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Abstract

Background: Many different aspects of cellular signalling, trafficking and targeting mechanisms are
mediated by interactions between proteins and peptides. Representative examples are MHC-
peptide complexes in the immune system. Developing computational methods for protein-peptide
binding prediction is therefore an important task with applications to vaccine and drug design.

Methods: Previous learning approaches address the binding prediction problem using traditional
margin based binary classifiers. In this paper we propose PepDist: a novel approach for predicting
binding affinity. Our approach is based on learning peptide-peptide distance functions. Moreover,
we suggest to learn a single peptide-peptide distance function over an entire family of proteins
(e.g. MHC class I). This distance function can be used to compute the affinity of a novel peptide to
any of the proteins in the given family. In order to learn these peptide-peptide distance functions,
we formalize the problem as a semi-supervised learning problem with partial information in the
form of equivalence constraints. Specifically, we propose to use DistBoost [1,2], which is a semi-
supervised distance learning algorithm.

Results: We compare our method to various state-of-the-art binding prediction algorithms on
MHC class | and MHC class Il datasets. In almost all cases, our method outperforms all of its
competitors. One of the major advantages of our novel approach is that it can also learn an affinity
function over proteins for which only small amounts of labeled peptides exist. In these cases, our
method's performance gain, when compared to other computational methods, is even more
pronounced. We have recently uploaded the PepDist webserver which provides binding prediction
of peptides to 35 different MHC class | alleles. The webserver which can be found at http:/
www.pepdist.cs.huji.ac.il is powered by a prediction engine which was trained using the framework
presented in this paper.

Conclusion: The results obtained suggest that learning a single distance function over an entire
family of proteins achieves higher prediction accuracy than learning a set of binary classifiers for
each of the proteins separately. We also show the importance of obtaining information on
experimentally determined non-binders. Learning with real non-binders generalizes better than
learning with randomly generated peptides that are assumed to be non-binders. This suggests that
information about non-binding peptides should also be published and made publicly available.
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Background

Many different aspects of cellular signalling, trafficking
and targeting mechanisms are mediated by interactions
between proteins and peptides. In the immune system, for
example, the major task of recognizing foreign pathogen
proteins is mediated by interactions between Major Histo-
compatibility Complex (MHC) molecules and short path-
ogen-derived peptides (see Fig. 1). T-cells recognize these
peptides only when they are bound to MHC molecules.
Understanding the underlying principles of MHC-peptide
interactions is therefore a problem of fundamental impor-
tance, with applications to vaccine and drug design [3].
MHC binding is a challenging problem because MHC
molecules exhibit high specificity - it is estimated that
each molecule only binds to 1% of all existing peptides
[4]. Additionally, MHC molecules are highly polymor-
phic and polygenic - there are hundreds of different alle-
les in the entire population while each individual carries
a few alleles only (up to 6 MHC class I alleles and up to 12
MHC class II alleles) [5].

Biochemical assays, which empirically test protein-pep-
tide binding affinity, can nowadays provide a rather high
throughput rate [6]. However, note that there are 20L pep-
tides of length L (for 9 amino-acid long peptides as in the
MHC proteins this amounts to 1012 peptides) and a great
number of proteins that need to be considered. Therefore,
in recent years, there has been a growing interest in devel-
oping computational methods for protein-peptide bind-
ing prediction [7-13]. Formally, the protein-peptide
binding prediction problem can be stated as follows:
given a protein and a peptide, predict the binding affinity
of the interaction between the two. Stated this way, the
protein-peptide binding prediction is essentially a simpli-
fied version of the more general protein docking problem.

What should we expect from a "good" binding prediction
algorithm? [8].

1. Classification: A good binding prediction algorithm
should first and foremost correctly predict whether a
query peptide (which was not provided during the train-
ing stage) binds or does not bind to the given protein.

2. Ranking: An even stronger requirement is that the algo-
rithm could also obtain a relative binding score for each
peptide that can be used to rank different peptides accord-
ing to their specificity.

3. Affinity prediction: Ultimately, the algorithm's score
would predict the precise binding affinity values as deter-
mined experimentally.

Clearly, current state-of-the-art prediction methods
obtain promising classification results (for a recent com-

r

]
N

£
e p.
h -
‘;1 !H

g

,{f

T

P

"\.y--

. y
(a) (b)

Figure |

Schematized drawing of a peptide in the binding groove of
MHC class | (a) and MHC class Il (b) molecules. The peptide
backbone is shown as a string of balls, each of which repre-
sents a residue.

parison between several methods see [14]). Many of these
methods also compute binding scores for each peptide,
but these scores are in most cases not even compared to
the empirically known affinity values, and have even been
shown to have poor correspondences in some cases [15]
(an interesting exception is a recent work on the PDZ
domain [16]).

