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Abstract
Background: This paper describes and evaluates a sentence selection engine that extracts a
GeneRiF (Gene Reference into Functions) as defined in ENTREZ-Gene based on a MEDLINE
record. Inputs for this task include both a gene and a pointer to a MEDLINE reference. In the
suggested approach we merge two independent sentence extraction strategies. The first proposed
strategy (LASt) uses argumentative features, inspired by discourse-analysis models. The second
extraction scheme (GOEx) uses an automatic text categorizer to estimate the density of Gene
Ontology categories in every sentence; thus providing a full ranking of all possible candidate
GeneRiFs. A combination of the two approaches is proposed, which also aims at reducing the size
of the selected segment by filtering out non-content bearing rhetorical phrases.

Results: Based on the TREC-2003 Genomics collection for GeneRiF identification, the LASt
extraction strategy is already competitive (52.78%). When used in a combined approach, the
extraction task clearly shows improvement, achieving a Dice score of over 57% (+10%).

Conclusions: Argumentative representation levels and conceptual density estimation using Gene
Ontology contents appear complementary for functional annotation in proteomics.

Introduction
As an increasing amount of information becomes availa-
ble in the form of electronic documents, the increasing
need for intelligent text processing makes shallow text
understanding methods such as the Information Extrac-
tion (IE) particularly useful. Until now, IE has been
strictly defined by DARPA's MUC (Message Understand-

ing Conference) program [1], as a task involving the
extraction of specific, well-defined types of information
from natural language texts in restricted domains, with
the specific objective of filling predefined templates and
databases. Examples of such classical information extrac-
tion tasks are given by the BioCreative named-entity rec-
ognition task or by the Joint workshop on Natural
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Language Processing in Biomedical Applications
(JNLPBA) shared task [2]. The TREC-2003 Genomics
Track and the BioCreative I passage retrieval task propose
an extension of IE tasks to identify entities, such as func-
tional descriptors, which are less strictly defined than gene
and gene products. The 2003 Genomics Track suggested
extracting gene functions as defined in the LocusLink
database (now ENTREZ-Gene). In this repository, records
(called locus, which refer to a gene or a protein) are pro-
vided with a short fragment of text to explain their biolog-
ical function together with a link to the corresponding
scientific article. These so-called Gene Reference Into
Functions (GeneRiFs) are usually short extracts taken
from MEDLINE articles. Generalizing the use of textual
passages for the three axes of the Gene Ontology (GO), i.e.
not only to identify functions but also to identify biologi-
cal processes and cellular components, the BioCreative
task 2.1 aimed at evaluating text mining tools tailored to
extract short passages. The idea is to support existing or
predicted GO annotation. For such tasks, advances
retrieval engines are sufficient to achieve top-precision in
the range of 80% or higher. Thus, mean reciprocal rank
measures reaching 87.18% for retrieving passages sup-
porting protein-protein interactions has been reported for
BioCreative II [3]!

The remainder of the paper is organized as follows: first,
an overview of the state of the art. Then, a description the
different methods and their combinations, as well as the
metrics defined for the task. Finally, reports on results and
conclusion.

Background and applications
Historically, seminal studies dedicated to the selection of
textual fragments were done for automatic summariza-
tion purposes [4], but recently, due to developments in
life sciences, more attention has been focused on sentence
filtering, in particular to extract textual evidences of func-
tional descriptions in life sciences [5].

Summarization
In automatic summarization, the sentence is the most
common type of text-span used: partly because computa-
tional linguistic models have historically focused on syn-
tax, i.e. on intra-sentence relationships and, partly
because cross-sentences dependencies are far more diffi-
cult to process Thus, by choosing sentences as generation
units, many co-reference issues [6] are partially avoided.
So that, it seems simpler and more effective to view the
summarization problem as a sentence extraction prob-
lem. [4] distinguish between two summary types: generic
and query-driven. This distinction is useful relative to our
information extraction task, since we see the task as a
direct application of question-answering applied to func-
tional proteomics. Indeed, the study can be reagrded as an

attempt to answers typical questions as formulated by
Swiss-Prot expert curators. In our approach, we combine a
discourse-level parser, the argumentative classifier, which
automatically categorizes sentences in a MEDLINE
abstract into a predefined set of argumentative structures,
together with a passage density estimator, driven by Gene
Ontology categories.

