The horizon-
tal dotted lines indicate the expected locations of SNPs 
where the call rates in the two compared experiments were 
exactly same. A: Comparison between BC1 and BC2. The y-
axis represents call rate in BC1 – call rate in BC2. B: Com-
parison between BC1 and BC3. The y-axis represents call 
rate in BC1 – call rate in BC3. C: Comparison between BC2 
and BC3. The y-axis represents call rate in BC2 – call rate in 
BC3.
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Quality of the raw data
The quality of the raw data is important for comparative
analyses and interpretation. The QC scores of the 270 Nsp
CEL files and of the 270 Sty chip CEL files of the 270 Hap-
Map samples were calculated using DM (Figure 5A and
5B, respectively). The average QC scores for Nsp and Sty
CEL files are 97.58 and 98.26, respectively. The lowest QC
scores for Nsp and Sty CEL files are 93.49 and 93.18,
respectively. The Affymetrix default QC cut-off score is 93.
Therefore, we confirmed high QC of the raw data and
used all CEL files of 270 HapMap samples in our study.

Propagation of batch effect to significantly associated 
SNPs
The objective of a GWAS is to identify the genetic markers
associated with a specific phenotypic trait. It is critical to
assess whether and how the batch effect propagates to the
significant SNPs identified in the downstream association
analysis. Three case-control based association analyses
were conducted for each of the calling results with differ-
ent batch sizes and compositions to assess the propaga-
tion of batch effect in genotype calling to the significantly
associated SNPs (see Methods).

Table 2: Concordance of calls between batch compositions

Comparison BC1 vs BC2 BC1 vs BC3 BC2 vs BC3

Successful Calls for Both SNPs 134128046 134063768 134107787
% 99.241 99.194 99.226

Concordant Calls (All) SNPs 134109060 134036623 134095792
% 99.986 99.980 99.991

Concordant Calls (Hom) SNPs 98050788 97992008 98016851
% 99.989 99.983 99.993

Concordant Calls (Het) SNPs 36058272 36044165 36078941
% 99.977 99.970 99.985

Successful calls for both: genotype successfully called in both of the compared experiments; Concordant calls (All): same genotype called in both of 
the compared experiments; Concordant calls (Hom): homozygous genotype called in both of the compared experiments; Concordant calls (Het): 
heterozygous genotype called in both of the compared experiments.

Histograms of QC confidence scores of Affymetrix Human Mapping 500 K Array Set CEL files of 270 HapMap samplesFigure 5
Histograms of QC confidence scores of Affymetrix Human Mapping 500 K Array Set CEL files of 270 HapMap 
samples. The x-axes indicate the QC confidence scores range from 0 to 100. The y-axes represent number of CEL files with 
QC confidence scores within a window depicted at the x-axes. A: Nsp chip CEL files of the 270 HapMap samples. B: Sty chip 
CEL files of the 270 HapMap samples.
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After removal of low quality SNPs by quality control
assessment, each of the three population groups (Euro-
pean, Asian, and African) was set as "case" while the other
two groups were set as "control". Association analyses
were conducted to identify SNPs that can differentiate the
"case" group from the "control" group. Different lists of
SNPs significantly associated with a same population
group, identified using the genotype calling results with
different batch sizes and compositions, were compared
using Venn diagram.

The comparisons of the significantly associated SNPs
obtained from calling results with different batch sizes are
given in Figure 6. The significantly associated SNPs from
BS1 are in black circles, from BS2 in blue circles, and from
BS3 in red circles. Number of significantly associated
SNPs common in all three batch sizes is in brown, shared
only by two batch sizes in green. The association analyses
results for European versus others are depicted in Figure
6A, for African versus others in 6B, and for Asian versus
others in 6C.

It is clear that the batch size effect on genotype calling
propagated into the downstream association analyses.
Moreover, it was observed that the larger the differences
between two batch sizes, the fewer the significantly asso-
ciated SNPs shared by the two batch sizes. For example,
there were 471, 370, and 217 significantly associated
SNPs shared only by BS2 and BS3, by BS1 and BS2, and by
BS1 and BS3 for the association analyses with European as

"case", respectively, that are negatively related to the cor-
responding differences of batch sizes: 15, 45, and 60.
Same trends were observed for the association analyses
with African as "case" and with Asian as "case".

Figure 7 compares the lists of significantly associated
SNPs obtained using the genotypes called by the three
batch compositions. The significantly associated SNPs
from BC1 are in black circles, from BC2 in blue circles,
and from BC3 in red circles. Number of significantly asso-
ciated SNPs common in all three compositions is in
brown, shared only by two compositions in green. Associ-
ation analyses results for European versus others are
depicted in Figure 7A, for African versus others in 7B, and
for Asian versus others in 7C.

