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Abstract
Background: Efficient features play an important role in automated text classification, which
definitely facilitates the access of large-scale data. In the bioscience field, biological structures and
terminologies are described by a large number of features; domain dependent features would
significantly improve the classification performance. How to effectively select and integrate
different types of features to improve the biological literature classification performance is the
major issue studied in this paper.

Results: To efficiently classify the biological literatures, we propose a novel feature value schema
TF*ML, features covering from lower level domain independent “string feature” to higher level
domain dependent “semantic template feature”, and proper integrations among the features.
Compared to our previous approaches, the performance is improved in terms of AUC and F-Score
by 11.5% and 8.8% respectively, and outperforms the best performance achieved in BioCreAtIvE
2006.

Conclusions: Different types of features possess different discriminative capabilities in literature
classification; proper integration of domain independent and dependent features would significantly
improve the performance and overcome the over-fitting on data distribution.

Background
In the general text classification, effective feature is essen-
tial to make the learning task more efficient and accurate.
No degree of classifiers can make up for a lack of predic-
tive information in the input features [1]. In bioscientific

literature, where biological structures and terminologies
are described in a large number of features, the situation
is more serious: well-chosen features could improve the
classification accuracy substantially and decrease the risk
of over-fitting [2].
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In the early days of biological literature classification
study, most of the researchers depended on the domain
experts to pick out the informative features. Regev et al.
used expert-defined rules to extract features from the
semi-structure text and figure legends. Besides, they uti-
lized external lexical resources and semantic constraints to
achieve a better coverage and accuracy [3]. Min Shi et al.
employed two types of keywords as feature: one type was
from the given evidences and the other type was manually
extracted from the training texts by domain experts [4].
Moustafa M. Ghanem et al. utilized expert-edited regular
expressions to capture frequently occurring keyword com-
binations (or motifs) within short segments of the text in
a document [5]. All these approaches require the involve-
ment of domain experts in identifying the specific textual
objects and the informative templates, so that they cannot
easily be automatically extended to an efficient and scale-
free model on other biological datasets [6].

Recent years, fully automatic and scalable text classifica-
tion algorithm provides an alternative to the previous
methods. Wilbur employed unigram, bigram and all of
the MeSH terms as the set of feature to represent the doc-
uments [7]. Dobrokhotv et al. utilized the words proc-
essed by the XEROX natural language processing tool as
discriminating attributes [8]. Aaron et al. used “Bag of
Words” model: content was tokenized and stemmed into
unigram feature and modelled the samples as binary fea-
ture vectors [9].

Although all of these features catch some aspects of bio-
logical and statistical meanings, they still cannot well and
automatically exploit the domain dependent information
from the complex biological literature. It becomes a chal-
lenge in biological text mining field to automatically
introduce higher level domain dependent features into
the classification process and integrate with the lower
level domain independent features.

In this paper, we investigate the issue of biological litera-
ture classification from the perspective of feature selection
and integration, which is evaluated by BioCreAtIvE [10],
an international evaluation in biological text mining. In
IAS (Protein Interaction Article Sub-task) of BioCreAtIvE
2006, participants were asked to classify a given set of
MEDLINE titles and abstracts, according to whether a doc-
ument contains at least one physical PPI (Protein Protein

Interaction) or not. This procedure would be extremely
useful for facilitating the efficiency of manual curation
since it will largely filter out the irrelevant documents. In
the evaluation, one of our implemented classifiers
achieved outstanding results: the Accuracy ranked at the 1st

place, AUC and F-Score ranked at the 2nd place respec-
tively.

Although the result is encouraging, the performance has
dropped significantly from the 5-fold cross validation on
the training set to the evaluation on the official testing set
(15.2% lower by AUC, 11.8% lower by F-Score). Main dif-
ferences between these two data sets are: 1) the testing
documents are mainly published in 2006 while the train-
ing documents distributes evenly over the past years; 2)
the relevant/irrelevant document rate in the training set is
nearly 2:1 while in the testing set it is 1:1. To statistically
analyze the phenomenon, we use the variance of Kullback
Leibler divergence to estimate the distribution of the top
50 employed features on the training and testing sets as
follows:

where x is the word and phrase features employed in IAS,
P(x) and Q(x) are the probability of x in the training and
testing set respectively.