For automatic summarization, feature selection and
weighting, often based on term frequency and inverse
document frequency factors (tf.idf) have been reported.
Conclusions reached are however not always consistent
[7] with respect to tf.idf. Among other interesting features,
both sentence location as well as sentence length seem
important [8]. In addition, these studies rely lists of fre-
quent phrases and keywords, computed on the summari-
zation domain. Finally, to extract important sentences
from documents, documents' titles and uppercase words
such as named-entities are reported to be good predictors.
Of particular interest for our approach, [9] define a large
list of manually weighted triggers (using both words and
expressions such as we argued, in this article, the paper is an
attempt to, etc.) to automatically structure scientific articles
into seven argumentative classes, namely: BACK-
GROUND, TOPIC, RELATED WORK, PURPOSE,
METHOD, RESULT, and CONCLUSION.

A life sciences literature perspective on Information 
Extraction
To date and as with gene and gene products functions,
descriptions of most of the biological knowledge cannot
be found in databanks, but only in the form of scientific
summaries and articles [10]. Although some visionary
authors [11] already identified the stake in the 90's, mak-
ing use of these textual contents represents a major mile-
stone towards building models of the various interactions
between biological entities and for complex biological
systems in general. For example, sentence filtering for pro-
tein interactions was previously described in [12]. In the
same vein, functional annotation of proteins [13] and
protein protein interactions, which were respectively the
subject of BioCreative I and II, are tasks demanding infor-
mation extraction at the level of short passages. In these
studies, sentence filtering is viewed as a prerequisite step
towards deeper understanding of texts. A similar design
has been proposed by the TREC Genomics track in 2006,
which investigated passage retrieval in full-text articles
[14]. As for discourse-analysis and its role in text mining
applications for molecular biology, it has been used for
keyword extractions [15][16], information extraction
[17], paradygm shift [18], related-article search [19], and
automatic query expansion (blind feed-back) in
MEDLINE ad hoc search tasks [20].
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TREC 2003 benchmarks
To provide a general view of the problems underlying the
generation of the most appropriate GeneRiF during the
TREC-2003 Genomics Track [21], a simple example is
provided in Table 1. In this table we can see the locus
(“ABCA1”) and the MEDLINE record identifier (“PMID -
12804586”). Under the label “TI”, we find the article's
title and under “AB” its abstract, from which the GeneRiF
is extracted. A preliminary study [21] showed that around
95% of the GeneRiF snippets were extracted from the title
or from the abstract of the corresponding scientific paper.
Moreover, from this set, 45% were a direct cut and paste
from either the title or the abstract (Table 1 is such an
example) while another 25% contained significant por-
tions of the title or abstract. A set of 5000 GeneRiF-
abstract pairs has been collected for tuning our system
before evaluating it on the TREC benchmark.

In the TREC evaluation data, we analyzed the sentence
location distribution used to produce the GeneRiF. In this
case, we considered the title (see Figure 1, the first column
labeled “ti”) and the abstract's sentence sequence. For the
evaluation, we rely on the 139 official TREC data. From
this data set, 55 were mainly extracted from the article's
title, as depicted in Figure 1. The second most frequent
source of GeneRiF was the abstract's last sentence (see the
last column in Figure 1, following the label “n”), showing
the source of 36 GeneRiFs. Between these two extreme
positions, the GeneRiF location distribution is rather flat.

Methods
As for automatic abstracting, evaluating sentence classifi-
ers is difficult. First, establishing a consensus benchmark
is clearly a more complex task. Second, it is less univer-
sally defined, as compared to other automatic text classifi-
cation tasks such as spelling correction, document routing
or in information retrieval systems evaluation.

Metrics
In general, for each input text the data mining techniques
yield a ranked list of candidates. Thus, sentence filtering
like information extraction and text categorization may be
formally evaluated by recall and precision measures.
However, we must recognize that it is hard to obtain com-
plete agreement regarding the appropriate measure that
should be used for sentence comparison. It has been
argued [22] that in evaluating a binary classification sys-
tem, one should use effectiveness measures based on esti-
mates of class membership rather than measures based on
rankings. Elsewhere, a precision oriented-metric such as
11-point average precision has been suggested [23]. In the
TREC-2003 genomics evaluation campaign, a third type
of measure was used to evaluate information extraction:
the Dice coefficient is shown in Equation 1. In this for-
mula, the numerator indicates the number of common
words between the candidate sentence (X) and the
expected GeneRiF (Y), while the denominator represents
the total number of words in the GeneRiF and in the can-
didate. Thus, this similarity coefficient measures the lexi-
cal overlap between a candidate and the corresponding
correct GeneRiF.

