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Abstract
Background: Biologists regularly search DNA or protein databases for sequences that share an
evolutionary or functional relationship with a given query sequence. Traditional search methods,
such as BLAST and PSI-BLAST, focus on detecting statistically significant pairwise sequence
alignments and often miss more subtle sequence similarity. Recent work in the machine learning
community has shown that exploiting the global structure of the network defined by these pairwise
similarities can help detect more remote relationships than a purely local measure.

Methods: We review RankProp, a ranking algorithm that exploits the global network structure of
similarity relationships among proteins in a database by performing a diffusion operation on a
protein similarity network with weighted edges. The original RankProp algorithm is unsupervised.
Here, we describe a semi-supervised version of the algorithm that uses labeled examples. Three
possible ways of incorporating label information are considered: (i) as a validation set for model
selection, (ii) to learn a new network, by choosing which transfer function to use for a given query,
and (iii) to estimate edge weights, which measure the probability of inferring structural similarity.

Results: Benchmarked on a human-curated database of protein structures, the original RankProp
algorithm provides significant improvement over local network search algorithms such as PSI-
BLAST. Furthermore, we show here that labeled data can be used to learn a network without any
need for estimating parameters of the transfer function, and that diffusion on this learned network
produces better results than the original RankProp algorithm with a fixed network.

Conclusion: In order to gain maximal information from a network, labeled and unlabeled data
should be used to extract both local and global structure.

Background
Pairwise sequence comparison is the "killer app" of bioin-
formatics. Algorithms like BLAST [1] and PSI-BLAST [2]
allow a user to search a database of DNA or protein
sequences using a single query sequence. The output of
the search is a list of database sequences (called targets)
that are ranked according to their similarity to the query.

The similarities discovered by the algorithm may help the
user infer functional properties of the query and target
sequences; for example, a query sequence of unknown
function that retrieves from the database a large collection
of kinases is likely itself to be a kinase. This straightfor-
ward application is familiar to most molecular biologists.
The web engine of the most popular pairwise sequence
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comparison algorithm, the BLAST server at the NCBI, runs
50,000 searches per day.

Early methods for detecting subtle sequence similarities
were designed explicitly with respect to a simple model of
molecular evolution. They measure similarities between
protein pairs by computing the cost of mutation, insertion
and deletion. The Smith-Waterman algorithm [3] is a
provably optimal, quadratic time, dynamic programming
algorithm to solve this problem, and BLAST is a linear
time heuristic approximation algorithm [1].

More sophisticated solutions to this problem involve
learning from data. In an example of this approach, an
HMM or other generative model is constructed from a
training set, which is accumulated iteratively from the tar-
get database. SAM-T98 [4] is an example of an iterative
profile HMM method, and PSI-BLAST [2] is essentially a
fast approximation of this approach. PSI-BLAST builds an
alignment-based statistical model of a local region in the
protein similarity network and then iteratively collects
additional sequences from the database, adding them to
the multiple alignment. The main idea is to characterize
with a statistical model the family or superfamily that the
query protein comes from. This model is then more capa-
ble than the original query sequence of finding other sim-
ilar proteins. From a machine learning perspective, these
methods can be described as unsupervised learning meth-
ods. While they learn from unlabeled database sequences
in order to build a probabilistic model, they do not make
use of known structural or functional information, which
is available for a subset of the database of target proteins.

RankProp
In this article we review RankProp, an unsupervised pro-
tein ranking algorithm. We also discuss some extensions
to the algorithm that leverage the use of labeled data to
make it a semi-supervised learning method. RankProp [5,6]
works by defining a protein similarity network. In this net-
work, nodes are proteins, and edges represent pairwise
protein similarities identified using the PSI-BLAST algo-
rithm. Given a query (a node in this network) the algo-
rithm performs a diffusion operation on the graph. Each
node is assigned an initial activation level. In subsequent
iterations, the activation level of a node is given by the
weighted combination of neighboring nodes plus a stabil-
ity term based on its initial activation. The query node has
its activation set to a constant value. Repeated iterations of
this procedure result in a diffusion of the query's activa-
tion level across the network, until a fixed point is
reached. The output of the algorithm is a list of target pro-
teins, ranked by activation level. A target protein can
achieve a high ranking by being connected to many pro-
teins similar to the query, even if its direct connection to
the query is not a strongly weighted edge. RankProp has

been shown to significantly outperform BLAST and PSI-
BLAST, when tested on its ability to recognize remote
homologs in the SCOP [7] database of protein domain
structures [5]. RankProp is inspired by two separate
sources: first, diffusion techniques from machine learning
[6], and second by the Google ranking algorithm, PageR-
ank [8].