Most prediction algorithms formalize the protein-peptide
binding prediction problem as a binary classification
problem: For each protein (i.e. MHC molecule) a classifier
is trained to distinguish binding peptides from non-bind-
ing peptides. After an initial training stage, the classifier is
tested on a set of peptides, which were not presented dur-
ing the training stage. The training data consists of exper-
imentally determined binders and randomly generated
peptides which are assumed to be non-binders. Interest-
ingly enough, only rarely are experimentally determined
non-binders used, mainly because a small number of
these non-binders have been made publicly available.

In this paper we suggest a novel formulation of the pro-
tein-peptide binding prediction problem. Our approach is
driven by the following two important observations:

Observation 1 Peptides that bind to the same protein are
"similar" to one another, and different from non-binding pep-
tides.

This observation underlies most, if not all, computational
prediction methods. Motif based methods [8,13] for
example, search for a binding motif that captures the sim-
ilarity of a set of known binding peptides. Prediction is
then based on the similarity of a query peptide to the
motif, which implicitly measures the similarity of the
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query peptide to the peptides in the training set. This
observation suggests that given a novel peptide, one can
predict its binding affinity to a specific protein, by explic-
itly measuring the average distance (or similarity) of the
novel peptide to a list of known binding peptides. Intui-
tively speaking, if the peptide is close to the known bind-
ers, we would classify it as a binder, and if it is far - we
would classify it as a non-binder.

Observation 2 Peptides binding to different proteins within
the same "family" resemble each other

Proteins from the same family (e.g. MHC class I) are
known to have structural and sequential similarity. There-
fore they bind to peptides that share common characteris-
tics. Additionally, in MHC class I and MHC class II, many
proteins are grouped into supertypes [17] (such as the
HLA-A2 MHC class I supertype). A supertype is a collec-
tion of proteins whose binding peptide sets are overlap-
ping. This observation implies that we may benefit from
simultaneously learning a single binding prediction func-
tion over an entire family of proteins, instead of inde-
pendently learning a single classifier for each of the
proteins within the protein family. At a first glance it
might appear that one can recast a set of binary classifica-
tion problems using a single multi-class classification
problem. However, a closer look reveals that the protein-
peptide binding problem is not a multi-class classification
problem due to the following inherent facts: (1) Some
peptides bind to several proteins within a family (indeed
this information is used to define MHC supertypes). (2) A
peptide that does not bind to a specific protein within a
family, does not necessarily bind to a different protein
within the family.

Our novel approach is based on the two observations
described above. We propose to address the protein-pep-
tide binding prediction problem by learning peptide-pep-
tide distance functions. We do not require that the triangle
inequality holds, and thus our distance functions are not
necessarily metrics. Moreover, based on observation 2, we
suggest to pool together information from an entire pro-
tein family and to learn a single peptide-peptide distance
function (instead of learning a different distance function
for every protein independently). Our peptide-peptide
distance function is then used to compute protein-peptide
binding affinity - the affinity of a query peptide to a given
protein is inversely proportional to its average distance
from all of the peptides known to bind to that protein.
Our proposed learning scheme is summarized in Fig. 2
and elaborated in the following section.

Learning peptide distance functions
As mentioned above, we propose to address the protein-
peptide binding affinity prediction problem by learning a

Input:
A dataset of binding and non binding peptides from an entire protein family.

1. For each protein: Extract “positive” and “negative” equivalence con-
straints using its known binding and non-binding peptides, respectively.
2. Learn a single peptide-peptide distance function over this dataset using

the equivalence constraints extracted in step 1.

3. Define a protein-peptide affinity function using the peptide-peptide dis-
tance function from step 2.

Output:
A single protein-peptide affinity function over the entire protein family.

Figure 2
The PepDist framework.

peptide-peptide distance function over an entire family of
proteins. A distance function 9 assigns a non-negative
value for each pair of points. Most algorithms that learn
distance functions make use of equivalence constraints
[1,2,18-22]. Equivalence constraints are relations between
pairs of data points, which indicate whether the points in
the pair belong to the same category or not. We term a
constraint positive when the points are known to be from
the same class, and negative in the opposite case. In this
setting the goal of the algorithm is to learn a distance func-
tion that attempts to comply with the equivalence con-
straints provided as input.

In our setting, each protein defines a class. Each pair of
peptides (data-points) which are known to bind to a spe-
cific protein (that is, belong to the same class) defines a
positive constraint, while each pair of peptides in which
one binds to the protein and the other does not - defines
a negative constraint. Therefore, for each protein, our
training data consists of a list of binding and non-binding
peptides, and the set of equivalence constraints that they
induce.