The result (see Table 1) demonstrates that there is great
divergence between the probability distribution of fea-
tures in the irrelevant document set. And only one thirds
of the top 300 features selected from the training set
accordingly occur in the testing set (see Figure 1). It is clear
that our previously selected features are limited and sensi-
tive to the data distribution. How to efficiently exploit the
domain independent and dependent features in the bio-
logical literature and avoid the over-dependence on data
distribution motivates us to have an in-depth investiga-
tion in this paper.

The rest of the paper is organized as follows. We will intro-
duce the detailed description of methodologies proposed
in this paper in Methods section. In Results and discus-
sion section, we will present the experiment results and
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Table 1: KL Divergence on Training, Cross Validation and Testing Set

Unigram Feature Relevant Probability Irrelevant Probability

Training Set Vs Cross Validation Set 0.0216 0.0703
Training Set Vs Testing Set 0.0369 0.9926

(Top 50 features according to Chi-Square statistics)
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analysis. In Conclusion section, we will summarize our
contributions in this paper.

Methods
In this paper, we are engaged to investigate the issue from
the perspective of feature selection and integration. The
main contribution in this paper lies in that: we propose
1). domain independent feature value schema TF*ML and
length-fixed string feature 2). domain dependent “seman-
tic template” feature 3). efficient integrations among the
features. These methods are described respectively in the
following.

Probabilistic schema
The traditional TF*IDF schema [11] just takes into consid-
eration the occurrences of words in the whole corpus,
while discarding the distribution of words in different cat-
egories. Differently, we propose a novel probabilistic fea-
ture value schema TF*ML (production of Term Frequency
by Maximum Likelihood) to substitute the traditional
TF*IDF as follows:

where t means the selected feature word, c+ and c− mean
the relevant and irrelevant category, P(t|c+) and P(t|c−)
mean the probability that t occurs in category c+andc−

respectively.

The sign of ML indicates the category relevance of the fea-
ture and the magnitude reflects the classification confi-
dence. Following the same idea as TF*IDF to express the
specificities of features in different documents, we also
multiply TF by ML.

Here we do not depend on the posterior distribution of
features to implement the prediction. To explain the rea-
son we could rewrite the formula (2) as follows:

And the posterior distribution is:

In the ML schema, the relevant/irrelevant document rate

 has been taken into consideration as a compen-

sate factor. But in the posterior probability schema, the
impact of relevant/irrelevant document rate is eliminated,
according to the independent and identical distribution
hypothesis, while it is not tenable in our situation (since
the different relevant/irrelevant rate between training and
testing set).
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Overlap of Features between Training and Testing SetFigure 1
Overlap of Features between Training and Testing Set 
(Top 300 selected distinct features from the training and testing set according to Chi-Square statistics respectively)
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The essence of TF*ML schema is to fully utilize the cate-
gory relevant information from the annotated samples,
which cannot be inferred from the TF*IDF schema. Exper-
iment results (see Table 2) demonstrate that ML steadily
improves the discriminative capability of features.

String feature
In many text classification applications, it is appealing to
take every document as a string of characters rather than a
bag of words [12]. Especially in bioscience, the tokenizing
and stemming procedure would incur undesired loss of
the informative attributions, since many of the semanti-
cally related biomedical terms that share the same stem or
morpheme are often not reducible to the same stems [6].
Therefore, we propose to directly utilize the length-fixed
strings as feature to exploit most of the informative seg-
ments.

To the best of our knowledge, no one explicitly takes
length-fixed strings as feature because of the explosion
and sparse of feature space. However, the statistical analy-
sis based on formula (1) demonstrates that distributional
divergence between the training and testing set becomes
much smaller under the length-fixed string feature (see
Table 3). So we turn to take the fixed-length strings as fea-
ture: the length-fixed strings are extracted from the whole
sequential text without considering the sentence bounda-
ries and strictly consist of 26 lowercase English letters (all
the letters are converted to the lowercase first), 10 num-
bers (0-9) and a white space. Chi-Square statistics [13] is
employed to select out the significant features and TF*IDF
is computed to build the feature vector (we substitute
TF*ML for TF*IDF for further improvement).