In semi-supervised learning, one is interested in using a
large unlabeled set of data to help build a classification
rule. Common scenarios for this situation include text
and web page classification. These algorithms work by
making the so-called cluster assumption: the classification
rule does not change in regions of input space that are
densely populated. In other words, the algorithm chooses
a classification decision boundary that lies in a region of
low density (see Figure 1). Clearly, the cluster assumption
will not always hold true, but for many practical applica-
tions the assumption is reasonable. For example, for the
problem of handwritten digit recognition, the region of
space between the digits "2" and "0" is sparsely populated
because people will write true digits more often than "in-
between" digits that have no meaning. We know that the
cluster assumption is very likely to be true for the protein
ranking problem, because semi-supervised techniques
have previously been successful in the protein classifica-
tion problem [9,10]. Similar to semi-supervised classifica-
tion methods, which capture cluster and manifold
structure in the data, RankProp assumes that a protein
lying in the same cluster or manifold with the query
should be ranked higher, even if its similarity with the
query using the original metric is not very high. An exam-
ple is given in Figure 2.

An analogy can also be made between a protein database
search, where one submits a query protein and is returned
a ranked list of proteins, and a web search, where one
enters a query word or phrase and retrieves a ranked list of
web pages. RankProp is similar to PageRank [8], the rank-
ing system used by Google. Both PageRank and RankProp
are based upon constructing a network of object nodes
with edges weighted by similarity between them. A diffu-
sion operation is then performed to capture global prop-
erties of the network. PageRank ranks a web page more
highly if it is linked with other highly ranked pages. See
[6] for more details.

RankProp with labeled data
We hypothesize that extending RankProp to make use of
both unlabeled and labeled data will provide a significant
improvement in the resulting rankings, compared to the
rankings produced by the original RankProp algorithm. In
this context, labels come from 3D structural information.
The 3D structure that a protein assumes after folding
largely determines its function in the cell. It is far easier to
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determine experimentally a protein's primary amino acid
sequence than it is to discover its 3D structure. However,
protein structure databases contain thousands of solved
3D structures. Thus, from a machine learning perspective,

in addition to the large amount of unlabeled data — on
the order of one million protein sequences — we also
have available a small amount of labeled data — roughly
27,000 proteins with known 3D structures, organized into

An example of the use of semi-supervised classificationFigure 1
An example of the use of semi-supervised classification. (A) If only one example of each class is given (the large cross 
and circle), then one may choose an incorrect decision boundary between the two classes. (B) Given extra unlabeled data 
(small crosses), the decision boundary can be placed in a sparse region of the space, which can result in a more accurate classi-
fier.
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Semi-supervised learning for a ranking problemFigure 2
Semi-supervised learning for a ranking problem. (A) The query is a single point in input space, and the remaining points 
comprise the database one wishes to rank. (B) The ranking induced by Euclidean distance. Marking sizes are proportional to 
the ranking of each point. (C) The ideal ranking. Clearly, to find the optimal ranking we need to find the cluster/manifold struc-
ture in the data.

(a) T wo moons ranking problem

seed point / query

(b) R anking by E uclidean distance (c) Ideal R anking

A B C
Page 3 of 9
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:S10
structural classes. We investigate three different ways of
using this labeled data: (i) as a validation set to choose
from competing similarity networks, (ii) to design edge
weights that correspond exactly to the similarity measure
of interest, the probability of homology, and (iii) to learn
which similarity network to use on a per-query basis. Of
these methods, the third method provides the best-per-
forming algorithm across a range of evaluation metrics
and superfamily sizes.

