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Abstract
Background: The accurate prediction of a comprehensive set of messenger RNAs (targets)
regulated by animal microRNAs (miRNAs) remains an open problem. In particular, the prediction
of targets that do not possess evolutionarily conserved complementarity to their miRNA
regulators is not adequately addressed by current tools.

Results: We have developed MicroTar, an animal miRNA target prediction tool based on miRNA-
target complementarity and thermodynamic data. The algorithm uses predicted free energies of
unbound mRNA and putative mRNA-miRNA heterodimers, implicitly addressing the accessibility
of the mRNA 3' untranslated region. MicroTar does not rely on evolutionary conservation to
discern functional targets, and is able to predict both conserved and non-conserved targets.
MicroTar source code and predictions are accessible at http://tiger.dbs.nus.edu.sg/microtar/, where
both serial and parallel versions of the program can be downloaded under an open-source licence.

Conclusion: MicroTar achieves better sensitivity than previously reported predictions when
tested on three distinct datasets of experimentally-verified miRNA-target interactions in C. elegans,
Drosophila, and mouse.

Background
MicroRNAs (miRNAs) are a class of endogenous, small
regulatory RNA averaging 22 nucleotides in length that
mediate the post-transcriptional regulation of messenger
RNAs. They bind to target messages in a sequence-specific
manner, and induce translational repression or endonu-
cleolytic cleavage. The first two miRNAs, lin-4 and let-7
were discovered some seven years apart in the worm C.
elegans, in genetic screens for mutants with disrupted
developmental timing [1,2]. There has since been an
explosion of interest in the field, and the identification of

hundreds of miRNAs in metazoans as disparate as verte-
brates, arthropods, nematodes, and viruses [3] has estab-
lished miRNAs as pervasive regulators of gene expression.
For recent reviews, see [4-6].

Functions have only been experimentally assigned to a
small fraction of the few thousand known miRNAs [7]. Of
the experimental strategies available to investigate miRNA
function, stringent genetic tests that link miRNA loss-of-
function mutants to misregulated targets, and point muta-
tions in miRNA binding sites to specific phenotypes are
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impractical on a genomic scale in any animal species [8].
Tissue-culture assays using reporter gene constructs fused
to target sequences are an easier alternative, but their reli-
ance on ectopic miRNA expression harbours the danger of
measuring what may be a nonphysiological interaction
between two molecules with complementary surfaces [9].
Computational approaches are thus likely to remain an
important means of studying miRNA targets for the for-
seeable future, not least as a means of directing wet-lab
experiments. These predictions are no doubt hampered by
the fact that animal miRNAs – in contrast to plant miR-
NAs – tend to be only partially complementary to their
target mRNAs. This fact, compounded by the small size of
these molecules, precludes the use of standard sequence
comparison methods.

Several algorithms have been developed to predict miRNA
targets in animal species; these are listed in Table 1. A
common strategy in several of these programs is to rank
target 3' untranslated region (UTR) complementarity by
some combination of duplex free energy and/or pairing
requirements at the 5' end (seed region) of the miRNA [8].
For instance, TargetScan [10] combines requirements for
conserved perfect Watson-Crick pairing at positions 2–8
of the miRNA with estimates of the free energy of isolated
miRNA-target site interactions, ignoring initiation free
energy. While in vitro tests have shown sites containing
G:U base-pairs to be functional but impaired [11], recent
in vivo experiments have demonstrated them to be effi-
ciently downregulated [9]. Taken together with the pres-
ence of a G:U base-pair in the seed region of a functional
let-7 binding site in the lin-41 3'-UTR [12], these results
make a case for the inclusion of seeds with G:U wobbles
in target prediction algorithms.

The PicTar [13,14] algorithm defines seeds as heptamers
with Watson-Crick or G:U pairings at positions 1–7 or 2–
8 from the miRNA 5' end. It combines seed searches with

RNA duplex free energy filters, evolutionary conservation
requirements, and a probabilistic scoring mechanism to
predict targets that are under combinatorial control by co-
expressed miRNAs. However, it makes use of RNAHybrid
[15], an algorithm that approximates RNA duplex free
energies by discarding intramolecular hybridizations in
order to achieve linear time complexity.