Table 4 lists the top 10 distinct features from the selected
unigram features and string features respectively. It is
apparent that the length-fixed string feature has at least

the following potential advantages. First, inter-word fea-
tures (e.g. phrasal effects) can be exploited automatically.
The segmentation process spans the boundary of adjacent
words, which could exploit information from the adjacent
words. Second, intra-word features (e.g. morphological
variants) could be captured. For example, string “interac”
would occur in the word “interact” and “interaction”,
both of which are important indicator of PPI relations.
Third, the special meaning of length-fixed string feature in
bio-literatures is that it exploits the slight but informative
commonality from the structure of the words. For exam-
ple, different terminologies in bio-literatures often share
the same conflation (e.g. ‘phosph’ indicates the protein
phosphorylation) and most of the suffix is informative
(e.g. ‘ase’ is a common suffix to proteins that function as
enzyme). The specific information is not recoverable
when the general tokenizing and stemming procedure is
applied.

Named entities and semantic template features
Both of the above proposed methods are domain inde-
pendent, which are endowed with well generalization
capacity and are not necessarily limited to the bioscience
domain. But introducing domain dependent features
could greatly filter out the false positive samples and fur-
ther improve the performance [14]. In biological litera-
tures, named entities (words and phrases belonging to
certain predefined classes, e.g. protein and gene), such as
CDC42 (protein), and semantic templates (co-occur-
rences of a pre-specified type of relationship between enti-
ties of given types), such as “ProteinA interact with

Table 2: TF*ML Feature Value Schema.  The Precision/Recall/F-
Score demonstrate classification capability of the model, and 
AUC (area under receiving operator characteristic curve) is to 
evaluate ranking capability of the model.

Feature value Precision Recall F-Score AUC

TF*IDF 0.7015 0.8213 0.7567 0.8036
TF*ML 0.7014 0.8773 0.7796 0.8231

(Performance under unigram feature)

Table 3: KL Divergence on Training, Cross Validation and Testing Set

String Feature(p=7) Relevant Probability Irrelevant Probability

Training Set Vs Cross Validation Set 0.0029 0.0163
Training Set Vs Testing Set 0.0357 0.1887

(Top 50 features according to Chi-Square statistics)

Table 4: Top 10 Unigram Features and String Features ‘_’ means 
a white space

Unigram Feature String Feature

interaction interac
bind nteract
interact _intera
domain teracti
proteome eractio
proteomic proteom
complex raction
protein _domain
yeast binding
kinase _proteo

(According to Chi-Square statistics)
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ProteinB”, are the most meaningful concepts in PPI docu-
ments and well conserve the syntactic and semantic struc-
tures in describing the protein interactions. So we
introduce the named entities and semantic templates as
feature to exploit the domain dependent information.

With the help of ABNER [15], a named entity recognition
tool, 5 types of named entities in a given document could
be identified: protein, DNA, RNA, cell types and cell line.
Since the recognized entity space is large and sparse, we
only utilize their types as feature to decrease the dimen-
sion of feature space without losing the universality.

After recognizing the named entities, semantic templates
are ready to be extracted from the documents. We propose
a novel template extraction algorithm named KeyBT, i.e.
Keyword Based Template extraction algorithm, to extract
the semantic templates describing the interaction patterns
among all of the recognized entities.

Compared to the traditional local alignment algorithm,
KeyBT operates differently: first locate statistical signifi-
cant words as seeds, and expand the seeds in the contex-
tual environment iteratively, finally preserve the most
“powerful” templates as the result.

The flow chart of the KeyBT algorithm is as follows:

1) Locate the occurrences of predefined candidate key-
words in each sentence; discard the sentences without any
keywords; get the initial candidate sentence set S0;

2) Locate each entity type in S0; discard the sentences
without any entities; get the initial candidate template set
T0;

3) Iteratively normalize each template in T0: removing the
redundant templates by syntax parsing; get the raw tem-
plates set T1;

4) Evaluating the templates in T1, filter out the templates
of low quality, get the final template set Tf.

KeyBT not only depends on Chi-Square statistics to select
the most distinct keywords but also utilizes ML to deter-
mine the category relevance of the keywords, because Chi-
Square does not distinguish the association between fea-
tures and different categories: a few high quality features
of irrelevant category might be overwhelmed in the large
amount of features of relevant category. Chi-Square is
employed to select a raw candidate keyword list (with low
threshold), and then top 50 features from both categories
are preserved according to ML respectively.

We use the following formula [16] to evaluate the rele-
vance of templates based on the balance between general-
ity and specificity of the templates.

where t.pos and t.neg are the positive/negative matching
count of template t in the training set, and β is the param-
eter tuning the positive/negative matching rate.