Results
Basic approach
The RankProp algorithm requires a protein similarity net-
work as input. The protein similarity network represents
the similarity between pairs of proteins by assigning a
weight to each edge. The degree of similarity between two
sequences is commonly summarized in an E-value, which
is the expected number of times that this degree of
sequence similarity would occur in a random database of
the given size. RankProp bases its edge weights on E-val-
ues returned from PSI-BLAST searches, using a radial basis
transfer function

Wij = exp(-Eij/σ),  (1)

where Eij is the E-value between protein i and j, and Wij is
the corresponding weight. In this way, edges between sim-
ilar sequences are assigned large weights. The transfer
function introduces a hyper-parameter σ, the radial basis
width, which controls the importance of very similar pro-
teins relative to distant ones.

We evaluate RankProp output using a 3D structure-based
gold standard [7], measuring the extent to which known
homologs occur above non-homologs in the ranked list.
The protein network consists of 7329 SCOP domains and
101, 602 proteins from Swiss-Prot version 40. The SCOP
domains were split into two portions: 379 superfamilies
(4071 proteins) for training and 332 (2899 proteins) for
testing (used as queries). For more details of the dataset
see the Methods section.

We use receiver operating characteristic (ROC) curves to
measure performance. The ROC score [11] is used to com-
pare methods for a given query by measuring the area
under a curve that plots true positives as a function of false
positives for varying classification thresholds, where a true
positive is an example that belongs to the same super-
family as the query, and a false positive is an example that
is not in the same fold. The ROCn score computes this
score up to the nth false positive [12]. A value of 1 implies
that the algorithm successfully assigns all the true rela-
tionships higher scores than the false relationships. For a
random ranking of this data, the expected ROC50 score is
close to 0 because most of the sequences are not related to
the query.

Our experiments suggest that RankProp's ranking is supe-
rior to the ranking induced by the direct links in the orig-
inal network, i.e. the ranking given by the PSI-BLAST
algorithm, as shown in Figure 3 and Table 1.

So far, we have described RankProp as a purely unsuper-
vised approach. However, we would also like to make use

Comparison of PSI-BLAST and RankProp variantsFigure 3
Comparison of PSI-BLAST and RankProp variants. Each figures plots the number of test set queries for which a given 
method achieves a ROCn score threshold. Figures (A), (B) and (C) use ROC50, ROC10 and ROC1 scores, respectively. Corre-
sponding mean ROCn scores are given in Table 1. The variants of RankProp are described in the text. Previous work [5] used 
RankProp with σ = 100.
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of the labeled data available, which can be done by learn-
ing some aspect of the network with the available labels.
In the following subsections, we consider three ways to
achieve this goal.

Model selection of radial basis width
RankProp takes as input a weighted protein similarity net-
work. Clearly, the quality of the rankings produced by
RankProp depends critically on the quality of the initial
weights. If we can parameterize the weights in some way,
then these parameters can be inferred using labeled data.

Our first method for making use of labeled data simply
learns the radial basis width parameter σ from Equation
(1). This approach requires running RankProp with each
sequence in a labeled training set for each value of σ. The
ROCn scores of the resulting rankings can then be used to
select an optimal value for σ. This procedure was per-
formed in the original RankProp paper [5]. Table 1 shows
that selecting an appropriate value of σ can significantly
affect the performance of the RankProp algorithm.

The probability of homology network
The RankProp algorithm with the transfer function (1)
requires that the user specify the radial basis width param-
eter σ in advance. However, selecting an appropriate value
for σ is difficult because the resulting edge weights have
no clear semantics. Perhaps the most intuitive choice of
edge weight between two proteins is the probability that
the two proteins are structurally related, since our final
measurement of success is the ranking performance based
on the same structural relation.

Our second method for making use of labeled data uses
this probabilistic formulation. In particular, we suggest an
empirical approach for estimating edge probabilities from
labeled data. In order to perform superfamily detection by
network propagation, the most natural weight to assign to
an edge between proteins i and j is the probability that i
and j belong to the same superfamily. Using a labeled set
of proteins, we discretize the range of possible E-values,
and for each resulting E-value bin, we compute the fre-
quency of pairs of proteins in that bin being in the same
superfamily. Figure 4 compares the resulting empirical

mapping to the original mapping for various values of σ.
This probabilistic method is parameterless and yields a
transfer function that is similar to the best performing
value σ = 100 [5] of the original algorithm.