We collect these sets of peptides and equivalence con-
straints from several proteins within a protein family into
a single dataset. We then use this dataset to learn a pep-
tide-peptide distance function (see Fig. 3 left plots). Using
this distance function, we can predict the binding affinity
of a novel peptide to a specific protein, by measuring its
average distance to all of the peptides which are known to
bind to that protein (see Fig. 3 right plots). More formally,

let us denote by D(Peptide;, Peptide;, ) the distance
between Peptide; and Peptide, and by B; the group of pep-
tides known to bind to Protein. We define the affinity
between Peptide; and Protein; to be:
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Afﬁnity( Peptide;, Protein ) =

exp| ——— Y, D(Peptide; Peptidey. ) | (1)
|BJ'|’<€BJ'

In order to learn peptide-peptide distance functions, we
use the DistBoost algorithm [1,2], which learns distance
functions using data and some equivalence constraints
(see Methods for the algorithm's description). DistBoost
requires that the data be represented in some continuous
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vector feature space. We therefore represent each amino-
acid using a 5-dimensional feature vector as suggested by
[23], and each peptide by concatenating its amino-acid
feature vectors (for further details see the Data representa-
tion section). We compare our method to various protein-
peptide affinity prediction methods on several datasets of
proteins from MHC class I and MHC class II. The results
show that our method significantly outperforms all other
methods. We also show that on proteins for which small
amounts of binding peptides are available the improve-

A2 A-6802B-2705B-3501B-5301 H-2Db H-2Kb H-Ld
Proteins

A2 A-6802B-2705B-3501B-5301 H-2Db H-2Kb H-Ld
Proteins

Left: peptide-peptide distance matrices of MHC class | binding peptides, collected from the MHCBN dataset. Peptides that
bind to each of the proteins were grouped together and labeled accordingly. Following Observation |, a "good" distance matrix

should therefore be block diagonal. Top left: The Euclidean peptide-peptide distance matrix in RY (see Methods for details).
Bottom left: The peptide-peptide distance matrix computed using the DistBoost algorithm. Right: protein-peptide affinity matri-
ces. The affinity between a peptide and a specific protein is computed by measuring the average distance of the peptide to all
peptides known to bind to that protein (see eq. |). Top right: the Euclidean affinity matrix. Bottom right: the DistBoost affinity
matrix. DistBoost was trained on binding peptides from all of the proteins simultaneously.
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ment in performance is even more pronounced. This
demonstrates one of the important advantages of learning
a single peptide distance function on an entire protein
family.

Related work

Many different computational approaches have been sug-
gested for the protein-peptide binding prediction prob-
lem (see [24] for a recent review). These methods can be
roughly divided into three categories:

Motif based methods

Binding motifs represent important requirements needed
for binding, such as the presence and proper spacing of
certain amino acids within the peptide sequence. Predic-
tion of protein-peptide binding is usually performed as
motif searches [8,15]. The position specific scoring matrix
(PSSM) approach is a statistical extension of the motif
search methods, where a matrix represents the frequency
of every amino acid in every position along the peptide.
Peptide candidates can be assigned scores by summing up
the position specific weights. The RANKPEP resource [13]
uses this approach to predict peptide binding to MHC
class I and class II molecules.

Structure based methods

These methods predict binding affinity by evaluating the
binding energy of the protein-peptide complex [9]. These
methods can be applied only when the three-dimensional
structure of the protein-peptide complex is known or
when reliable molecular models can be obtained.

Machine learning methods

Many different learning algorithms have been suggested
for binding prediction. Among these are artificial neural
networks (NetMHC) [12], Hidden Markov Models
(HMM's) [10] and support vector machines (SVMHC)
[11]. To the best of our knowledge all of these methods
are trained separately for each protein (or supertype).
Therefore, these methods work well when sufficient
amounts of training data (i.e peptides which are known to
be binders or non-binders for a given protein) is provided.

Results

We evaluated the performance of our method on several
MHC class I and MHC class II datasets, and compared it
to various other prediction methods (see Methods for
details about these datasets). We begin with a thorough
comparison of our method to the recently enhanced
RANKPEP method [13] on MHC class I and class II data-
sets. In order to assess the importance of using experimen-
tally determined non-binders, we tested our method on
another MHC class I dataset collected from the MHCBN
repository. On this dataset we also compare our method
to various other MHC binding prediction methods.

MHC binding prediction on the MHCPEP dataset

We compared our method to the recently enhanced
RANKPEP method [13]. We replicated the exact experi-
mental setup described in [13]: (1) We used the exact
same MHC class I and class II datasets. (2) Training was
performed using 50% of the known binders for each of
the MHC molecules. (3) The remaining binding peptides
were used as test data to evaluate the algorithm's perform-
ance. These binders were tested against randomly gener-
ated peptides.