When we get the final templates set Tf, we do not simply
depend on the positive/negative matching rate of each
template to make the prediction. Instead, we use them to
build feature vectors and train a classifier.

Top 5 KeyBT-extracted templates are illustrated in Table 5.

Compared with the local alignment algorithm that
depends on the post evaluation to remove meaningless
and noisy templates, the potential advantages of KeyBT
algorithm are as follows: 1) KeyBT utilizes the statistical
characteristic of the candidate keywords to largely remove
noise before extraction; 2) KeyBT templates need not to fix
the entities' type beforehand, so that it could catch the dis-
tribution of templates in both categories to discriminate
both of the relevant and irrelevant categories; 3) the heu-
ristic rules applied on the relation of named entities and
candidate words (such as their sequence, the average tem-
plate length and type of distinct entities) would guarantee
the biological meaning of the extracted templates.

Feature integration
Experiment results of the overlap among the misclassified
samples by different features show that there is great com-
plement among different features: in many cases, the false
prediction caused by one feature would be treated cor-
rectly by another one. And a single type of feature is easy
to lead the classifier over-fitting on the data distribution
(see Table 1 and Figure 1). Thus, the integration among
different features would be beneficial. In this sense, we
propose two kinds of integration from different levels: fea-
ture-level and classifier-level to integrate all of above pro-
posed features.

We perform the feature-level integration in a typical way:
normalizing each part of features and unifying them into
a new feature vector. We do the normalization as follows
[17]:
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where max_value and min_value are the maximum and
minimum values that are actually seen in the input feature
set.

But there is an obvious defection in the above method:
some lower dimensional features might be overwhelmed
by the higher dimensional features (e.g. named entity fea-
ture has only 5 dimensions while length-fixed string fea-
ture has more than 10 thousand dimensions). Based on
this consideration, we turn to perform the integration on
the classifier level and propose two different ways to
implement the integration. The first one is to integrate the
output of each classifier: after training classifiers on differ-
ent types of features respectively, we normalize and unify
the output of each classifier into feature vectors and train
a classifier. The other one is Adaboost[18], a general classi-
fier integration method, which has two major advantages:
firstly, Adaboost tunes the weight of each classifier accord-
ing to its performance in each kind of training samples,
which could fully utilize the discriminative capability of
features; secondly, soft margin of Adaboost avoids the risk
of over-fitting in the training process. These approaches
well overcome the defection mentioned above.

Results and discussion
The benchmark corpus is provided by BioCreAtIvE 2006.
The training set contains 3536 relevant documents (title
and abstract) and 1959 irrelevant. The testing set contains
750 documents, 375 of which are labelled as relevant. All
of the proposed features and integration methods are
implemented on the linear-kernel SVM.

Probabilistic schema
In Table 2, TF*ML schema improves recall performance
by 6.9% without losing precision compared to the tradi-

tional TF*IDF schema. The improvement validates the
effectivity of exploiting the category relevance informa-
tion of features and testifies ML to be a more effective and
general feature value schema in general text classification
applications.

String feature
In our experiment, the best performance is achieved when
the string length p is set to 7. In Table 6, the length-fixed
string feature (p=7) gains encouraging recall improvement
by more than 12.0% compared to unigram and bigram
feature. But the precision has dropped about 7.2% as the
expense, which can be further compensated by employing
TF*ML as feature value. The practical efficiency confirms
our statistical analysis of the distribution of features and
gives us insight in the selection of lower level features.

Named entities and semantic template features
In Table 7, only depending on a simple criterion that if a
document contains at least one protein entity, the docu-
ment should be judged relevant otherwise irrelevant, we
could achieve a very high recall (0.96) with an acceptable
precision (0.58). Our proposed template extraction algo-
rithm KeyBT well captures the complex association
between the keywords and named entities and achieves
promising performance in term of precision (by 11.8%)
and a better improvement comparing to our former
approach ONBIRES templates [19], which is based on
local alignment algorithm.

