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Abstract

In this paper we present preliminary results stemming from a novel application of Markov Models
and Support Vector Machines to splice site classification of Intron-Exon and Exon-Intron (5' and 3')
splice sites. We present the use of Markov based statistical methods, in a log likelihood
discriminator framework, to create a non-summed, fixed-length, feature vector for SVM-based
classification. We also explore the use of Shannon-entropy based analysis for automated
identification of minimal-size models (where smaller models have known information loss
according to the specified Shannon entropy representation). We evaluate a variety of kernels and
kernel parameters in the classification effort. We present results of the algorithms for splice-site
datasets consisting of sequences from a variety of species for comparison.

Introduction and background

We are exploring hybrid methods where Markov-based
statistical profiles, in a log likelihood discriminator frame-
work, are used to create a fixed-length feature vector for
Support Vector Machine (SVM) based classification. The
core idea of the method is that whenever a log likelihood
discriminator can be constructed for classification on sto-
chastic sequential data, an alternative discriminator can
be constructed by 'lifting' the log likelihood components
into a feature vector description for classification by SVM.
Thus, the feature vector uses the individual log likelihood
components obtained in the standard log likelihood clas-
sification effort, the individual-observation log odds
ratios, and 'vectorizes' them rather than sums them. The
individual-observation log odds ratios are themselves
constructed from positionally defined Markov Models

(pMM'’s), so what results is a pMM/SVM sensor method.
This method may have utility in a number of areas of sto-
chastic sequential analysis that are being actively
researched, including splice-site recognition and other
types of gene-structure identification, file recovery in com-
puter forensics ('file carving'), and speech recognition.

We test our pMM/SVM method on an interesting discrim-
ination problem in gene-structure identification: splice-
site recognition. In this situation the pMM/SVM approach
leads to evaluation of the log odds ratio of an observed
stochastic sequence, for splice-site and not, by Chow
expansion decomposition, with vectorization rather than
sum of the log odds ratios of the conditional probabilities
on individual observations (where the conditional proba-
bilities are pMM's, and the odds are on splice-site proba-
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bility versus not-splice-site probability). By focusing on a
particular application of the pMM/SVM method, this also
allows us to demonstrate some of the subtleties that occur
in implementation, and how they can be resolved by
information theoretic criteria, here via use of Shannon
Entropy in particular.

Our work makes use of Support Vector Machines for sev-
eral reasons. Firstly, SVM classifiers have a strong general-
ized application in machine learning making advances in
techniques using them in Bioinformatics directly applica-
ble to other fields utilizing SVM based classifiers. Sec-
ondly, the techniques introduced here to automatically
target relevant data positions based on entropy analysis
have direct contributions to expanding the ability to use
SVM classifiers in an unsupervised manner. Finally,
though there are existing classifiers currently in use for
splice site detection the MM/SVM hybridization is pre-
sented here as a novel manner of training against stochas-
tic datasets.

Shannon Entropy

Shannon Entropy [1] or Information Entropy is a measure
of uncertainty or randomness for a given variable in a sys-
tem. One of the original usages [2] for Shannon entropy
was the measure of information conveyed on average for
symbols in a given language, and it has significant appli-
cations in cryptography and other fields where informa-
tion content must be quantified. The entropy is calculated
as a product of probability and the logarithm of probabil-
ity for each possible state of the targeted variable. Suppose
we have the discrete probability distribution p(x;), for the
probability of events x; for 'i' in [1..N], i.e., p(x;) is a dis-
crete probability distribution with N states. Then, Shan-
non entropy is: -2.p(x;)log(p(x;)), where the log function
in log,, In, or log,, results in entropy measured in bit, nat,
or dit, respectively. The DNA alphabet, in particular, only
has four states: Adenine(A), Cytosine (C), Guanine (G),
and Thymine(T), so N = 4 in computations involving this
primitive alphabet.

Splice sites

Coding regions in eukaryotic DNA are typically inter-
rupted by non-coding regions (95% of cases for protein
coding). These non-coding regions are removed by splic-
ing after transcription where pre-mRNA intron segments
are removed, and the exon segments remaining are joined
together to form the final mRNA. The sequences at the
splice region are dominated by GT and AG dinucleotide
pairs at the intron side of the Exon-Intron (EI) and Intron-
Exon (IE) transitions, respectively (see Fig 1).