Overall, the probabilistic network provides performance
comparable or superior to all values of σ we tried, as
shown in Figure 3 and Table 1, measured using ROC1,
ROC10 and ROC50 scores. However, the improvement is
less convincing at the ROC10 and ROC1 levels, i.e., when
the very highest ranked proteins become increasingly
important. It is not surprising that RankProp has similar
ROC1 performance to PSI-BLAST, because examples very
close to the query using the original similarity metric are
usually already highly ranked.

Comparison of transfer functions for converting PSI-BLAST E-values to edge weightsFigure 4
Comparison of transfer functions for converting PSI-
BLAST E-values to edge weights. The figure plots edge 
weight as a function of E-value for various transfer functions. 
The original RankProp algorithm assigns edge weights using 
the function exp(-Dij/σ), where σ had to be chosen a priori. 
Curves for σ = 10, 100, 1000 are shown. Also shown is the 
curve produced by the probabilistic approach, in which the 
edge weight is the empirical probability of two proteins 
belonging to the same superfamily.
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Table 1: Comparison of PSI-BLAST and RankProp variants. The table lists ROC1, ROC10 and ROC50 scores, averaged across 2899 
SCOP domains in the test set, for PSI-BLAST and five variants of the RankProp algorithm.

ROC1 ROC10 ROC50

PSI-BLAST 0.5973 0.6167 0.6406
RankProp σ = 10 0.5964 0.6658 0.7169
RankProp σ = 100 0.5924 0.6671 0.7249
RankProp σ = 1000 0.6040 0.6661 0.6999
Probabilistic RankProp 0.6145 0.6660 0.7195
Adaptive RankProp 0.6510 0.7000 0.7420
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Although probabilistic RankProp does not outperform
the original RankProp when used with the best choice of
σ, the simple scheme of chosing σ via cross validation is
very costly computationally. Given that the probabilistic
network yields performance that is as good as the best
choice of σ, we feel that it is a useful technique.

Adaptive model selection of radial basis width
We observed that the optimal value of σ for a particular
query depends on the local density of the protein similar-
ity network around that query. This effect can be seen in
Figure 5. Here, we estimate the network density around a
query by the number of strongly weighted (E-value less
than 0.01) edges from the query to its neighbors. The fig-
ure shows that larger values of the radial basis width σ
produce better error rates for queries in more densely pop-
ulated areas of the network. In other words, RankProp
appears to perform better on smaller superfamilies for
small σ, and better on larger superfamilies for large σ.

This observation suggests our third strategy for making
use of labeled data: given the density of the network in the
region of each query, use the labeled training data to learn
which value of σ gives optimal performance. Accordingly, we
choose several values of σ (10,100, and 1000) and solve
three corresponding regression problems to predict the
ROCn score given a histogram of number of hits with E-
value less than t as input for each σ. In this experiment we
use ROC1, but in principle we could optimize for any
error measure. Then, given the query, we choose the value
of σ that is predicted to give the best ROC1 score by the
regressions. We call this method "adaptive RankProp."
The results, given in Figure 3 and Table 1, show improved
ROC1, ROC10 and ROC50 scores. We note that the supple-
mentary material of [5] also suggests to adapt the width σ
per query, but there a hand-built rule of thumb was sug-
gested, rather than choosing the width by learning from
data.

Discussion
In this article we reviewed the RankProp algorithm and
suggested some ways of using labeled data to further
improve the basic algorithm. Based on our experiments,
we advocate making use of all available information — in
this case using both labeled and unlabeled data — to
achieve the best possible results.

The basic way to use labeled data with the ranking prob-
lem is to optimize the parameters of the model of choice,
which in this case is the protein similarity network. In the
previous sections, we defined three possible parameteriza-
tions and then optimized them, in each case yielding
good results. However, many other parameterizations are
possible. For example, one could build a network based
upon several measures of similarity, including pairwise

sequence similarity metrics (BLAST, PSI-BLAST), common
motif occurrences (MotifProp [13]), and predicted sec-
ondary structure similarity. The relative weights of these
measures could then be learned. Another possibility is to
put label information explicitly into the network: if two
proteins are known to be homologs, then the edge weight
can be set to one, and if they are known not to be
homologs, then it can be set to zero. However, some pre-
liminary experiments (not shown) indicated that this
approach does not improve ranking performance.