The Venn diagrams demonstrated that for a same "case-
control" setting different lists of significantly associated
SNPs were identified by the same statistical test (Chi2 test)
using the genotype calling results from different batch
compositions. Therefore, the batch composition effect on
genotype calling propagated to the significantly associ-
ated SNPs. Moreover, it was observed that the larger the
difference of genetic homogeneity between two batch
compositions, the fewer the significantly associated SNPs
shared by the two batch compositions. For example, there
were 555, 512, and 229 significantly associated SNPs
shared only by BC2 and BC3, by BC1 and BC2, and by
BC1 and BC3, respectively, for the association analyses
with European as "case". The numbers are negatively

Venn diagrams for comparisons of the significantly associated SNPs identified using the genotype calling results with different calling batch sizesFigure 6
Venn diagrams for comparisons of the significantly associated SNPs identified using the genotype calling 
results with different calling batch sizes. The numbers in circles are the significantly associated SNPs identified in associa-
tion analyses using calling results from different batch sizes: black circles for BS1, blue circles for BS2, and red circles for BS3. 
Numbers in brown represent the associated SNPs shared by all three batch sizes, numbers in green represent the associated 
SNPs shared only by two batch sizes, and the numbers in other colors are the associated SNPs identified only by the corre-
sponding batch sizes. A: The association analyses results for European versus others. B: The association analyses results for 
African versus others. C: The association analyses results for Asian versus others.
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related to the corresponding differences of genetic homo-
geneity in the batch compositions: 0.17, 0.5, and 0.67.
Same trends were observed for the association analyses
with African as "case" and with Asian as "case".

Discussion
GWAS is increasingly used to identify loci containing
genetic variants associated with common diseases and
drug responses. The number of SNPs interrogated in a
GWAS has grown from thousands to millions; for exam-
ple, the newest Affymetrix SNPs array 6.0 contains ~2 mil-
lion probe sets. At the same time, the allele frequency
difference of disease-associated or drug-associated SNPs is
usually very small. Therefore, a very small error intro-
duced in genotypes by genotype calling algorithms may
result in inflated false associations between genotype and
phenotype in the downstream association analysis.
Reproducibility and robustness are as important to geno-
type calling as is the accuracy and call rate that are usually
used to evaluate performance of genotype calling algo-
rithms. As most genotype calling algorithms are based on
multiple chips, and genotype calling for a GWAS is usually
conducted in many batches, reproducibility and robust-
ness of multi-chip calling algorithms under different
batch sizes and compositions are important variables. Sta-
tistical tests of these parameters would increase the confi-
dence for associated SNPs identified in downstream
association analysis.

A heterozygous genotype carries a rare allele. Therefore,
the robustness of calling heterozygous reduces false posi-
tive associations and the chance of missing true associa-
tions. Our studies revealed that both batch size and
composition affected genotype calling results, especially
for heterozygous genotype calling. It was also demon-
strated that batch effect propagates to the downstream
association analysis. Genotype calling algorithms that
eliminate or reduce batch effects but maintain high call
rates and accuracy are preferred for GWAS.

BRLMM first derives an initial guess for each SNP's geno-
type using the DM algorithm and then analyzes across
SNPs to identify cases of non-monomorphism. This sub-
set of non-monomorphism SNPs is then used to estimate
a prior distribution on cluster centers and variance-covar-
iance matrices. This subset of SNP genotypes is revisited
and the clusters and variances of the initial genotype
guesses are combined with the prior information of the
SNP in an ad-hoc Bayesian procedure to derive a posterior
estimate of cluster centers and variances. All SNPs in a
chip are called according to their Mahalanobis distances
from the three cluster centers and confidence scores are
assigned to the calls. With default settings, BRLMM ran-
domly picks 10,000 SNPs to estimate cluster centers and
variances. But the number of non-monomorphism SNPs
used to estimate the prior distribution on cluster centers
and variance-covariance matrices varies with changing