Markov Model
Also known as a Markov Chain, a Markov Model ("MM")
is a stochastic process with "short-term" memory. If there
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EI Examples with G-T SS IE Examples with A-G SS
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CC TCCCCTICICAGGGACTTACAGTTT

TGCCCAGAGGTGAGTTTACCCAGG TTIGCCICCTAGGGAGA

Figure |
Examples of GT — AG splice site sequences.

were infinite memory, then the probability of observation
X, given prior observations {X,,.., X;}, would be
expressed as P(X,|X.....X;). In practice, there is neither the
data to support such an infinitely detailed conditioning
argument, nor the need. (The existence and utility of
highly accurate short-term memory representations relate
to fundamental aspects of our physical world, such as
equations of motion, causality, entropic increase, and
equilibration.) For an Nth-order Markov Model (MM) we
have: P(X,|Xy..-X;) [3]. When using MMs part of the
model selection problem is the choosing the highest order
model that is well-represented by the training data availa-
ble.

Positionally-defined Markov Model (pMM)

In the standard Markov analysis of an event X,,, with prior
events {Xy...X;}, i.e. a memory of the past N events, our
fundamental mathematical constructs are the conditional
probabilities P(X,|Xy..-X;). For the analysis we describe
here we generalize this formalism, further, to also depend
on position vis-a-vis some reference point. In the case of
splice-site recognition, positionally-defined Markov Mod-
els are used to describe event probabilities at various posi-
tions on either side of the splice site (also known as a
Profile HMM [4]). A pMM is defined as the probability of
event X, with Markov order N, at position I: P(X,|[;
Xy X1)-

Support Vector Machines

SVMs provide a system for supervised learning which is
robust against over training and capable of handling non-
separable cases. Learning with structural risk minimiza-
tion is the central idea behind SVMs, and this is elegantly
accomplished by obtaining the separating hyperplane
between the binary labeled data sets (+ 1) that separates
the labeled data sets with a maximum possible margin
[5,6]. The power of this approach is greatly extended by
the added modeling freedom provided by a choice of ker-
nel. This is related to preprocessing of data to obtain fea-
ture vectors, where, for kernels, the features are now
mapped to a much higher dimensional space (technically,
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an infinite-dimensional space in the case of the popular
Gaussian Kernel).

The hyperplane itself is centered at w-x - b = 0 where w is
the normal vector to the separating hyperplane, x is the
vector of points satisfying the above equation, and b is the
offset from the origin. Given this, w and b are chosen to
maximize the distance or gap between parallel hyper-
planesw-x-b=-1andw-x-b =1 (see[7] for more details
on the implementation we use). The separable case for the
SVM occurs where there is no crossover from the labeled
groups over the hyperplane. Non-separable cases are han-
dled through the use of slack values [6] (see Fig. 2) to
allow for some cross over in order to still obtain the largest
possible margin between the bulk of the labeled groups.
One of the strengths of SVMs is that the approach to han-
dling non-separable data is almost identical to that for
separable data. Further SVM generalizations, even applica-
tions in unsupervised learning/clustering, appear to be
possible [7].

Upon introducing Kernels, the SVM equations are solved
by eliminating w and b to arrive at the following Lagrang-
ian formulation: max 2 _y_n) 04~ 1/2 2 - 1_n) 04 051y
K(x;, x), subject to 0;2 0 and 2; _;_j) oy; = 0, where the
decision function is computed as f(x) = sign(X; _ _n
o;y;K(x;, x;) + b), and where K(x;, x;) is the kernel general-
ization to the inner-product term, <x;, x>, that is obtained
in the standard [6], intuitively geometric, non-kernel
based SVM formulation.

® Support
© vectors

Support
vectors

Figure 2
lllustration of a hyperplane separation of two labeled groups
in feature space.
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Results

Shannon entropy analysis

We analyzed large data sets using a variety of MM based
techniques to study the areas of lowered entropy within
splice site sample sequences. This analysis was critical to
identifying information-rich sequence regions around the
splice site locations, and are used in defining the posi-
tional range of pMM's needed in the SVM classification
that follows. We perform an analysis of the 0th order pMM
profile of the Shannon entropy delineated splice site
regions, then consider the 1stand 2nd order profiles simi-
larly.