We trained DistBoost in two distinct scenarios: (1) Train-
ing using only binding peptides (using only positive con-
straints). (2) Training using both binding and (randomly
generated) non-binding peptides (using both positive and
negative constraints). In both scenarios DistBoost was
trained simultaneously on all of the MHC molecules in
each class. Fig. 4 presents a comparison of DistBoost to
both of the PSSM's used in [13]. on the H-2Kd MHC class
I molecule. Comparative results on the entire MHC class I
and class II datasets are presented in Figures 5 and 6,
respectively. In all these comparisons, the PSSM AUC
scores (See Methods for details) are as reported in [13].

On the MHC class I molecules, our method significantly
outperforms both PSSM's used by RANKPEP. On 21 out

H-2Kd
1 1
0.5 0.75
0.5

0.5 1 A B CD

Figure 4

Comparative results of DistBoost and RANKPEP on the H-
2Kd MHC class | molecule. The left plot presents ROC (see
Evaluation methods section for details) curves of the best
test score obtained when training on 50% of the entire data
(red: using only positive constraints; blue: using both types of
constraints). The intersection between the curves and the
diagonal line marks the equal error-rate statistic. The right
plot presents average AUC scores on test data. We compare
the two PSSM methods used by RANKPEP (A: PROFILE-
WEIGHT, B: BLK2PSSM) to DistBoost when trained using
only positive constraints (C) and when trained using both
positive and negative constraints (D). The averages were
taken over 10 different runs on randomly selected train and
test sets. N denotes the total number of binding peptides (of
which 50% were used in the training phase and the remaining
50% were used in the test phase). For a detailed comparison
see Figs. 5-6.
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Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class | molecules. Plot legends
are identical to Fig 4. On 2| out of the 25 molecules (including Fig. 4), DistBoost outperforms both PSSM methods. On this data
the use of negative constraints also improves performance. For numerical comparison, see additional file I:
Pepdist_SupplementaryMaterials.ps, Table |.
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Figure 6

Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class Il molecules. Plot legends
are identical to Fig 4. As may be seen, on |9 out of the 24 molecules, DistBoost outperforms both PSSM methods. On this data-
set the use of negative constraints only slightly improves performance. For numerical comparison, see additional file I:
Pepdist_SupplementaryMaterials.ps, Table 2.
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of the 25 molecules DistBoost's average AUC score, when
trained using only positive constraints, is higher than
both PSSM methods. The improvement in performance is
more pronounced on molecules with relatively small
amounts of known binders (e.g. HLA-B27(B*2704) - 10
binders, HLA-A2(A*0205) - 22 binders and HLA-
A33(A*3301) - 23 binders). One possible explanation of
these results is that the information provided by other
proteins within the protein family is used to enhance pre-
diction accuracy, especially in cases where only small
amounts of known binders exist. Additionally, it may be
seen that using both positive and negative constraints on
this dataset, usually improves the algorithm's perform-
ance. Another important advantage of DistBoost can be
seen when comparing standard deviations (std) of the
AUC scores. When DistBoost was trained using only posi-
tive constraints, on 13 out of the 25 molecules the algo-
rithm's std was lower than the std of both PSSM's. When
DistBoost was trained using both positive and negative
constraints, on 20 out of the 25 molecules the algorithm's
std was lower than the std of both PSSM's. These results
imply that our method is more robust.

When tested on the MHC class II molecules, our method
obtained similar improvements (see Fig. 6): On 19 out of
the 24 molecules DistBoost's average AUC score when
trained using only positive constraints is higher than both
PSSM methods. In general, it appears that the perform-
ance of all of the compared methods is lower than on the
MHC class I dataset. It is known that predicting binding
affinity on MHC class II is more challenging, partially due
to the fact that peptides that bind to class Il molecules are
extremely variable in length and share very limited
sequence similarity [25]. On this dataset, the use of both
positive and negative constraints improved DistBoost's
performance on only 11 out of 24 molecules.

MHC class I binding prediction on the MHCBN dataset
The MHCPEP dataset only contains information about
peptides that bind to various MHC molecules. In contrast,
the MHCBN dataset also contains information about
non-binding peptides for some MHC class I molecules.
We used this dataset to evaluate the importance of learn-
ing using experimentally determined non-binders (as
opposed to randomly generated non binders).

We compared DistBoost to various other computational
prediction methods on peptides that bind to the HLA-A2
supertype, collected from the MHCBN repository. Specifi-
cally, we compared the performance of the following
methods: (1) The DistBoost algorithm. (2) The SVMHC
web server [11]. (3) The NetMHC web server [12]. (4) The
RANKPEP resource [13] (5) The Euclidean distance metric

in R* Despite the fact that methods (2-4) are protein

specific, they also provide predictions on various MHC
supertypes including the HLA-A2 supertype.

We note that it is unclear whether the peptides collected
from the MHCBN repository are the HLA-A2 supertype
binders, or HLA-A*0201 binders which was named HLA-
A2 in the older HLA nomenclature. When we compared
our predictions to those of the SVMHC and NetMHC
methods on the HLA-A*0201, similar results were
obtained.