Robins et al. [16] incorporate mRNA secondary structure
computed from 3'-UTRs in their target prediction algo-
rithm, but require perfect Watson-Crick complementarity
in the seed site. Furthermore, the use of isolated 3'-UTRs
is likely to produce structures very different from the struc-
ture of 3'-UTRs in folds that use complete mRNA
sequences.

While most of the tools listed in Table 1 are accessible as
web services, only miRanda [17] and RNAHybrid are
available as downloadable software that can be modified,
extended and run on custom datasets. Most listed algo-
rithms also rely on target conservation across two or more
species as a filter. While this is necessary to distinguish
functional targets from a vast array of candidates, it results
in the unavoidable omission of real targets that are not
thus conserved.

Here we present MicroTar, an miRNA target prediction
program that does not rely on evolutionary conservation.
Through the use of the partial complementarity of miR-
NAs to their target messages, and the predicted free energy
of complete mRNA molecules, we are able to address the
problem of the prediction of targets that are not conserved
across different genomes. Moreover, harnessing the power
of parallel computing obviates the need for introducing
approximations that discard intramolecular base pairs in
estimates of miRNA-mRNA duplex free energy; we thus
implicitly incorporate the accessibility of 3'-UTRs in the
algorithm. MicroTar source code – available under an

Table 1: miRNA target prediction tools. A list of current miRNA target prediction tools, with access details. Note that only 
RNAHybrid and miRanda provide source code for download.

Program Interface Reference(s)

miRanda Web access to predictions, downloadable software
http://www.microrna.org/

[17]

PicTar Web access to predictions
http://pictar.bio.nyu.edu/

[13,14]

TargetScan Web access to predictions
http://www.targetscan.org/

[10]

RNAHybrid Web submission, Web API, downloadable software
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/

[15]

MicroInspector Web submission
http://mirna.imbb.forth.gr/microinspector/

[25]

DIANA-microT Web submission
http://www.diana.pcbi.upenn.edu/

[26]

Targetboost Web access to predictions
https://demo1.interagon.com/targetboost/

[27]

[Stark et al.] Article supplementary data [28]
[Robins et al.] Article supplementary data [16]
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open-source licence – and predictions can be accessed at
the MicroTar website [18].

Implementation
Overview
The MicroTar algorithm is based on the following
assumptions:

• miRNA target specificity is determined by a heptameric
seed sequence (beginning at the first or second position
from the 5' end of the miRNA) that is complementary to
sites in mRNA 3'-UTRs

• targets are functional if miRNA-mRNA duplex forma-
tion is energetically favourable

Beginning with a set of fasta-formatted query (miRNA)
sequences and target (mRNA) sequences, the MicroTar
algorithm predicts the minimum free energy of the each
mRNA molecule, searches for seed sites, and performs a
constrained fold where each seed match is, in turn, bound
in the miRNA-mRNA heterodimer; the output is a list of
putative duplexes more stable than free mRNA, along
with images of bound and unbound mRNA secondary
structure. This result is subsequently subjected to a statis-
tical analysis to determine the significance of each
miRNA-mRNA match. Figure 1 presents a schematic over-
view of this algorithm.

Secondary structure prediction
The secondary structure and minimum free energy of the
complete unbound mRNA molecule are predicted using
the fold routine from the RNAlib library of the Vien-
naRNA package [19]. This is an implementation of the
Zuker & Stiegler dynamic programming algorithm [20].
We denote the predicted free energy of unbound mRNA as
G1.

Seed search
Loss-of-function mutation studies have demonstrated the
core of miRNA sequence specificity to be a heptameric
seed sequence [11], which we define as nucleotides 1–7 or
2–8 at the 5' end of the miRNA. MicroTar searches each
mRNA 3'-UTR (or complete mRNA in the absence of
annotations) for sites with Watson-Crick or G–U wobble
complementarity to this seed sequence; we refer to these
hits as seed matches.

Constrained fold
For each seed match above, the mRNA is again folded
under the constraint that the miRNA seed is bound to its
corresponding match. This uses the cofold [21] routine
from the RNAlib library. We denote the free energy of the
duplex as G2.

Output
The output is a list of all seed matches, along with pre-
dicted energies of the unbound mRNA (G1), putative
mRNA-miRNA heterodimers (G2), the estimated energy
of duplex formation (g = G2 - G1), and optionally, images
of the secondary structure of each mRNA before and after
miRNA binding (see e.g., Figure 2).