More precisely, four Dice coefficients variants were sug-
gested, and all were found to be highly correlated-N-
grams metrics were tested but no evidence of improve-
ment compared to word-based distance measure was
observed. In our experiments the Dice metrics given in Eq.
1 is used. This measure assumes that a binary decision was
made prior to computing the Dice distance: a unique can-
didate GeneRiF must be selected.

Dice
X Y

X Y
= ∩

+
2

(1)

Table 1: Example of an ENTREZ-Gene record and the corresponding GeneRiF (italic added)

Input

Locus - ABCA1: ATP-binding cassette, sub-family A (ABC1), member 1

MEDLINE record - PMID - 12804586
TI - Dynamic regulation of alternative ATP-binding cassette transporter A1 transcripts.
AB - (…)
The longest (class 1) transcripts were abundant in adult brain and fetal tissues. Class 2 transcripts predominated in most other tissues. The shortest 
(class 3) transcripts were present mainly in adult liver and lung. To study the biochemical significance of changes in transcript distribution, two cell 
models were compared. In primary human fibroblasts, upregulation of mRNA levels by oxysterols and retinoic acid increased the relative 
proportion of class 2 transcript compared to class 1. Phorbol ester stimulated human macrophage-derived THP-1 cells increased the abundance of 
class 1 transcripts relative to class 2. In both cell lines class 3 transcript levels were minimal and unchanged. It is shown here for the first time that 
the regulation of ABCA1 mRNA levels exploits the use of alternative transcription start sites.

Output

GeneRiF: regulation of ABC A1 mRNA levels exploits the use of alternative transcription start sites
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Common pre- and post-processing strategies
We started designing the task as a ranking task. But it is
worth observing that in real settings, the user should first
formulate an information request related to a particular
protein or gene, and involving categories such as molecu-
lar functions, body or cellular locations, pathological
functions, species, drugs, and tissues. In our experiments,
we assume that from every document a GeneRiFs can be
extracted, while in real settings, database curators need
first to search and select a set of relevant documents using
a retrieval/question-answering engine – For example,
using the EAGLi search interface: http://eagl.unige.ch/
EAGLi/. So in the design of the task, the system is fed with
an abstract, which a priori contain a GeneRiF. As defined
by the TREC Genomics protocol, we also hypothesized
that GeneRiFs are sentences or significant sentence frag-
ments. Such a statement is however questionable since
some examples in the GeneRiF test data support opposite
observations: GeneRiFsare sometimes the synthesis of
more than one sentence. For sentence splitting, we devel-
oped a robust tool based on manually crafted regular
expressions. The tool can detect sentence boundaries with
more than 97% precision on MEDLINE abstracts, and was
deemed competitive with more elaborate methods [24].
In order to avoid applying our classifiers on erroneously
segmented sentences, segments with less than 20 charac-
ters were simply removed from the list of candidate sen-
tences.

Each method ranks the candidate sentences separately.
From these two rankings, our aim is to identify a confi-
dence estimator on each ranking. When both methods
disagree on the top-ranked sentence, a final decision is
needed. This last step transformed the two ranking tools
into a binary classifier, thus finally deciding whether a
candidate sentence is a GeneRiF or not. The selected sen-

tence, which is unique in each {locus, abstract} pair, is
post-processed by a syntactic module, in an ultimate
attempt to eliminate non content-bearing phrases from
the selected sentence.

This sentence reduction step, also called trimming or
compression, uses a part-of-speech tagger [25] and a
standard list of 369 stopwords (e.g., so, therefore, however,
then, etc.) together with a set of stop phrases (e.g., in con-
trast to other studies, in this paper, etc.). When these stop
phrases occurred they are removed from the beginning of
the selected GeneRiF candidate. Part-of-speech informa-
tion is used to augment the list of stopwords, thus any
adverb (e.g. finally, surprisingly, etc.) located at the begin-
ning of a sentence are removed. In the same manner, this
procedure removes non-content bearing introductory syn-
tagms when they are located at the beginning of the sen-
tence: any fragment of text containing a verb and ending
with that, as in we show that, the paper provides the first evi-
dence that, were deleted. Stopword and stop phrase
removal steps are applied sequentially, but we arbitrarily
limited the length of the deleted segment at a maximum
of 60 characters. Moreover, sentence trimming is blocked
when clauses contain gene and protein names (GPN). The
GPN tagger is based on a very simple heuristic: any non-
recognized English token is considered as a GPN. We use
the UMLS SPECIALIST Lexicon and a frequency list of
English words (totaling more than 400,000 items) to sep-
arate between known and unknown words.