We trained DistBoost on 70% of the entire MHCclass1BN
data (including binding and non-binding peptides) and
compared its performance to all other methods on the
single HLA-A2 supertype. The test set, therefore, consists
of the remaining 30% of HLA-A2 data. The results are
shown in Fig. 7(a). As may be seen, DistBoost outperforms
all other methods, including SVMHC, NetMHC and
RANKPEP, which were trained on this specific supertype.
However, it is important to note, that unlike DistBoost, all
of these methods were trained using randomly generated
non-binders. The performance of all of these methods
when tested against random peptides is much better —
AUC scores of SVWMHC: 0.947, NetMHC: 0.93 and RANK-
PEP: 0.928. When DistBoost was trained and tested using
randomly generated non-binders it achieved an AUC
score of 0.976. Interestingly, when DistBoost was trained
using real non-binders and tested on randomly generated
non-binders it obtained an AUC score of 0.923. These
results seem to imply that learning using random non-
binders does not generalize well to experimentally deter-
mined non-binders. On the other hand, learning from
"real" non-binders generalizes very well to random non-
binders.

Our proposed method is trained simultaneously on a
number of proteins from the same family, unlike methods
(2-4). However, our final predictions are protein specific.
As the results reveal, we obtain high binding prediction
accuracy when tested on a single protein (see Fig. 7(a)). In
order to quantify the overall protein specific binding pre-
diction accuracy, we present ROC curves for DistBoost and
the Euclidean affinity functions when tested on the entire
MHCclass1BN dataset (Fig. 7(b)). The peptide-peptide
distance matrices and the protein-peptide affinity matri-
ces of these two methods are presented in Fig. 3. On this
dataset DistBoost obtained excellent performance.

In order to evaluate the stability and learning power of
DistBoost we ran it on the MHCclass1BN dataset, while var-
ying the percentage of training data. Fig. 8 presents the
algorithm's learning curves when trained using only posi-
tive constraints and when trained using both positive and
negative constraints. As may be expected, on average, per-
formance improves as the amount of training data
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(a) ROC curves on test data from the HLA-A2 supertype. DistBoost is compared to the following algorithms: the SYMHC web

server [11], the NetMHC web server [12], the RANKPEP resource [13] and the Euclidean distance metric in RY. (b) DistBoost
and the Euclidean affinity ROC curves on test data from the entire MHCclass|BN dataset. The rest of the methods are not
presented since they were not trained in this multi-protein scenario. In both cases, DistBoost was trained on 70% of the data

and tested on the remaining 30%. Results are best seen in color.

increases. Note that DistBoost achieves almost perfect per-
formance with relatively small amounts of training data.
Additionally, we can see that on this dataset learning from
both types of constraints dramatically improves perform-
ance.

The PepDist Webserver

Our proposed method is now publicly available through
the PepDist webserver, which can be found at http://
www.pepdist.cs.huji.ac.il. The current version provides
binding predictions of 9-mer peptides to 35 different
MHC class I alleles. The engine also supports multiple
peptide queries. We hope to enhance the webserver in the
near future to provide predictions for more MHC class I
alleles and also for MHC class II alleles.

Discussion and Conclusion

In this paper we proposed PepDist: a novel formulation of
the protein-peptide binding prediction problem that has
two foundations. The first is to predict binding affinity by
learning peptide-peptide distance functions. The second is
to learn a single distance function over an entire family of
proteins. Our formulation has several advantages over
existing computational approaches:

1. Our method also works well on proteins for which
small amounts of known binders are currently available.

2. Unlike standard binary classifiers, our method can be
trained on an entire protein family using only informa-
tion about binding peptides (i.e. without using real/ran-
domly generated non-binders).

3. Our method can compute the relative binding affinities
of a peptide to several proteins from the same protein
family.

In order to learn such distance functions we casted the
problem as a semi-supervised learning problem in which
equivalence constraints can be naturally obtained from
empirical data. Specifically, we used the DistBoost algo-
rithm, that learns distance functions using positive and
negative equivalence constraints. Our experiments suggest
that binding prediction based on such learned distance
functions exhibits excellent performance. It should be
noted that our proposed learning scheme can be also
implemented using other distance learning algorithms
and in our future work we also plan to further investigate
this idea. We also hope that the PepDist formulation will
allow addressing the more challenging task of peptide
ranking. One way of doing this is by incorporating infor-
mation about relative binding values into the distance
learning algorithm.

Our approach may also be useful for predicting some pro-

tein-protein interactions such as PDZ-protein complexes.

Page 9 of 15

(page number not for citation purposes)


http://www.pepdist.cs.huji.ac.il
http://www.pepdist.cs.huji.ac.il

BMC Bioinformatics 2006, 7:S3

o
©Q

Pos + Neg

Prediction accuracy

o =] =3
o © N © o
@ N o o o

o
=2

0.55 20 40 60 80
Training data size [%]

Figure 8

Learning curves of DistBoost trained using only positive con-

straints (Pos) and using both types of constraints (Pos + Neg).
Prediction accuracy based on the AUC score, averaged over
20 different randomly selected training sets.