We begin by analyzing the Shannon-entropy of the pMM
at various orders for the sample sequences, and search for
contiguous regions with lower than average entropy
which we refer to as the low Entropy ("1Ent") regions. This
is the segment of positional data drawn on to generate fea-
ture vectors based on pMM data. The initial entropic anal-
ysis using the 0t order pMM is used to identify base-
positions that have low Shannon entropy. Further analy-
sis using higher order pMMs is used to determine if
accounting for greater memory further lowers the entropy
of a given position in the sequence. It is found that the
positions identified in the 1Ent regions carry information
about the splice site which a trained SVM can classify with
high accuracy.

El 0t Order pMM

As shown in Fig. 3, the majority of the exon (right) and
intron (left) positions maintain a high level of entropy
around 1.4 nat but there is a marked decrease in entropy
around positions 49 and 50 which correspond to the
splice site (see earlier background for high degree of GT
for EI splice sites), as expected. There is a noticeable IEnt
region corresponding to the 4 positions on the intron side
of the splice site (SS+4) with no 1Ent region identified in
the exon portion of the sequence (using Oth-order pMM's).

IE 0t Order pMM

As shown in Fig. 4, there is a much larger IEnt region in the
IE transition, but with a more gradual drop in entropy
which is not nearly as pronounced outside of the splice
site consensus at positions 49 and 50 (again correspond-
ing to background information). There is also an interest-
ing spike at 2 positions before the splice site (SS-2) at
which entropy returns to the normal base line (consistent
with what has been noted by biologists).

El pMM [st & 2nd Order Entropy

With first order pMM on the EI transition we see the
entropy on the first splice site residue increase in propor-
tion to surrounding entropy as compared to the MM Pro-
file entropy for EI (see Figs 5 &6). This is indicative of the
high entropy for positions near the splice site. Specifically
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1.4 NAT

0.8 NAT

0.2 NAT

Figure 3
Graph of entropy at each position in the sequence using a Oth Order pMM on an EI SS. The SS occurs at positions 49 and 50.

AG
45 6 7
0 0

90

1.4 NAT

W Cow

0.8 NAT

0.2 NAT

Figure 4
Graph of entropy at each position in the sequence using a 0th Order pMM on an IE SS. The SS occurs at positions 49 and 50.
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Figure 5

20 GT
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OHuman
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O Mouse
W Dog

@ Rhesus

Graph of entropy at each position in the sequence using a st Order pMM on an EI SS. The SS occurs at positions 30 and 31.

the position preceding the splice site (SS-1) influences the
first splice site position and increases entropy. When we
extend the EI pMM to 2nd order we observe the entropy
increases more evenly the further it extends from the
splice site. Additionally we see the lowest entropy point
shift further into the intron section under the influence of

4.0
NAT

25

NAT

1.0

NAT

Figure 6

both residues in the splice site. Along the same lines as the
EI 2nd order pMM, IE shows a more gradual transition
than 1storder or MM Profile, along with a lessening of the
entropy spikes seen previously.

M Cow

[H Chicken
O Human

E Opossum
M Rat

O ™ouse

M Dog

@ Rhesus

Graph of entropy at each position in the sequence using a 2nd Order pMM on an EI SS. The SS occurs at positions 21 and 22.
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IE pMM [t & 274 Order Entropy

A similar result is achieved when analyzing IE splice site
sequences under pMM 1st Order (see Figs 7 &8). We note
the decrease in entropy from the exon position following
the splice site (SS+1) due to the influence of the low
entropy splice site residues. Also of note, however, is the
entropy spike toward the end of the intron region (SS-2)
which becomes lessened when influenced by the sur-
rounding intron residues in the LET Region. Along the
same lines as the EI 2nd order pMM, IE shows a more grad-
ual transition than 15t order or MM Profile, along with a
lessening of the entropy spikes seen previously.