Latent Argumentative Structuring
The first classifier is called LASt for Latent Argumentative
Structuring, so called because we assume that it can reveal
the underlying/latent/hidden rhetorical structure of the
article. The tool started ranking abstract sentences as to
their argumentative classes. The discourse model defines
four classes: PURPOSE, METHODS, RESULTS and CON-
CLUSION. These classes were chosen because in scientific
literature they have been found to be fairly stable [26][27]
and they are also recommended by ANSI/ISO guidelines
for professionals. We obtained 19,555 explicitly struc-
tured abstracts from MEDLINE in order to train our Latent
Argumentative Structuring learner – this set does not con-
tain the MEDLINE records used during the evaluation. A
conjunctive query was used to combine the four following
strings: “PURPOSE:” “METHODS:” “RESULTS:,” “CON-
CLUSION:”. From the original set, we retained 12,000
abstracts (an example is given in Table 2) used for training
our LASt system, and 1,200 were used for fine-tuning and
evaluating the tool, following removal of explicit argu-
mentative markers.

Features and heuristics
Our system relies on four Bayesian classifiers [28], one
binary classifier per argumentative class. Each binary clas-

GeneRiF distribution in titles and (“ti”) and in abstracts from the 1st to the nth sentenceFigure 1
GeneRiF distribution in titles and (“ti”) and in 
abstracts from the 1st to the nth sentence
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sifier combined three types of features: words, word
bigrams and trigrams. The log of the class frequency rep-
resented the weight of each feature, but for every category,
DF thresholding [29] is applied so that rare features are
not selected. The class estimate provided by each binary
classifier is used to attribute the final class (an example is
shown in Tables 2 and 3): for each sentence the classifier
with the highest score assigns the argumentative category.
We also investigated the sentence position's impact on the
classification effectiveness through assigning a relative
position to each sentence, see [30] for a comprehensive
evaluation and description of the argumentative classifier.

Table 4 indicates the confusion matrices between the four
classes, with and without the use of relative position heu-
ristics. When the sentence position is not taken into
account, 80.65% of PURPOSE sentences are correctly clas-
sified, while 16% are mis-classified as CONCLUSION,
and 3.23% as RESULTS. On the other hand, when the sen-
tence position is taken into account, 93.55% of PURPOSE
sentences are correctly classified. The data depicted in this
table demonstrates that position can be useful for separat-
ing between the PURPOSE and CONCLUSION classes.
However, the percentages of correctly classified sentences
in the METHODS or RESULTS classes does not vary when
the sentence position is taken into account.

Argumentation and GeneRiF
In preliminary experiment we tried to establish a relation
between the GeneRiFs and the argumentative sections. We
selected two sets of 1000 GeneRiFs from our training data
and submitted them to the argumentative classifier. Both
set A and B are random sets, but for B we impose that the
extract describing the GeneRiF must be found in the
abstract (as exemplified in Table 1). We want to verify that
the argumentative distribution of GeneRiFs originating
from abstracts is similar to the distribution of GeneRiFs
originating from both titles and abstracts. Results of the
argumentative classification are given in Table 5 for these
two sets. These proportions indicate that GeneRiFs are
mainly classified as PURPOSE and CONCLUSION sen-
tences (respectively 41% and 55% in Set A). The signifi-
cance of these observations is accentuated for GeneRiFs
originating from the abstract (see Set B in Table 5) but the
trend is stable. In this case, two thirds of the GeneRiFs
originate from the CONCLUSION, and around a quarter
from the PURPOSE section. Together, these two argumen-
tative classes concentrate between 88% (Set B) and 96%
(Set A) for the GeneRiFs in LocusLink (now ENTREZ-
Gene). Fortunately, and as shown in Table 4, the discrim-
inative power of the argumentative classifier is more effec-
tive for these two classes than for the RESULTS and
METHODS classes.

Table 3: The classification results for the abstract shown in Table 2 (explicit argumentative labels are removed before classification). 
For each row, the attributed class is followed by the score for the class, followed by the extracted text segment. In this example, one of 
RESULTS sentences (in bold) is misclassified as METHODS, while he INTRODUCTION sentence has been classified as PURPOSE.