The PDZ domains are frequently occurring interaction
domains involved in organizing signal transduction com-
plexes and attaching proteins to the cytoskeleton [26]. In
most cases, this is accomplished by specific recognition of
the ligands' carboxyl termini (or regions "mimicking" the
structure of a carboxyl terminal). Therefore, predicting
whether a protein binds to a specific PDZ domain, can be
cast as protein-peptide prediction problem where the
"peptide" is the short linear sequence (4 - 6 amino acids
long) lying at the protein's C-terminal. We are currently
examining the feasibility of using the PepDist framework
for this application.

Our novel formulation of the protein-peptide binding
prediction problem and the results obtained suggest two
interesting conclusions: The first is that learning a single
distance function over an entire family of proteins
achieves higher prediction accuracy than learning a set of
binary classifiers for each of the proteins separately. This
effect is even more pronounced on proteins for which
only small amounts of binders and non-binders are cur-
rently available. The second interesting conclusion, is the
importance of obtaining information on experimentally
determined non-binders. These non-binders (as opposed
to randomly generated non-binders) are usually some-
what similar to known binders, since they were in many
cases suspected to be binders. Our results on the MHCBN
dataset show that learning with real non-binders general-
izes better than learning with randomly generated pep-
tides that are assumed to be non-binders. This suggests
that information about non-binding peptides should also
be published and made publicly available.

Methods

The DistBoost Algorithm

Our peptide-peptide distance functions are learned using
the DistBoost algorithm. DistBoost is a semi-supervised
learning technique that learns a distance function using
unlabeled data points and equivalence constraints.

Notations
Let us denote by {x; }?=1 the set of input data points

which belong to some vector space X . The space of all
pairs of points in X is called the "product space" and is
denoted by XxX . An equivalence constraint is denoted
by (x;1, X, ¥;) where y;= 1 if points (x;;, x;,) belong to the
same class (positive constraint) and y; = -1 if these points
belong to different classes (negative constraint). (x;;, X;,, *)
denotes an unlabeled pair. The DistBoost algorithm learns
a bounded distance function, D: Xx X — [0,1] , that

maps each pair of points to a real number in [0,1].

Algorithm description

The algorithm makes use of the observation that equiva-
lence constraints on points in X are binary labels in the
product space, XxX . By posing the problem in product
space we obtain a classical binary classification problem:
an optimal classifier should assign +1 to all pairs of points
that come from the same class, and -1 to all pairs of points
that come from different classes. This binary classification
problem can be solved using traditional margin based
classification techniques. Note, however, that in many
real world problems, we are only provided with a sparse
set of equivalence constraints and therefore the margin
based binary classification problem is semi-supervised.

DistBoost learns a distance function using a well known
machine learning technique, called Boosting [27,28]. In
Boosting, a set of "weak" learners are iteratively trained
and then linearly combined to produce a "strong" learner.
Specifically, DistBoost's weak learner is based on the con-
strained Expectation Maximization (cEM) algorithm [29].
The cEM algorithm is used to generate a "weak" distance
function. The final ("strong") distance function is a
weighted sum of a set of such "weak" distance functions.
The algorithm is presented in Fig. 9 and illustrated in Fig.
10.

In order to make use of unlabeled data points, DistBoost's
weak learner is trained in the original space, X, and is
then used to generate a "weak distance function" on the
product space. DistBoost uses an augmentation of the

Page 10 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:S3

Input:
Data points: (x1,...,2,), xx € X
A set of equivalence constraints: (z;,,zi,,¥:), where y; € {—1,1}
Unlabeled pairs of points: (z;,,%i,,yi = *), implicitly defined by all uncon-

strained pairs of points

e Initialize WilliQ =1/(n?) i1,ia = 1,...,n (weights over pairs of points)
wp =1/n k=1,...,n (weights over data points)

e Fort=1,..,T
1. Fit a constrained GMM (weak learner) on weighted data points in X using
the equivalence constraints.

2. Generate a weak hypothesis h; : X x X — [—1,1] and define a weak
distance function as h¢(zs, ;) = % (1 — Bt(mi,xj)) € [0,1]

3. Compute ry = > Wflizyiizt (i, ,Tiy ), only over labeled pairs.
(Tiy Tig yi==%1)
Accept the current hypothesis only if r; > 0.

1+
)

4. Choose the hypothesis weight a: = % In(
5. Update the weights of all points in X x X as follows:

1192 t L
Wiliz exp(_at) Yy = *
t+1
6. Normalize: Witl = — _‘f1ft2
b1tz S witl
. n 1119
i1,i9=1

7. Translate the weights from X x X to X: w} " = Zj W,:jl

Output: A final distance function D(x;, ;) = 31—, ache(zs, ;)

Figure 9
The DistBoost Algorithm.