Feature extraction, kernel selection, and SVM training

Through feature extraction we translate the nucleic acids
in the sequence, along with the information garnered
from the pMM at various orders, into a numeric value
which we transfer into a vector. This is accomplished
using a variety of functions with differing amounts of suc-
cess as detailed in our results. Other feature vector extrac-
tions are used that involve ratios between event
probability and background probability, as well as direct
symbol to numeric transliterations. It appears a number
of feature vector rules can be successful, as shown in the
Tables in Figures 9 and 10, in the sense that they can pro-
vide the basis for strong SVM classification of splice sites.

Once a feature vector has been produced from the data, by
PMM preprocessing in particular, the discriminating task

L
n

NA

=

JZ>.
A

0.5
NAT

Figure 7

‘ 20 30 AG
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is passed to the SVM. The success of an SVM with a given
data set can be greatly improved with a tuning over ker-
nels (and kernel parameters). Efforts to automate this tun-
ing on choice of kernels is currently being explored by use
of genetic algorithms (further discussion of that effort is
not included here). In the work presented here, we
explore a variety of kernels, as shown in the Tables in Fig-
ures 9 and 10, including the Dot, Polynomial, Radial, and
Neural kernels, where each of the kernels is tuned and
scored on its best performing kernel parameters.

In the tables shown in Figs 9 and 10, the SVM perform-
ance is shown for various feature extraction methods. The
Oth-order pMM based method elaborated on here, with
log likelihood elements log(e;(x;)/q(x;)), is one of the bet-
ter performing cases, where ¢;(x;) is the pMM for the ith
position and q(x;) is the generic background probability
for observation x; (not positionally dependent). For the
null case, or negative instances, we select false splice site
locations from the true data by choosing positions outside
the splice site regions. These feature vectors are split in
half, with one set used to train the SVM and the other used
to evaluate the SVM's performance (against data it was not
trained against). The accuracy is measured in terms of Sen-
sitivity ("SN") and Specificity ("SP"). By comparing the
{SN, SP} of the training data to the {SN, SP} of the testing
data we can evaluate the SVM's classification perform-
ance, where the generalization, "real world", performance
is estimated by the scoring with the test data (and an algo-

Graph of entropy at each position in the sequence using a st Order pMM on an IE SS. The SS occurs at positions 40 and 41.
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H Cow
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O Human
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A G

Graph of entropy at each position in the sequence using a 2nd Order pMM on an IE SS. The SS occurs at positions 30 and 31.

rithmic probe of the best performance possible is done by
testing on the training data).

Overview of kernels tested

A variety of methods for feature extraction as well as ker-
nel types and parameters have been tested to see how well
the data sets responded to each. The results for these ini-
tial tests based on the data sets obtained from [8] are pre-
sented in Figs 9 (EI) and 10 (IE), which show 2
dimensional table comparisons, where the Y-axis repre-

sents the feature transfer function used, and the X-axis rep-
resents the specific Kernel function and parameter(s)
selected. The table entries themselves show results for Sen-
sitivity ("SN") and Specificity ("SP"). The Radial Gamma
function was chosen to test these results more extensively,
along with feature extraction using pMM's.

Results for this are obtained for four species: Cow,
Chicken, Human, and Opossum, and are shown in the EI
and IE Results that follow.

E I Dot Polynomial 2 Polynomial 3 Radial 0.1 Radial 0.5 Radial 1 Radial 2 Radial § Newala1.0 b1.0
— ISP SN ISP SN SP SN SP SN SP SN SP SN SP SN SP SN |SP SN
D | o |
e 0.0797 0.9320] 0.8895 0.9308 0.87 79 0.9161 0.8913) 0.9257] 0.8948/ 0.9147] 0.8000, 08723 0.89032] 0.8376] 0.9133] 0.7600| 0.7/583) 0.76/71
w log ¢(x,) ‘
C ax) 0.8804 0.9318] 0.8906 0.9418 0.8549] 0.9207| 0.8912] 0.9318 0.9001 0.9125 0.9090 0.8560 0‘92461 0.7894 0.9802 0.6756| 0.7670 0.7592
© &lx) ‘
e #(x) 0.8787 0.9278) 0.8908 0.9440 0.8800|8115.0000 0.8919 0.9288 0.8982 0.9137} 0.9003 0.8679 09149  0.7755 0.9251 0.6910|  0.7539 0.7532
A=l G=2 C |
= o | .
GJ 0.7772 0.8642] 0.8771 09116 0.8610| 0.8842 0.8727 0.9245 0.8901 0.8793 0.8901] 0.8793 0.9480 05772 0.9778 0.2138|  0.6317 0.6280,
b [A=00 Ce05 |
G =6
3 e 0.7077 0.7819| 0.8842 0.9091 0.8520] 0.8984 0.8841 0.9164 0.8936) 0.8712] 0.9150 0.7724 0.9273 0.5837 0.9257| 0.5700] 0.5353 0.5322)
pr—]
('U [e,(x, )2
m 0.8781 0.9261 0.8815 0.8410] 0.8B808| 0.9207| 0.8918| 0.9279| 0.8959 0.9065| 0.8954 0.8753| 0.8998) 0.8523] 0.9012 0.8201) 0.7651 0.7607
A=3 G=6
01 T-0 ‘
LL 0.8222) 0.7790] 0.8928 0.9327 0.8764 0.8399) 0.8842 0.5432 0.8936) 0.9194 0.9249 0.8418 0.9554] 0.5726 0.9506) 0.4563| 0.7066 0.6825
.
Figure 9