Feature integration
In Table 8, feature-level integration contributes the
improvement in terms of F-score by 5.2% and AUC by
5.9%; in table 9, integration based on the output of clas-
sifier achieves better improvement in terms of F-score by
5.3% and AUC by 6.3%. The best performance is reached

Table 8: Feature-level Integration

Feature Precision Recall F-Score AUC

String 0.7044 0.8960 0.7887 0.8416
String + Entity 0.7360 0.8773 0.8004 0.8479
String + Template 0.7416 0.8880 0.8082 0.8372
String + Entity + Template 0.7584 0.8373 0.7959 0.8507

(Normalize each part of the features and unify them into new feature 
vectors)

Table 6: Length-fixed String Feature (TF*IDF)

Feature Precision Recall F-Score AUC

Unigram + Bigram 0.7015 0.8213 0.7567 0.8036
String (p=7) 0.6497 0.9200 0.7615 0.8245

(Performance under TF*IDF schema)

Table 5: KeyBT-extracted Templates. <PTN>, <DNA>, <CEL> 
mean protein, DNA and cell-line, E* means any words 
occurrence

KeyBT Templates

<PTN> E* <DNA> E* association E* <PTN>
<PTN> E* bind E* <DNA>
<PTN> E* interact E* <PTN>
<PTN> E* colocalize E* <CEL>
<PTN> E* contact E* <DNA> E* <PTN>

Table 7: Named Entity and Semantic Template Feature

Feature Precision Recall F-Score AUC

Unigram + Bigram (TF*IDF) 0.7015 0.8213 0.7567 0.8036
Protein Entity occurrence 0.5815 0.9600 0.7243 0.7570
ONBIRES template 0.7647 0.7973 0.7806 0.8156
KeyBT template 0.7841 0.7653 0.7746 0.8239
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by AdaBoost: in F-score by 11.5% and in AUC by 8.8%.
Advantage of the feature integration is obvious: different
types of features are independently selected from the cor-
pus, which focus on the different aspects of feature space
and reinforce each other. From the result, it is apparent
that different integration methods well leverage the capa-
bility of different types of features and achieve promising
improvement.

Statistical significance test
Since the size of the evaluation corpus is not large enough,
it is necessary to perform the statistical significance test to
validate the reliability of our proposed features and inte-
gration methods. Here we employ s-test to evaluate the
performance of systems on the pooled decisions on the
individual documents/category pairs [20].

In Table 10, we can find that the proposed feature value
schema TF*ML, length-fixed string feature and semantic
template feature are much better than their counterpart (p
value lower then 0.05), and two different level of feature
integrations significantly improve the classification per-
formance (p value lower then 0.005).

Comparison with the state of arts
In Table 11, the mean, standard deviation and best per-
formance from BioCreAtIvE 2006 are selected from 51
runs of 19 teams. Under our feature selection and integra-
tion procedure, the performance outperforms the previ-
ous best results (F-score improved by 8.2% and AUC
improved by 2.2%).

Conclusions
The experiment results clearly demonstrate that the lower
level features are endowed with better generalization
capability, but hampered by lower accuracy; higher level
features contain rich domain dependent information,
with better specificity but poor universality. Integration of
different level of features would benefit from the different
aspects of the feature space, which would reinforce the
domain dependent classification and overcome the bias
on the data distribution.

Main contributions of this paper are as follows:

(1) Propose novel domain independent feature value
schema TF*ML and length-fixed string feature;

(2) Introduce domain dependent features (e.g. named
entities, semantic templates) into the biological literature
classification, and propose a novel template extraction
algorithm KeyBT;

(3) Investigate the feature-level and classifier-level inte-
gration methods to incorporate the information from dif-
ferent levels and perspectives.

Now, the proposed methods are being integrated into our
online service ONBIRES [21] as a pre-processing module.
In the next step, we will be engaged in the aspect of incre-
mental learning to make our approaches portable to dif-
ferent datasets.
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Table 10: Statistical Significance Test (s-test).  The null hypothesis is that the performance of two methods is the same; the alternative 
hypothesis is that the former is better than the latter.

String Vs. Unigram+Bigram TF*ML Vs. TF*IDF KeyBT Template Vs. Unigram+Bigram

p value 0.015 0.012 0.0188

Feature Level Integration Vs. Unigram+Bigram Classifier Level Integration Vs. Unigram+Bigram

p value 0.0026 0.0010

Table 9: Classifier-level Integration.  Integration on length-fixed 
string feature, entity feature and template feature

Feature Precision Recall F-Score AUC

Unigram + Bigram 0.7015 0.8213 0.7567 0.8036
Output based Integration 0.7248 0.8853 0.7971 0.8539
AdaBoost 0.7995 0.8933 0.8438 0.8746

(Normalize the output of each classifier and unify them into new 
feature vectors)
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