CONCLUSION (00160116) The highly favorable pathologic stage (RI-RII, 58%) and the fact that the majority of patients were alive and disease-free 
suggested a more favorable prognosis for this type of renal cell carcinoma.
METHODS (00160119) Tumors were classified according to well-established histologic criteria to determine stage of disease; the system proposed 
by Robson was used.
METHODS (00162303) Of 250 renal cell carcinomas analyzed, 36 were classified as chromophobe renal cell carcinoma, representing 14% of the 
group studied.
PURPOSE (00156456) In this study, we analyzed 250 renal cell carcinomas to a) determine frequency of CCRC at our Hospital and b) analyze 
clinical and pathologic features of CCRCs.
PURPOSE (00167817) Chromophobe renal cell carcinoma (CCRC) comprises 5% of neoplasms of renal tubular epithelium. CCRC may have a 
slightly better prognosis than clear cell carcinoma, but outcome data are limited.
RESULTS (00155338) Robson staging was possible in all cases, and 10 patients were stage 1) 11 stage II; 10 stage III, and five stage IV.

Table 2: Example of an explicitly structured abstract in MEDLINE. The 4-class argumentation model, supporting our experiments can 
have minor variations in abstracts as illustrated with the INTRODUCTION marker in this explicitely structured abstracts. Explicitely 
structured abstracts in MEDLINE account for less than 2% of all abstracts.

INTRODUCTION: Chromophobe renal cell carcinoma (CCRC) comprises 5% of neoplasms of renal tubular epithelium. CCRC may have a 
slightly better prognosis than clear cell carcinoma, but outcome data are limited. PURPOSE: In this study, we analyzed 250 renal cell carcinomas 
to a) determine frequency of CCRC at our Hospital and b) analyze clinical and pathologic features of CCRCs. METHODS: A total of 250 renal 
carcinomas were analyzed between March 1990 and March 1999. Tumors were classified according to well-established histologic criteria to 
determine stage of disease; the system proposed by Robson was used. RESULTS: Of 250 renal cell carcinomas analyzed, 36 were classified as 
chromophobe renal cell carcinoma, representing 14% of the group studied. The tumors had an average diameter of 14 cm. Robson staging was 
possible in all cases, and 10 patients were stage 1) 11 stage II; 10 stage III, and five stage IV. The average follow-up period was 4 years and 18 (53%) 
patients were alive without disease. CONCLUSION: The highly favorable pathologic stage (RI-RII, 58%) and the fact that the majority of patients 
were alive and disease-free suggested a more favorable prognosis for this type of renal cell carcinoma.
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Based on these findings, the preferred sentence ranking
order for GeneRiF extraction should be: CONCLUSION,
PURPOSE, RESULTS, METHODS. So we expect that argu-
mentation parsing should top-select a sentence classified
as CONCLUSION. However, selecting the best CONCLU-
SION sentence is not sufficient (such a strategy exhibits a
Dice performance of 35.2%), due to the fact that 45% of
GeneRiFs in the TREC evaluation set were strictly cut and
paste from the article's title. Clearly, our argumentation-
based method needs to take the title into account. To do
so, we simply compute the Dice distance between each
candidate and the title, so that among sentences classified
as CONCLUSION and PURPOSES, those lexically similar
to the title would move to the top of the list. In comple-
ment, a negative filter is also used: sentences without
GPNs are simply discounted. Finally, to select between the
title and the best-ranked sentence from the abstract, the
Dice score is again used. If the sentence score is above a
given threshold, then the sentence is selected, otherwise
the title is returned. From our GeneRiF training data, the
best threshold is 0.5. On the test set, this threshold results
in selecting 14 sentences from the abstract and 125 from
the title, out of a total of 139 queries (see Table 6).

Gene Ontology-driven passage selection
The second module capitalizes on the automatic assign-
ment of GO categories to each candidate sentence. We
hypothesize that sentences having a high density of GO
categories are more likely to serve as GeneRiFs.

Stemming is applied to get a more general feature repre-
sentation space. In parallel, for each sentence in the
abstract, a vector is constructed. The title of the abstracts is
normalized as other sentences to provide a candidate vec-
tor. The vector space contains a dimension for each fea-
ture of the Gene Ontology, including external resources
terminological resources. In particular, Swiss-Prot key-
words improved the effectiveness of the categorizer. To
rank the candidate vectors we compute a vector-space dis-
tance between these candidates and the reference vector.
The resulting ranking expresses a lexical similarity
between the annotation provided by LocusLink curators
and sentences of the abstract and title. Feature weighting
is based on tf (term frequency), idf (inverse document fre-
quency), and pivoted normalization factors applied on
the Gene Ontology. The idea is that frequent lexical fea-
tures in the GO controlled vocabulary (such as receptor,
nucleotid, transfer, regul…) must be downweighted. A dis-
tribution of the most frequent GO codes is given in Table
6. The prior distribution is computed based on Swiss-Prot
data as provided in the context of the BioCreative initia-
tive for the three axes of the Gene Ontology.