Table overview of results from feature transfer functions (y-axis) and kernel/parameter selections (x-axis) for El SS samples.
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Kernel Selection

E

Dot Polynomial 2 Polynomial 3 Radial 0.1 Radial 0.5 Radial 1 Radial 2 Radial 5 Neural a1.0,b 1.0
[ ISP ISN ISP SN ISP SN SP SN SP SN SP SN SP SN ISP SN |SP ISN
QD | «w
S 0.8378| 0.8780, 0.7915 0.7988| 0.8118 0.8520) 0.8632] 0.8528 0.8224 0.5247 0.6860, 0.6369| 0.7612) 0.4303 0.7555| 0.4142 0.7793 0.7921
%2) |ogff(:5)
C ) 0.8612] 0.8848 0.7837, 0.7861} 0.8178 0.8591; 0.8714 0.8668, 0.8511] 0.4771 0.7723 0.5112] 0.7755] 0.4228 0.7953 0.4133] 0.7950| 0.8059
© [ ww
S 4(x) 0.8528] 0.8770 0.7795) 0.7929] 0.7943] 0.8350] 0.8596 0.8513 0.8041] 0.5621 0.6813 0.6274 0.6654 0.6085 0.7955] 0.4133 0.7911 0.8063]
l_ A=l G=2 C
=3 T=4
w 0.8220] 0.8754 0.8009) 0.7816 0.7770 0.8908| 0.8617] 0.8143 0.8526| 0.5581 0.7859 0.4323] 0.7964 0.4219 0.7941] 0.4133 0.7440 0.7868
| - A0l C=05
G= 3 T=6
3 ' 0.6416f 0.6321] 0.6727, 0.6775| 0.6297 0.5729 0.6651 0.7418 0.6711] 0.4520 0.7753, 0.4199] 0.7948 0.4142 0.7841] 0.4114 0.5140 0.5056
—
@ |leer
GJ 0.8527} 0.8682| 0.7691) 0.7868 0.7973 0.8385) 0.8563 0.8556 0.6813] 0.6861, 0.6764 0.6189| 0.6657, 0.6085| 0.6980| 0.6066 0.7706) 0.7928|
A=3 G=6 C
=0.1 T=0
l 0.8355 0.8886| 0.7844 0.7911 0.8111 0.8229] 0.8599 0.8226)  0.9117 0.3654 0.7717| 0.4751 0.7679| 0.4333 0.7956 0.4152 0.7486 0.7573
o
Figure 10

Table overview of results from feature transfer functions (y-axis) and kernel/parameter selections (x-axis) for IE SS samples.

El splice site results

We use the Radial kernel with gamma set to 0.5, com-
bined with using Log(e(x)/q(x)) where e(x) is the emis-
sion probability, and q(x) is the background probability,
for a given residue. These results use much larger data sets
than initial trials based on data from [8], and show com-
parison across species boundaries.