Functional targets
Seed matches are considered functional targets if the rele-
vant miRNA-mRNA heterodimer is more energetically sta-
ble than free mRNA, i.e., g < 0. We then estimate the
significance of the prediction using extreme value statis-
tics, much in the fashion of Rehmsmeier et al. [15]. This
procedure is outlined below.

Statistical analysis of predicted targets
Negative normalized free energy
The occurrence of favourable hybridizations of short miR-
NAs with long mRNAs can frequently be attributed to
chance: the longer the mRNA, the more likely the inci-
dence. In order to eliminate the effect of sequence length
on our measure of free energy [15,22], we define the neg-
ative normalized free energy

where m is the length of the target sequence searched, and
n is the length of the miRNA.

Extreme value statistics
Extreme value distributions (EVDs) are limiting distribu-
tions that describe the minimum or maximum of inde-
pendent random variables [23]. If we consider the
miRNA-mRNA duplex energy estimation to be essentially
an optimization procedure that produces a minimum, the
negative normalized free energy described above is a cor-
responding maximum, and can be described by an EVD
having a distribution function of the form

A transformation then converts this distribution function
into a straight line:

By scanning for targets of random miRNA sequences in
the mRNA sequences in the dataset, we obtain a set of neg-
ative normalized free energies, which we expect will fol-
low an EVD. We then transform the distribution function
of the empirical EVD into a straight line, as in Equation 3,
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MicroTar algorithmFigure 1
MicroTar algorithm. Beginning with a set of fasta-formatted query (miRNA) sequences and target (mRNA) sequences, the 
MicroTar algorithm predicts the minimum free energy of the each mRNA molecule, searches for seed sites, and performs a 
constrained fold where each seed match is, in turn, bound in the miRNA-mRNA heterodimer; the output is a list of putative 
duplexes more stable than free mRNA, along with images of bound and unbound mRNA secondary structure. This result is 
subsequently subjected to a statistical analysis to determine the significance of each miRNA-mRNA match.
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and estimate the parameters of the EVD by a linear least
squares fit to the line y = mx + c, obtaining

and

a = cb.  (5)

We can now compute, for each predicted miRNA-mRNA
duplex, a p-value, the probability that the same or a more
favourable free energy is observed due to chance:

where a and b are estimated EVD parameters, and gn is the
negative normalized free energy from Equation 1 [15].

Technical details
MicroTar has been written using the C programming lan-
guage, and makes use of the RNAlib library from the
Vienna RNA package [19]. Great care has been taken to
make the system suitable for datasets of varying sizes.
Sequences are loaded into memory only as required,
allowing the handling of virtually any number of
sequences. The parallel version uses functions from v2.0
of the Message Passing Interface (MPI).
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mRNA secondary structureFigure 2
mRNA secondary structure. Sample output of the C. elegans. cog-1 [GenBank:NM_001027093] mRNA secondary struc-
ture before and after binding with the lsy-6 miRNA. Note the changes in global structure, which cannot be approximated using 
only 3'-UTRs.
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MicroTar should compile and run under Linux and most
flavours of UNIX. It has been tested under Fedora Core 4
& 5 and CentOS 4.4 Linux distributions, on both 32 and
64 bit platforms.

Results and Discussion
Validation
We performed a test of MicroTar on three sets of experi-
mentally verified miRNA targets in C. elegans, Drosophila,

Energies of predicted miRNA targetsFigure 3
Energies of predicted miRNA targets. A density plot of free energies of the most stable predicted miRNA-target duplex 
for each gene-miRNA pair in (a) mouse, (b) C. elegans, and (c) Drosophila, with genes along the x-axis and miRNAs along the y-
axis. A more negative free energy indicates a more stable duplex, relative to its unbound mRNA. Darker colours indicate 
lower free energies, as shown by the scale in the top-right corner of each sub-figure. White squares indicate no predicted 
interaction.
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and mouse, from v3.0 of TarBase [7]. miRNA sequences
were retrieved from miRBase v9.0 [3]; mRNA sequences
from RefSeq entries associated with the corresponding
gene entry in the Entrez Gene database. In the absence of
3'-UTR annotations, the entire mRNA sequence was
scanned for seed matches by MicroTar. These results are
summarized in Figure 3, which shows a density plot of
free energies of the most stable predicted miRNA-target
duplex for each gene-miRNA pair in the three species.