The original tuning of the tool is based on experiments
conducted for the BioCreative tasks 2.1 [5], where the sys-
tem achieved very competitive results both for functional
annotation and for passage selection – see [31] for a com-
parative presentation. In [5], we showed that the categori-
zation status value (CSV) assigned by the categorizer
provided an effective estimate to assess the intrinsic qual-
ity of the predicted association. In particular, we showed
that we can transform our top performing recall-oriented
categorizer into a competitive precision-oriented system,
just by setting a threshold on the CSV, what resulted in a
precision close to 80%. In the same vein, we assume here
that the CSV can be directly used to estimate the density
of Gene Ontology-related features.

Today the Gene Ontology categorizer [32] has signifi-
cantly improved its classification power. While reports are
under preparation, the GO Categorizer is already available
for testing via two different interfaces: 1) a predictive
model, which emphasizes knowledge discovery based on
machine learning, and 2) a data-poor browsing mode,
which emphasizes lexical similarities between an input
document and the GO descriptors. The first demonstrator
accepts a PMID or a short text as input (http://
eagl.unige.ch/GOCat/), while the second accepts multiple
MEDLINE citations ranked according to a user query

Table 5: Class distribution in 1000 GeneRiFs after argumentative 
classification. Sets A and B are samples of GeneRiFs as in 
LocusLink, but Set B contains only GeneRiFs originating from 
the abstract.

Set A (%) Set B (%)

PURPOSE 41 22
METHODS 2 4
RESULTS 2 8
CONCLUSION 55 66

Table 4: Confusion matrices for argumentative classification: the 
first column indeictes the expected category, while the first line 
provide the measured classification.

Without sentence positions

PURPOSE METHODS RESULTS CONCLUS.

PURPOSE 80.65 % 0 % 3.23 % 16 %
METHODS 8 % 78 % 8 % 6 %
RESULTS 18.58 % 5.31 % 52.21 % 23.89 %
CONCLUS. 18.18 % 0 % 2.27 % 79.55 %

With sentence positions

PURPOSE METHODS RESULTS CONCLUS.

PURPOSE 93.35 % 0 % 3.23 % 3 %
METHODS 3 % 78 % 8 % 6 %
RESULTS 12.43 % 5.31 % 52.21 % 13.01 %
CONCLUS. 2.27 % 0 % 2.27 % 95.45 %
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(http://eagl.unige.ch/EAGLi). The predictive model cur-
rently achieves top-precision of 48.93% for a recall of
66.56% after twenty categories. The data-poor model
achieves a top precision of 29.8% but is more adapted to
density estimation than the predictive model; therefore it
is used in the experiments reported in this paper. These
results should be contrasted with the GO inter-curator
agreement, which is in the range of 39%-43% [33].

For estimating the GO conceptual density, we simply sum
up the categorization status values assigned to the top-N
categories; with N = 2 determined by direct search. Table
7 provides an example of density estimation for two sen-
tences extracted from the abstract in Table 1.

Fusion of extraction strategies
This last step attempts to combine our two extraction
schemes. To achieve this goal, we used the following rules
(decision boundaries are computed on the GeneRiF train-
ing set):

• Agreement - if the sentence selected by LASt is also cho-
sen by the GOEx module, then we keep it;

• Disagreement - if both ranker disagree on the top item,
then we look at the density estimate returned by GOEx;

– if this estimate is above an empirical threshold and if the
candidate sentence is assigned a PURPOSE/CONCLU-

SION/Title category by the LASt classifier, then the candi-
date sentence provided by GOEx is selected,

– otherwise the LASt candidate sentence is returned.

Finally, once a unique candidate GeneRiF is selected and
if this segment does not come from the title, then the sen-
tence is processed by the reduction procedure (see Com-
mon pre- and post-processing strategies). The output
segment is used for comparison to the correct GeneRiF
provided by LocusLink's annotators, as explained in the
next section. We have tried to apply the sentence reduc-
tion filter, either after of before the combination, without
observing any change regarding the final output.