Venn diagrams for comparisons of the significantly associated SNPs identified using the genotype calling results with different calling batch compositionsFigure 7
Venn diagrams for comparisons of the significantly associated SNPs identified using the genotype calling 
results with different calling batch compositions. The numbers in circles are the significantly associated SNPs identified 
in association analyses using calling results from different batch compositions: black circles for BC1, blue circles for BC2, and 
red circles for BC3. Numbers in brown represent the associated SNPs shared by all three batch compositions, numbers in 
green represent the associated SNPs shared only by two batch compositions, and the numbers in other colors are the associ-
ated SNPs identified only by the corresponding batch compositions. A: The association analyses results for European versus 
others. B: The association analyses results for African versus others. C: The association analyses results for Asian versus oth-
ers.
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number of CEL files and changing composition of CEL
files in the calling batches. Batch size effect and batch
composition effect alter these estimates of prior distribu-
tion and variance-covariance matrices. The effect of alter-
ing the number of non-monomorphism SNPs was
confirmed when using the BRLMM calling algorithm by
varying the batch size and composition. The average
number of non-monomorphism SNPs used to estimate
the prior distributions are 5468 (Nsp) and 5422 (Sty),
4356 (Nsp) and 4358 (Sty), and 3612 (Nsp) and 3618
(Sty) for calling batches in BS1, BS2, and BS3, respectively.
The difference of batch sizes is related to the difference of
numbers of non-monomorphism SNPs used to estimate
the prior distribution which is, in turn, related to the dif-
ference of genotype calling results. The average number of
non-monomorphism SNPs used to estimate the prior dis-
tribution are 5468 (Nsp) and 5422 (Sty), 6399 (Nsp) and
6308 (Sty), and 6788 (Nsp) and 6688 (Sty) for calling
batches in BC1, BC2, and BC3, respectively. Differences in
genetic homogeneity of samples are related to differences
in the numbers of non-monomorphism SNPs used to esti-
mate the prior which, in turn, is related to the difference
of genotype calling results.

Conclusion
As demonstrated above, both batch size and batch com-
position affect genotype calling results of GWAS using the
BRLMM algorithm. The larger the difference of batch
sizes, the larger the effect. When the samples in the calling
batches are more homogenous, more concordant geno-
types are called. Batch effect propagates to the down-
stream association analysis and makes the significantly
associated SNPs identified inconsistent. Therefore, we
suggest from our studies that the same or larger batch sizes
should be used to make genotype calls for GWAS and
homogenous samples should be put into the same
batches.

Methods
Raw data
The raw data (CEL files) from the Affymetrix GeneChip
Human Mapping 500 K array set of the 270 HapMap sam-
ples were downloaded from the International HapMap
project website http://www.hapmap.org/downloads/
raw_data/affy500k/. The CEL file format was described on
Affymetrix's developer pages http://www.affymetrix.com/
Auth/support/developer/fusion/file_formats.zip. The file
name indicated the population code (CEU/YRI/
CHB+JPT), the sample identifier (e.g., NA12345), fol-
lowed by the Affymetrix array type (based on restriction
enzyme name: Nsp or Sty). Three population groups com-
posed the data sets and each group contained 90 samples:
CEU had 90 samples from Utah residents with ancestry
from northern and western Europe (termed as European
in this paper); CHB+JPT had 45 samples from Han Chi-

nese in Beijing, China, and 45 samples from Japanese in
Tokyo, Japan (termed as Asian in this paper); YRI had 90
samples from Yoruba in Ibadan, Nigeria (termed as Afri-
can in this paper).

Quality of the raw data
The quality of the raw data from the Affymetrix Human
Mapping 500 K array set was assessed using DM [39]
before genotype calling by BRLMM. DM is a single array
based algorithm; it processes one CEL file at a time in a
multiple CEL file batch and statistically assesses experi-
mental qualities with a numerical score between 0 and
100. A high QC (quality control) number means high
quality of the experiment (CEL file).

Genotype calling by BRLMM
All experiments of genotype calling by BRLMM reported
in this paper were conducted using apt-probeset-genotype
of Affymetrix Power Tools 1.8.5. Affymetrix Power Tools
(APT) contains a set of cross-platform command line pro-
grams that implement algorithms for analyzing and work-
ing with Affymetrix GeneChip® arrays. These programs are
available on the Affymetrix website http://www.affyme
trix.com/support/developer/powertools/index.affx. APT
programs are intended for "power users" who prefer pro-
grams that can be utilized in scripting environments and
are sophisticated enough to handle the complexity of
extra features and functionality. The function of apt-
probeset-genotype in APT is an application for making
genotype calls using SNP Arrays (100 K, 500 K, Genome-
Wide SNP Arrays 5.0 and 6.0). BRLMM is one of the gen-
otype calling algorithms implemented in this function,
and enables many parameters to be changed by a user. For
the studies reported here, all the parameters, except as
noted in the narrative were set to the default values recom-
mended by Affymetrix. The chip description files (cdf) for
both Nsp and Sty chips of the Mapping 500 K array set, as
well as files for defining SNPs on chromosome X, were
also used before genotype calling. They were downloaded
from Affymetrix website. Nsp and Sty CEL files were gen-
otype-called separately.

Batch size experiments
Three experiments were designed and conducted in order
to assess the effect of batch size. In the first experiment
(BS1), the 270 HapMap samples were divided into three
batches based on their population groups: 90 Europeans,
90 Asians, and 90 Africans. The genotypes were called sep-
arately by BRLMM using the default parameter setting sug-
gested by Affymetrix (CEL files from Nsp and CEL files
from Sty were analyzed separately). Genotype calling
results on Nsp files and on Sty files of the three batches in
this experiment were then merged for comparison with
results of other experiments with different batch sizes. The
second experiment (BS2) used a batch size of 45 samples.
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Genotypes were called from the CEL files from 90 Euro-
pean samples in two batches, each with 45 CEL files using
BRLMM with the same parameter settings as in the first
experiment. The procedure was repeated for the Asian and
African samples. In the third experiment (BS3), the batch
size was 30 samples from each population groups.