Furthermore, we compared our predictions to the widely-
used PicTar algorithm, which was recently updated and
applied to miRNAs in C. elegans. This comparison is
shown in Table 2, where we note that MicroTar achieves
better sensitivity in all three cases. We emphasize that
unverified predicted interactions should be viewed as a
guide for further experiments and not as false positives.
Detailed lists of targets predicted are available as supple-
mentary data (see Additional File 1 – MicroTar target pre-
dictions compared to PicTar), and on the MicroTar
website [18].

Duplex energy estimation
At the core of the MicroTar algorithm lies a novel
approach to the estimation of miRNA-mRNA duplex
energy. Interactions are viewed in a global context by pre-
dicting folds for the entire mRNA, rather than just its 3'-
UTR or seed match. By allowing intramolecular hybridiza-
tions, we implicitly incorporate the accessibility of the 3'-
UTR; seed matches in highly inaccessible UTRs are
expected to disrupt UTR secondary structure in putative
duplexes. Large disruptions in base pairing cannot be
compensated for by bond formation during miRNA-
mRNA hybridization. This results in a putative duplex
with free energy G2 far greater than that of the unbound
mRNA, G1, and the match is rejected.

Significance of predictions
In order to estimate the significance of our predictions, we
calculated the p-value for the lowest energy duplex for
each miRNA-transcript pair, as derived in Equation 6. The
parameters were estimated separately for each species

from a distribution computed with random miRNAs. We
shuffled miRNAs using the shuffleseq utility from the
EMBOSS package [24], ensuring that there were a suffi-
cient number of random sequences for approximately
4000 seed matches in each species. Figure 4 shows these
p-values in a density plot for each miRNA-target pair, as in
Figure 3.

Conclusion
MicroTar does not rely on evolutionary conservation to
filter predicted targets and is able to address the problem
of the prediction of targets that are not conserved across
different genomes. Parallel computing makes feasible the
use of complex energy prediction algorithms on a large
scale, and by using estimates of miRNA-mRNA duplex
free energy that allow intramolecular pairings, MicroTar
implicitly incorporates the accessibility of 3'-UTRs. In tests
on three datasets of experimentally verified miRNA targets
in C. elegans, Drosophila and mouse, MicroTar displays
greater sensitivity than previously developed target predic-
tion programs.

Availability and Requirements
Project name: MicroTar

Project home page: http://tiger.dbs.nus.edu.sg/microtar/

Operating systems: Linux, UNIX

Programming language: C

Other requirements: GNU autoconf/automake

Licence: New BSD licence

Any restrictions to use by non-academics: None (check
ViennaRNA licence, however)

Authors' contributions
MTT and RT planned the project. RT acquired the data and
implemented the algorithm. Both authors prepared and
approved the final manuscript.

Table 2: MicroTar target predictions compared to PicTar. A comparison of MicroTar and PicTar prediction results on three datasets 
of experimentally verified miRNA targets; MicroTar achieves better sensitivity in all three cases.

Program Species Targets Predicted (TP) Targets in Dataset (TP + FN) Sensitivity TP/(TP + FN)

MicroTar D. melanogaster 39 63 0.62
C. elegans 8 13 0.62
M. musculus 24 43 0.56

PicTar D. melanogaster 35 63 0.56
C. elegans 7 13 0.54
M. musculus 15 43 0.35
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p-values of predicted miRNA targetsFigure 4
p-values of predicted miRNA targets. A density plot of p-values lower than 0.1, of the most stable predicted miRNA-tar-
get duplex for each gene-miRNA pair in (a) mouse, (b) C. elegans, and (c) Drosophila, with genes along the x-axis and miRNAs 
along the y-axis. A lower p-value indicates a lower probability of the energy of the duplex (or more favourable energies) occur-
ring due to chance alone. Darker colours indicate lower p-values, as shown by the scale in the top-right corner of each sub-fig-
ure. White squares indicate no predicted interaction, or a p-value greater than the cuto3 value of 0.1.
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