Results and discussion
Table 8 depicts the overall performance measure using the
Dice coefficient (last column). The table's middle col-
umns show how the proposed GeneRiF may have origi-
nated from the article's title or from an abstract sentence.
Our baseline approach was very simple. For each of the
139 queries (composed of a locus and a MEDLINE arti-
cle), we returned the article's title. Such a naive selection
procedure achieved a relatively high performance of
50.47%, due to the fact that 45% of GeneRiFs were
extracted from the article's title. On the other hand, if for
each query we had an oracle that always selected the title
or the sentence achieving the highest Dice score, we could
obtain a performance of 70.96%, one that represents a

Table 6: Sample distribution of the most frequent GO terms in Swiss-Prot.

GO ID Proportion (%) Cumul. (%) Term

0005634 3.41 3.41 nucleus
0007165 3.19 6.60 signal transduction
0005737 2.75 9.36 cytoplasm
0005887 2.58 11.9 integral to plasma membrane
0005886 1.65 13.6 plasma membrane
0003700 1.48 15.0 transcription factor activity
0016021 1.48 16.5 integral to membrane
0005515 1.04 17.6 protein binding
0006412 0.88 18.5 protein biosynthesis
0006810 0.82 19.3 transport

Table 7: Two sentences extracted from the abstract in Table 1 are assigned a ranked set of N Gene Ontology descriptors (N = 2). Each 
{sentence;category} association pair is provided with a categorization status value (CSV), which directly expresses a similarity 
between the sentence and the Gene Ontology. The final density is computed by simply summing up the top-N CSV (N = 2).

Sentences Predicted GO categories CSV Density

Class 2 transcripts predominated in most other tissues rna primary transcript binding 
35s primary transcript processing

1028
1028

2056

regulation of ABCA1 mRNA levels exploits the use of 
alternative transcription start sites

transcription 
regulation

9397
3422

12819
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theoretical upper bound for our experiments. In this opti-
mal run, we had to extract 59 titles and 80 sentences from
the abstract. We could not however obtain a better per-
formance level due to the fact that LocusLink's annotators
may have used words that did not appear in the article's
title or in the abstract. Moreover, correct GeneRiFs may
paraphrase a sentence or the article's title, revealing the
same gene function with different words or expressions.
Finally, we must keep in mind that GeneRiFs can be
rewritten using more than one sentence. In this case, the
human annotator choses to combine different segments,
taken from various sentences or hypothetically from the
full-text of the article.

As shown in Table 8, the LASt extraction approach pro-
duced an overall performance of 51.98%, and in this case,
125 GeneRiFs came from the article's title and 14 from the
article's abstract. After sentence shortening, the system
achieves a Dice score of 52.78% (ranked 3 out of 15 par-
ticipants in the official TREC evaluation). Our second
extraction scheme (run labeled GOEx) performed at near
similar levels (52.28%). However, in this case, it was seen
that a greater number of proposed GeneRiFs came from
the abstract (36 vs. 14 in the LASt scheme). The last two
rows of Table 8 indicate the performance of our combined
approach (56.14%), clearly showing better overall results
than those for each extraction scheme run separately.
When we apply the sentence trimming procedure, the
Dice score increased slightly (57.29% vs. 56.14%). When
analyzing the origin of each proposed GeneRiF in this
combined approach, we could see that 108 come from the
title and 31 from the abstract.

While these results reveal attractive performance levels
when compared to other runs in the TREC-2003 genomic
evaluation campaign [21], several teams were faced with
the same extraction problem yet suggested other interest-
ing approaches. For example, [34], ranked second at TREC
(Dice = 53%) suggested a scheme that selected between
the article's title and the last sentence of the article's
abstract (as shown in Figure 1, 91 out of the 139 GeneRiFs
were extracted from either the title or the abstract's last

sentence). These authors suggested basing this selection
on a Naive Bayes [35] machine learning approach. The rel-
evant variables were the verbs, MeSH terms and the genes,
all weighted by tf.idf, as well as a Boolean value represent-
ing the presence of the target gene in the abstract.
Although we were not able to reproduce their results
based on their TREC report, [36] report a Dice score close
to 57%, using similar classifiers, but trained on the sen-
tence position in the abstract. [37] report on slightly
weaker results using text-derived rather than Gene Ontol-
ogy-derived features, which confirms that Gene Ontology
features capture most information needed for functional
annotation. Another interesting approach proposed by
[38] separates the articles, abstracts and titles into sen-
tences in order to combine their various characteristics,
such as the number of words, number of figures and
number of uppercase letters. The first model applied a lin-
ear combination on a set of characteristics so as to extract
the best candidate sentence, whereas the second model
was based on the predicate calculus, using another set of
characteristics.