'Adaboost with confidence intervals' algorithm [27] to T
incorporate unlabeled data into the boosting process. searches for a hypothesis D( Xj, 1 Xi, ) = zatht(xilrxiz)

More specifically, given a partially labeled dataset t=1
N which minimizes the following loss function:

{(xil,xiz,yi)} . where y; € {1, -1,*}, the algorithm

i=
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exp| —y; D x; xj, (2)
{ilyi=1-1} ( ( ))

Note that this semi-supervised boosting scheme computes
the weighted loss only on labeled pairs of points but
updates the weights over all pairs of points (see Figure 9
steps (3-6)). The unlabeled points effectively constrain
the parameter space of the weak learner, giving priority to
hypotheses which both comply with the pairwise con-
straints and with the data's density. Since the weak
learner's task becomes harder in later boosting rounds, the
boosting algorithm gradually reduces the weights of the
unlabeled pairs (see Figure 9 step (5)). While the weak
learner accepts a distribution over the points in the origi-
nal space X, the boosting process described above gener-
ates a distribution over pairs of points that belong to the
product space XXX . The distribution over the product
space is converted to a distribution over the sample points
by simple marginalization (see Figure 9 step (7) of the
algorithm). The translation from the original input space
into product space is introduced in step (2) of the algo-
rithm and is further discussed below.

DistBoost's weak learner

DistBoost's weak learner is based on the constrained Expec-
tation Maximization (cEM) algorithm [29]. The algorithm
uses unlabeled data points and a set of equivalence con-
straints to find a Gaussian Mixture Model (GMM) that
complies with these constraints. A GMM is a parametric
statistical model which is given by

p( x|®) = 2;\11”117( x|01 ) , where 7z;denotes the weight of

each Gaussian, ¢ its parameters, and M denotes the

number of Gaussian sources in the GMM. Estimating the
parameters ( ® ) of a GMM is usually done using the well
known EM algorithm [30]. The cEM algorithm introduces
equivalence constraints by modifying the 'E' (Expecta-
tion) step of the algorithm: instead of summing over all
possible assignments of data points to sources, the expec-
tation is taken only over assignments which comply with
the given equivalence constraints.

The cEM algorithm's input is a set of unlabeled points
X ={x }?:1, and a set of pairwise constraints, 2, over

Ny

these points. Denote positive constraints by {( p} , p]2 )}
j=1

NTI
and negative constraints by {(n;lg,n;%)} . Let
k=1

H={h }?:1 denote the hidden assignment of each data

point x; to one of the Gaussian sources (h; € {1,..., M}).

The constrained EM algorithm assumes the following
joint distribution of the observables X and the hiddens H:

p(X H|O,Q)=
L1, (|0 )All{a Ha-s, ) (3
= X -
7 i TP\ i[O i hp} hp}2 el LR

where Z is the normalizing factor and g; is Kronecker's
delta. The algorithm seeks to maximize the data likeli-
hood, which is the marginal distribution of (3) with
respect to H. For a more detailed description of this weak

learner see [29].

In order to use the algorithm as a weak learner in our
boosting scheme, we modified the algorithm to incorpo-
rate weights over the data samples. These weights are pro-
vided by the boosting process in each round (see Fig. 9
step 7).

Generating a weak distance function using a GMM

The weak learners' task is to provide a weak distance func-

tion hy(x; x;) over the product space XXX . Let us Denote

by MAP(x;) the Maximum A-Posteriori assignment of

point x; and by pMAP(x;) the MAP probability of this point:

pMAP (x;) = max p(h; =m|x;,©). We partition the data
m

into M groups using the MAP assignment of the points
and define
X

+p X]

—pMAP(xi)-pMAP(xj) ifMAP(xi);tMAP(xj)

MAP ),pMAP( ) ifMAP(xi):MAP(xj)

l’;t ( xi , x] ) =
The weak distance function is given by

ht(xi,xj):%(l—ﬁt(xi,xj))e[0,1] (4)

It is easy to see that if the MAP assignment of two points
is identical their distance will be in [0, 0.5] and if their
MAP assignment is different their distance will be in [0.5,
1].