Batch composition experiments
The selection of samples (CEL files) to place in each batch
can also be anticipated to alter genotyping call rates. The
term batch composition effect is used here to denote the
selected arrays within batches. BRLMM was used with
default parameter settings and the CEL files of 270 Hap-
Map samples to test batch composition effects. In the first
experiment (BC1), the 270 samples were placed in three
batches. One batch contained 90 samples from the same
population group, Europeans, Asians, or Africans. In the
second experiment (BC2), the 90 samples in each of the
three population groups were evenly divided into two
subgroups with each subgroup having 45 unique samples.
Genotype calling was then conducted in three batches
with composition of: (i) subgroup 1 of Europeans + sub-
group 1 of Asians, (ii) subgroup 2 of Europeans + sub-
group 1 of Africans, and (iii) subgroup 2 of Africans +
subgroup 2 of Asians. In the third experiment (BC3), the
90 samples in each of the three population groups were
evenly divided into three subgroups with each subgroup
having 30 unique samples. Genotype calling was then
conducted in three batches with composition of: (i) sub-
group 1 of Europeans + subgroup 1 of Asians + subgroup
1 of Africans, (ii) subgroup 2 of Europeans + subgroup 2
of Asians + subgroup 2 of Africans, and (iii) subgroup 3 of
Europeans + subgroup 3 of Asians + subgroup 3 of Afri-
cans. In each of the three experiments, genotype calling
results of the three batches were merged together before
conducting the comparisons.

Comparing genotype calling results
In each of the experiments reported here, the genotype
calling results by BRLMM from different calling batches
were first merged using a set of in-house programs written
in C++. When merging the calling results, genotypes of
SNPs in Nsp and Sty chips of the same samples were
merged followed by assembling together all genotypes of
all of the 270 HapMap samples. Thereafter, overall call
rates for each of the experiments, call rates of individual
samples and SNPs in each of the experiments, and con-
cordant calls between experiments were calculated and
exported as tab-delimited text files using the in-house pro-
grams written in C++. Comparison of calling results was
done using the R package.

Paired two samples t-test in R package (t.test) was used to
statistically test the alternative hypothesis that call rates

on samples or SNPs between two calling experiments are
different.

To quantify batch effect, average absolute differences in
call rates were calculated for the comparisons using for-
mula (1).

where  and  are call rates of experiments 1 and 2

of sample i or SNP i, respectively; N is the total number of
samples (in this case, 270) or SNPs (in this case, 500,668
which includes 50 QC probe sets in both Nsp and Sty
chips).

Association analysis
In order to study the propagation of batch effect to the sig-
nificantly associated SNPs, all genotype calling results of
the raw data of 270 HapMap samples using BRLMM with
different batch sizes and compositions were analyzed
using Chi2 statistics test for associations between the SNPs
and the case-control settings.

Prior to association analysis, quality control (QC) of the
calling results was conducted to remove markers and sam-
ples with low quality. For each of the calling results, call
rate of 90% was used to remove SNPs and samples. Minor
allele frequency was used to filter SNPs and its cut-off was
set to 0.01. Departure from Hardy-Weinberg equilibrium
(HWE) was check for all SNPs. The p-value of Chi2 test for
Hardy-Weinberg equilibrium was calculated for all SNPs
at first and then the p-values were adjusted for multiple
tests using Benjamini and Hochberg false discovery rate
(FDR) [41]. FDR of 0.01 was set as the cut-off for HWE
test. There were no samples removed because of low qual-
ity. 54942 (10.97%) to 55496 (11.084%) SNPs were
removed in the QC, mainly because of departure from
HWE.

To mimic "case-control" in GWAS, for each of the geno-
type calling results, each of the three population groups
(European, African, and Asian) was assigned as "case"
while the other two as "control" to form a data set for
association analysis for identifying the SNPs significantly
associated with the "case" population group.

In the association analyses, a 2 × 3 contingency table was
generated for each SNP and a case-control setting. Then
Chi2 statistics test was applied on the contingency table to
calculate a p-value for measuring the statistical signifi-
cance of the association between the testing SNP and the
corresponding case-control setting. After raw p-values for
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all SNPs in a data set were calculated, Bonferroni correc-
tion was applied to adjust the raw p-values. Lastly, a crite-
rion of Bonferroni-corrected p-value less than 0.01 was
used to identify the significantly associated SNPs.
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