An implementation of RankProp is now available on the
Santa Cruz Gene Sorter, http://genome.ucsc.edu, featur-
ing a pre-computed network of human genes. We plan to
extend this implementation to use a larger database, and
establish a separate web server capable of processing new
queries, rather than operating on a pre-defined network.

Finally, one important difference between RankProp and
existing methods such as BLAST and PSI-BLAST is that
RankProp does not return an E-value or other confidence
measure along with each ranked protein. Defining such a
confidence measure is the subject of our current research.

Conclusion
The RankProp algorithm uses global network information
to give improved protein rankings by performing diffu-
sion on a graph built with PSI-BLAST similarity scores.
PSI-BLAST improves upon BLAST by incorporating unla-
beled data into its search algorithm, but advanced
machine learning techniques appear to extract extra infor-
mation useful for this task. In this article, we showed how
labeled data can be used to further improve the unsuper-
vised diffusion technique by learning various parameters
of the similarity network. These results may have implica-
tions for other ranking problems in bioinformatics as
well, as long as a suitable similarily network can be
defined.

Methods
Data Preparation
We tested the quality of the protein rankings produced by
RankProp, using as a gold standard the human-annotated
SCOP database of protein 3D structural domains [7].
SCOP has been used as a gold standard in many previous
studies (e.g., [14-16]). Sequences were extracted from ver-
son 1.59 of the database, purged using ASTRAL [17] so
that no pair of sequences shares more than 95% identity.
The resulting collection of 7329 SCOP domains was split
into two portions: 379 superfamilies (4071 proteins) for
training and 332 (2899 proteins) for testing. Note that
training and testing sequences never come from the same
superfamily.
Page 6 of 9
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The SCOP database is organized hierarchically into
classes, folds, superfamilies and families. For the purposes
of this experiment, two domains that come from the same
superfamily are assumed to be homologous, and two
domains from different folds are assumed to be unrelated.
For pairs of proteins in the same fold but different super-
families, their relationship is uncertain, and so these pairs
are not used in evaluating the algorithm.

In all the experiments reported here, the SCOP database
was concatenated with 101,602 proteins from Swiss-Prot
version 40. Using this larger database benefits both PSI-
BLAST and RankProp.

PSI-BLAST
PSI-BLAST (v 2.2.2) was used for comparison with Rank-
Prop. PSI-BLAST was run with default parameters, includ-
ing the BLOSUM 62 matrix, but with an E-value threshold
of 10,000 for reporting results. PSI-BLAST was allowed to
run a maximum of six iterations, which previous work
indicates is sufficient for good performance [16], using
the default E-value threshold of 0.005 for inclusion in the
model.

RankProp
The protein similarity network for RankProp was built
using the same version of PSI-BLAST as above. In the net-
work K used by RankProp, the weight Kij associated with a
directed edge from protein i to protein j is exp(-Sj(i)/σ),
where Sj(i) is the E-value assigned to protein i given query
j. For efficiency, the number of outgoing edges from each
node is capped at 1000, unless the number of target
sequences with E-values less than 0.05 exceeds 1000.

Given the similarity network, the RankProp algorithm can
then be described as follows:

1. Initialization: y1(0) = 1; yi(0) = 0

2. for t = 0,1, 2,... do

3.  for i = 2 to m do

4.  yi(t + 1) ← K1i + 

5.  end for

6. until convergence

α K y tji jj
m ( )=∑ 2

The optimal radial basis width σ depends upon the number of close homologs to the queryFigure 5
The optimal radial basis width σ depends upon the number of close homologs to the query. In the figure, each 
point corresponds to one query sequence from the training set. For each query, the y-axis coordinate is the number of target 
sequences that PSI-BLAST assigns an E-value less than 0.01, and the x-axis coordinate is the difference in ROC1 between Rank-
Prop with parameters σ = 10 and σ = 1000. The same analysis is shown in bar chart form (right). Each bar indicates the mean 
difference in ROC for all queries with number of homologs falling into a bin of size 200. Similar results (not shown) arise for 
other values of σ that we tried. Here, the error measure is the ROC1 score.
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7. Termination: Let  denote the limit of the sequence

{yi(t)}. Then  is the ranking score of the ith point (larg-

est ranked first).