Datasets
The first two datasets we compiled (MHCclass1 and
MHCclass2) were the same as those described in [13]. Fol-
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The DistBoost algorithm

Fort=1,...,T

(2) Generate “weak”

Input: weighted (1) Learn constrained
data-points + GMM
eq. constraints
o 9
® o — —
3
4
(5}
(6 .
7 (7) Translate weights
® ® on pairs to weights
on data points

distance function

7y (i, %) = 0.1 (3-4) Compute “weak”

distance function
weight a,

(5-6) Update weights
on pairs of points

Final distance function: D(xl., xj) = Z; Oltht (xl., xj)

Figure 10

An illustration of the DistBoost algorithm. At each boosting round t the weak learner is trained using weighted input
points and some equivalence constraints. In the example above, points |, 2 and 5, 6 are negatively constrained (belong to differ-
ent classes) and points 3, 4 and 4, 7 are positively constrained (belong to the same class). All other pairs of points (e.g. 8, 9 and
I, 4) are unconstrained. The constrained EM algorithm is used to learn a GMM (step (I)). This GMM is then used to generate a
"weak" distance function (step (2)) that assigns a value in [0, 1] to each pair of points. The distance function is assigned a hypo-
thesis weight (steps (3—4)) which corresponds to its success in satisfying the current weighted constraints. The weights of the
equivalence constraints are updated (steps (5-6)) — increasing the weights of constraints that were unsatisfied by the current
weak learner. Finally, the weights on pairs are translated to weights on data points (step (7)). In the example above, the dis-
tance between the negatively constrained points I, 2 is small (0.1) and therefore the weight of this constraint will be enhanced.

lowing the works of [8,9,13] we considered peptides with
a fixed sequence length of 9 amino acids. Sequences of
peptides, that bind to MHC class I or class II molecules,
were collected from the MHCPEP dataset [31]. Each entry
in the MHCPEP dataset contains the peptide sequence, its
MHC specificity and, where available, observed activity
and binding affinity. Peptides, that are classified as low
binders or contain undetermined residues (denoted by
the letter code X), were excluded. We then grouped all 9
amino acid long peptides (9-mers), that bind to MHC
class I molecules, to a dataset, called MHCclass1. This
dataset consists of binding peptides for 25 different MHC
class I molecules (see additional file 1:
Pepdist_SupplementaryMaterials.ps, Table 3).

Unlike MHC class I binding peptides, peptides binding to
MHC class II molecules display a great variability in
length, although only a peptide core of 9 residues fits into

the binding groove. Following [13], we first used the
MEME program [32] to align the binding peptides for
each molecule, based on a single 9 residues motif. We
finally filtered out redundant peptides and obtained the
MHCclass2 dataset. This dataset consists of binding pep-
tides for 24 different MHC class II molecules (see addi-
tional file 1: Pepdist_SupplementaryMaterials.ps, Table 4).

Since all peptides in the MHCPEP dataset are binders, we
added randomly generated peptides as non-binders to
both MHCclass1 and MHCclass2 datasets (amino acid fre-
quencies as in the Swiss-Prot database). The number of
non-binders used in any test set was twice the number of
the binding peptides. During the training phase, the
number of non-binders was the same as the number of
binders. In order to assess the performance of the predic-
tion algorithms on experimentally determined non-bind-
ers, we compiled a third dataset, called MHCclass1BN.
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This dataset consists of binding and non-binding pep-
tides, for 8 different MHC class I molecules, based on the
MHCBN 3.1 website [33] (see additional file 1:
Pepdist_SupplementaryMaterials.ps, Table 5).

Data representation

DistBoost requires that the data be represented in some
continuous vector feature space. Following [23] each
amino acid was encoded using a 5-dimensional property
vector. Therefore, each peptide in the MHC datasets is a

point in R*> . The property vectors for each of the 20
amino acids are based on multidimensional scaling of
237 physical-chemical properties. Venkatarajan and
Braun's analysis [23] showed that these 5 properties corre-
late well with hydrophobicity, size, a-helix preference,
number of degenerate triplet codons and the frequency of
occurrence of amino acid residues in #strands. They also
showed that the distances between pairs of amino-acids in
the 5-dimensional property space are highly correlated
with corresponding scores from similarity matrices
derived from sequence and 3D structure comparisons.

Evaluation methods

In order to evaluate the algorithms' performance, we
measured the affinity of all test peptides to each of the
proteins. We present the prediction accuracy (that is how
well binders are distinguished from non-binders) of the
various algorithms as ROC (Receiver Operating Charac-
teristic) curves. The X-axis represents the percentage of
"false alarms" which is FP/(FP + TN) (where FP denotes
False Positives, and TN denotes True Negatives). The Y-
axis represents the percentage of "hits" which is TP/(TP +
FN) (where TP denotes True Positives and FN denotes
False Negatives). The fraction of the area under the curve
(AUC) is indicative of the distinguishing power of the
algorithm and is used as its prediction accuracy.
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This file includes the following tables: 1. Table 1: Average AUC scores and
standard deviations obtained by RANKPEP and DistBoost on MHC class
I molecules. 2. Table 2: Average AUC scores and standard deviations
obtained by RANKPEP and DistBoost on MHC class II molecules. 3.
Tables 3, 4, 5, describe the 3 datasets used in the paper.
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