Human was chosen as the base line, with Cow selected for
evolutionary similarity as a fellow mammal. Chicken was
selected for evolutionary distance between itself and
human/cow, and Opossum as a marsupial was similarly
chosen for its distance from Chicken, and for not being as
close to Human as Cow. Figure 11 shows the results from
training and testing. Classification on training data has
sensitivity ranges from 80% to 90%, and specificity in the
80-83% range, except for Opossum which drops to 75%
on specificity. These results give an idea what the best-case
performance should be. Actual classification on the test
data, for a true estimate of learning generalization per-
formance, is found to have a 10% reduction in sensitivity,
and a 5% reduction in specificity when compared to the
'best-case' training data performance. Interestingly, the
Opossum results are stable with almost negligible change
in accuracy when testing on the train and test data sets.
The low training results in EI are likely due to the much
smaller feature vector size due to a smaller IEnt region for
the 0th order pMM, this is noticeably less in the IE results
as we will now examine.

IE splice site results

The IE feature vector size is much larger (15 vs 4) than the
El size. As such, there is a much more stable training result
due to IE's SVM being in 15 dimensional space vs the 4
dimensional space for EI. Results are detailed in Fig. 12,
for the same species examined for EI. In comparison to the
El results, both training sensitivity and specificity are close

to 100% accuracy. Transitioning to testing gives a drop of
approximately 15% for testing sensitivity, but around
40% in specificity (i.e., resulting in 85% SN and 60% SP).
Unlike the EI Opossum results, the IE Opossum results on
train and test sets are in line with the Cow, Chicken, and
Human behavior.

El Splice Site

20.00%
85.00%
§0.00%0 — —
B Cowr El
m Chicken EI
75.00% — —=—  ®HumanEl
Opossum El
F0.00% 4 — — — —
65.00% + T
Train Train Tast Test
Sensativity Specificity Senzativity Speciticity
Figure 11

Overview of selected results from the larger multi-species
datasets using radial kernel on El sequences.
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120.00%%
100.00%4%
G0.00%%0 -+ — —
Cow E
&0.00%
1 Chicken |E
Human IE
40.00%% - | | | B Opossum |E
20.00%% - — — — —
0.00%% _— - —
Train Train Test Test
Sensativity Specificity SensativitySpecificity
Figure 12

Overview of selected results from the larger multi-species
datasets using radial kernel on |E sequences.

Conclusion

The main result of this preliminary study shows pMM/
SVMs can be trained as splice site classifiers with high
accuracy. We believe this approach is applicable to other
problem sets, and represents a new approach that com-
bines entropy analysis for feature selection and eventual
PMM/SVM classification. From the specific examples
shown, we see that the splice-site classification results
using the pMM/HMM approach are very promising, for
both IE and EI splice sites. By changing from a 0t Order
PMM to a higher order pMM, it is possible to extend the
low entropy (IEnt) region at the cost of adding noise to
the low entropy positions. This increase in the IEnt region
allows a lift to an SVM with a higher dimensional feature
space, which has an impact on initial training results (as
shown in the differences between Figs 11 and 12 with vec-
tor size 4 and 15, respectively). In ongoing efforts we hope
to work with pMMs of higher order, and to begin training
SVMs using the 1st and 2nd Order pMM's. This effort is
meant to eventually contribute to ongoing construction of
a new gene finder approach (by SWH) that leverages the
power of SVMs and MM variations (such as those involv-
ing gap interpolating MMs).

Methods

pPMMISVM method

In the typical log likelihood discriminator construction,
such as for identification of splice sites, binary classifica-

http://www.biomedcentral.com/1471-2105/9/S9/S12

tion is provided by the sign of the log odds probability of
the splice site vs non-splice-site region. The log odds prob-
ability, in turn, is obtained from the sum of the log condi-
tional probabilities from the Chow expansion of
observing the observed sequence in the splice-site vs non-
splice-site models. In the pMM/SVM method, a sum is not
produced from the log conditional probabilites, but a vec-
tor. The length of the feature vector depends on the
number of terms in the Chow expansion, i.e., on the
length of sequence used in the splice-site recognition
model. For the splice-site recognition problem described
here, an SVM-based classifier is explored for a variety of
sequence window sizes (4-20 components). The window
size is then determined in an automated fashion, that is
minimally sized, by use of Shannon entropy analysis of
splice-site alignments.