Given a set of objects (in this case, proteins)
X = {x1, ..., xm}, let x1 be the query and x2, ..., xm be the

database (targets) that we would like to rank. Let K be the
matrix of object-object similarities, i.e., Kij gives a similar-

ity score between xi and xj, with K normalized so that

 = 1 for all i. For computational efficiency, we

set K1i = Ki1 for all i, so that we can compute weights

involving the query using a single execution of PSI-BLAST.
Let yi, i = 2, ..., m, be the initial ranking "score" of a target.

In practice, for efficiency, the algorithm is terminated after
a fixed number I of iterations, and yi(I) is used as an

approximation of . In our experiments, RankProp was

run for I = 20 iterations, which experiments in the supple-
ment to [5] show brings the algorithm very close to con-

vergence. The parameter α � [0,1] is set a priori by the

user. For α = 0, no global structure is found, and the algo-
rithm's output is just the ranking according to the original

distance metric. All our experiments use α = 0.95, looking
for clear structure in the data. However, in principle this
hyperparameter could be selected using labeled data as
well.

RankProp with probability of homology network

It is possible to define a similarity network for RankProp
without resorting to the adjustment of free parameters.
This is accomplished by making use of labeled data. To
perform superfamily detection using RankProp (perform-
ing network propagation) the most natural weight to
assign to an edge from protein i to protein j is the proba-
bility that i and j belong to the same superfamily. We sug-
gest computing exactly this probability from labeled data.
The method requires a training set of m proteins with
known labels yi, and a matrix D of PSI-BLAST E-values for

these proteins, where Dij = Sj(i) is the E-value between pro-

teins i and j using j as the query and i as the target. We then
compute a histogram of empirical frequencies for the PSI-
BLAST E-values. More specifically, we choose bin centers
vk, and compute nk, the number of times Dij falls into the

bin centered at vk, and sk, the number of times that the lat-

ter occurs when i and j are in the same superfamily. We
then compute sk/nk, the empirical probability belonging

to the superfamily of interest for the bin. The mapping

 that converts a PSI-BLAST E-value to a probability of

homology is created is done by locating the two closest
bins and using linear interpolation on the estimated prob-
abilities. We (arbitrarily) choose the bin centers v = (10-20,
10-15, 10-10, 10-9.5, ..., 10-4.5, 10-4, 10-3.75, ..., 103).

The resulting map is given in Figure 4 and compared to
the exp(-Sj(i)/σ) function of the original RankProp algo-
rithm for different values of σ. The results show that it is
as good as or better than any choice of σ. Although it does
not improve over the best choice of σ, this method pro-
vides a very straightforward and computationally efficient
method for building a strongly performing network. In
comparison, choosing the value of σ by validation set is
far slower to compute, as it involves running RankProp
many times. The method described in this section simply
requires one pass through the matrix of E-values gener-
ated from PSI-BLAST to compute its network.

RankProp with adaptive training
In adaptive RankProp, one chooses a different value of σ
for building the protein similarity network per test exam-
ple. To implement this approach, a supervised machine
learning method is used to predict the best choice of σ for
a given query. The choice is made by using a regression
function to predict the ROC score than one would achieve
on that query for a given value of σ. We learn a separate
regression function for each possible choice of σ and
choose the value of σ with the highest predicted ROC
score.

The input to each regression problem is a 5-dimensional
vector, where the features count the number of E-values
returned by PSI-BLAST using the given query that are less
than 1e-10, 1e-5, 0.1, 1, and 10, respectively. The regres-
sion output is the predicted ROC1 score on a validation set
when RankProp is trained with the given value of σ. Both
input and output features can be generated for a training
set, so the regression can be learned, and then applied to
a new test example.

We subtracted the mean from the outputs and normalized
the inputs to have mean zero and standard deviation one,
and used linear least squares to learn the regression.
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