Our results not only confirm that argumentation plays an
important role to drive the extraction of functional
descriptions in life sciences' texts, but also show how com-
plementary information can be directly extracted from the
Gene Ontology controlled-vocabulary using a generic text
categorization engine. Further, while our categorization
framework outperforms other methods regarding recall
[39], precision [5], and F — score[40], it appears also use-
ful to guide feature selection and to estimate prediction
confidence various annotation tasks beyond category
assignment, in particular for sentence selection and pas-
sage retrieval, as needed for GeneRiF extraction. With a
top-precision approaching now 50%, future improve-
ments should foster this trend. Interestingly, while sen-
tence extraction is normally seen as a preliminary step
toward assigning Gene Ontology descriptors, we observe
here that such a controlled-vocabulary can be used a priori
to guide the sentence selection process, from which more
accurate category assignment could be expected !

Table 8: Performance of each basic strategy and their combination. The top combination (57.29%) achieves 80.7% of the theoretical 
upper bound (70.96%).

Origin of the proposed GeneRiF Dice (%)

Title Abstract

Baseline 139 0 50.47
LASt 125 14 51.98
LASt & shortening 125 14 52.78
GOEx 103 36 52.36
Combination 108 31 56.14
Combination & shortening 108 31 57.29
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Since the latent argumentative structure does not fully cor-
relate with positional information in MEDLINE abstracts,
our experiments clearly suggest that argumentation can
provide contents, which are more descriminating than
positional information. In addition, to strict functional
annotation, as defined by the Gene Ontology along its
three axes (molecular functions, subcellular location and
biological processes), GeneRiFs also may describe patho-
logical functions, drug-related information and tissue-
specificity. Potentially GeneRiFs can cover most of the
scope of functional molecular biology. Therefore we
could expect that by estimating the density of other
semantic categories, such as pathological functions (e.g.
drugs or diseases using Medical Subject Headings), could
significantly help extracting passages supporting protein-
diseases associations, in particular for passages related to
mutated proteins [41].

Furthermore, full-text articles are expected to convey more
knowledge than a short abstract, but in practice, several
large-scale text mining tasks do not seem to benefit from
the use of full-text documents [42][5]. Indeed, together
with bringing signals, full-texts also brings massive
amounts of noise. By separating between novelty-related
facts [18] (e.g. results and conclusions) and trivial facts
(e.g. background, methods…) or between established
(e.g. background) vs. putative facts (e.g. purposes and
conclusion), we hope that argumentative filtering could
help reading the mass of published articles in biomedical
sciences.

Conclusion
This paper focuses on the extraction of gene function sen-
tences (so-called GeneRiF) from a MEDLINE record given
a gene name, as proposed in the TREC Genomics Track in
2003 [21]. Because almost half of the human-provided
GeneRiFs were simply cut and paste from the title, we
designed a method to rank sentences according to two
independent criteria: 1) dicourse analysis criteria; 2) Gene
Ontology conceptual density. The first method considers
that, apart from the title, the best GeneRiF candidate
should appear in the article's conclusion or purpose sec-
tions. The second extraction approach is based on a
generic categorization framework, which is designed to
estimate the density of Gene Ontology concepts in the
selected sentences. Each extraction strategy uses rank-
based methods and operates on the same basic unit: the
sentences and/or the article's title. The combination is
fully based on empirical heuristics derived from a rela-
tively small tuning data set, avoiding overfitting phenom-
ena.

The argumentative filtering yielded effective results during
the TREC-2003 challenge [21]. Combining this approach
with the Gene Ontology-driven ranking module, which

takes advantage of the available protein annotation,
improves the lexical overlap - measured by Dice metrics -
by about 10% compared to the baseline. The system
achieves more than 80% of the corresponding theoretical
upper baseline. In conclusion, the methods used in these
experiments provide a general view of the gene function
extraction task within the framework of TREC Genomics
evaluation campaigns, as well as in previous or more
recent BioCreative initiatives [3]. As it is known for sum-
marization, these methods clearly show that a wide vari-
ety of non-overlapping feature sets should be considered
when performing such information extraction tasks. Rela-
tively poorly inverstigated by researchers in text mining,
both terminology-driven density estimation and dis-
course-level classification look particularly promising.
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