Shannon entropy data

In our research we use Shannon entropy analysis to iden-
tify locations of lowered entropy within the sequence sur-
rounding a splice-site. With this automated process we
can identify areas of the sequence with lower entropy.
These segments of the sequence are less random and
therefore contain more information than the remainder
of the splice. Using the feature transfer function we trans-
fer the positions identified by Shannon entropy analysis
into a feature vector for classification by SVM.

Initial research utilized a small data set of human splice
regions originally extracted from GenBank Rel.123 [8].
This set contains approximately 2,700 true EI and 2,800
true EI sequences combined with with 300,000 IE false
and 270,000 EI false sequences. Splitting the dataset
evenly into four (EI test, EI train, IE test, IE train) created
a fast turn around for training and testing amongst the
various SVM kernel definitions and parameters (results
shown in Figs 9 and 10).

For more in-depth statistical analysis a larger data set was
obtained. Given the resistance of SVMs to over training,
we elected to train with a more even ratio of true and false
sequence instances. For each species approximately
125,000 true and 125,000 false sequences each for IE and
El, giving a total set of 500,000 sequences for each species
between the IE train, IE test, EI train, and EI test sets. Spe-
cies used for testing include: 1. Chicken; 2. Cow; 3. Dog;
4. Human; 5. Mouse; 6. Opossum; 7. Rat; and 8. Rhesus
Monkey.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
SWH conceptualized the project and performed the pre-
liminary pMM/SVM tests. BR performed the extensive

Page 9 of 10

(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 9):S12

Shannon entropy tests, and the pMM/SVM tests with the
large multi-species datasets. SWH and BR each contrib-
uted to the writing and approved the final manuscript.

Acknowledgements

We would like to extend special thanks to Dr. Alexander Tchoubanov for
preparing the large, multispecies, sequence set for our experiments. SWH
would also like to thank the UNO CSCI 6990 Advanced Machine Learning
Methods in Bioinformatics Class of 2004 that worked on this topic as a class
project and who helped in doing the initial experiments described in the
tables shown in Fig.s 9 and 10.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 9, 2008: Proceedings of the Fifth Annual MCBIOS Conference. Sys-
tems Biology: Bridging the Omics. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/9%issue=S9

References

I.  Shannon CE: "A Mathematical Theory of Communication™.
Bell System Technical Journal 1948, 27:379-423. 623-656

2. Shannon, Claude E: Prediction and entropy of printed English.
The Bell System Technical Journal 1950, 30:50-64.

3. Markov AA: "Extension of the limit theorems of probability
theory to a sum of variables connected in a chain". reprinted
in Appendix B of: R. Howard. In Dynamic Probabilistic Systems, vol-
ume |: Markov Chains John Wiley and Sons; 1971.

4. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence
Analysis. In Probabilistic Models of Proteins and Nucleic Acids Cambridge
University Press, Cambridge, UK; 1998.

5. Burges CJC: A tutorial on support vector machines for pattern
recognition. Data Min Knowl Discov 1998, 2:121-67.

6.  Corinna Cortes, Vapnik V: "Support-Vector Networks. Machine
Learning 1995, 20: [http://www.springerlink.com/content/
k238jx04hm8780g/].

7. Winters-Hilt S, Yelundur A, McChesney C, Landry M: Support Vec-
tor Machine Implementations for Classification & Cluster-
ing. BMC Bioinformatics 2006, 7(Suppl 2):54.

8. Rampone S: "Homo Sapiens Splice Sites Dataset".
www.sci.unisannio.it/docenti/rampone/].

[htep://

http://www.biomedcentral.com/1471-2105/9/S9/S12

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/9?issue=S9
http://www.springerlink.com/content/k238jx04hm87j80g/
http://www.springerlink.com/content/k238jx04hm87j80g/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118147
http://www.sci.unisannio.it/docenti/rampone/
http://www.sci.unisannio.it/docenti/rampone/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction and background
	Shannon Entropy
	Splice sites
	Markov Model
	Positionally-defined Markov Model (pMM)
	Support Vector Machines

	Results
	Shannon entropy analysis
	Feature extraction, kernel selection, and SVM training

	Conclusion
	Methods
	pMM/SVM method
	Shannon entropy data

	Competing interests
	Authors' contributions
	Acknowledgements
	References

