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Abstract

Background: The functioning of a protein relies on its location in the cell. Therefore, predicting protein subcellular
localization is an important step towards protein function prediction. Recent studies have shown that relying on
Gene Ontology (GO) for feature extraction can improve the prediction performance. However, for newly sequenced
proteins, the GO is not available. Therefore, for these cases, the prediction performance of GO based methods
degrade significantly.

Results: In this study, we develop a method to effectively employ physicochemical and evolutionary-based
information in the protein sequence. To do this, we propose segmentation based feature extraction method to
explore potential discriminatory information based on physicochemical properties of the amino acids to tackle
Gram-positive and Gram-negative subcellular localization. We explore our proposed feature extraction techniques
using 10 attributes that have been experimentally selected among a wide range of physicochemical attributes.
Finally by applying the Rotation Forest classification technique to our extracted features, we enhance Gram-positive
and Gram-negative subcellular localization accuracies up to 3.4% better than previous studies which used GO for
feature extraction.

Conclusion: By proposing segmentation based feature extraction method to explore potential discriminatory
information based on physicochemical properties of the amino acids as well as using Rotation Forest classification
technique, we are able to enhance the Gram-positive and Gram-negative subcellular localization prediction
accuracies, significantly.

Introduction
Bacterial proteins are considered to be among the most
important proteins and play a wide range of both useful
and harmful roles. They are categorized as Prokaryotic
microorganisms and generally can be divided into two
groups namely: Gram-positive and Gram-negative [1]. The
main difference between these two groups is that Gram-
positive bacterial proteins have ticker cell wall containing

many layers (consists of peptidoglycan and teichoic acids)
while Gram-negative bacterial proteins have a tinner cell
wall containing of a few layers (consists of only peptidogly-
can). This causes difference between Gram-positive, and
Gram-negative bacteria in reaction to antibiotics. In fact,
despite ticker cell wall, Gram-negative are more resistent
to antibiotics than Gram-positive bacteria due to their
impenetrable lipid layer in their outer membrane [2]. The
importance of bacteria, regardless of being Gram-positive
and Gram-negative, is because they are the active elements
on many useful biological interactions and at the same
time, they are the source of many diseases which makes it
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crucially important to determine their functions especially
for drug and vaccine design [3].
To be able to function properly, a protein (including

the Gram-positive and Gram-negative bacterial proteins)
needs to be in its appropriate subcellular place. Given a
protein, determining its functioning place in the cell is
called protein subcellular localization which is a difficult
problem for computational biology and bioinformatics.
Especially knowing that some proteins can function in
more than one subcellular location which turn it to
multi-label problem. This problem can be defined as a
multi-class classification task in pattern recognition
where its performance relies on the discriminatory infor-
mation embedded in the extracted features as well as the
performance of the classification technique being used.
Since the introduction of the protein subcellular locali-

zation problem in [4], a wide range of classification tech-
niques have been used to tackle this problem [2,5,6].
Among the employed classifiers, the best results achieved
by using Support Vector Machine (SVM) [7], Artificial
Neural Network (ANN) [8], and K-Nearest Neighbor
(KNN) [9]. However, recent studies have shifted their
focus to enhance protein subcellular localization relying
on better feature extraction techniques rather than
exploring different classification techniques.
The early studies to tackle protein subcellular localiza-

tion focused on sequence-based features to solve this pro-
blem [4]. Later on, wider range of features have been
extracted to tackle this problem such as: physicochemical-
based [6], Evolutionary-based [8], and Structural-based
features [7]. However, the most significant enhancement
for this task achieved by using Gene Ontology (GO) [10]
information for feature extraction [11]. The term GO was
coined to describe the properties of genes in organisms
and its database established to represent molecular func-
tion, biological process and cellular components of
proteins [8]. Despite its importance, GO has two main
drawbacks. First, extracting GO for proteins produces a
large number of features (over 18000 features) which
needs further feature selection and filtering to extract ade-
quate features [12]. Second, the GO information for new
proteins is unavailable and many studies use homology-
based approaches to extract GO for these proteins [13].
Hence, GO needs further investigation to be used as a reli-
able source for the feature extraction purposes.
In this study, we propose two overlapped segmenta-

tion-based feature extraction techniques to explore dis-
criminatory information of physicochemical attributes of
the amino acids. We investigate 117 different physico-
chemical attributes and select 10 best attributes for this
task. We investigate our technique using the transformed
protein sequences using evolutionary information
embedded in the Position Specific Scoring Matrix (PSSM)
to provide a mixture of physicochemical-based and

evolutionary-based information. Finally, by applying the
Rotation Forest classifier which to the-best-of-our-
knowledge has not been explored previously for this task,
we enhance the Gram-positive and Gram-negative sub-
cellular localization prediction accuracies up to 3.4%
compared to previous studies which have used GO for
feature extraction. In this manner, we propose a new reli-
able method that explore the potential prediction ability
of novel classification techniques as well as discrimina-
tory information embedded in physicochemical and
evolutionary-based features for protein subcellular
localization.

Data sets
In this study, we use two data sets that have been widely
used in the literature for Gram-positive and Gram-nega-
tive subcellular localizations. For the Gram-positive sub-
cellular localization, we use the data set that was proposed
in [11,14,15]. This data set consists of 519 different pro-
teins belonging to 4 Gram-positive subcellular locations.
Among these 519 proteins, 515 belong to one location
while 4 of these proteins belong to two locations. Hence,
there are 523 (515 + 4 × 2) samples in this data set which
are divided into four locations as follows: Cell membrane
(174), Cell wall (18), cytoplasm (208), and Extracellular
(123). This data set is publicly available at: http://www.
csbio.sjtu.edu.cn/bioinf/Gpos-multi.
For the Gram-negative we have also used the data set

that was introduced in [11,14,16]. This data set consists
of 1392 different proteins belonging to 8 Gram-negative
subcellular locations. Among these proteins 1328 belong
to one location and 64 to two locations. Therefore, there
are 1456 (1328 + 64 × 2) total samples in this data set
which are divided into 8 locations as follows: Cell inner
membrane (557), Cell outer membrane (124), Cytoplasm
(410), Extracellular (133), Fimbrium (32), Flagellum (12),
Nucleoid (8), and Periplasm (180). This data set is pub-
licly available at: http://www.csbio.sjtu.edu.cn/bioinf/
Gneg-multi/.

Features
There are four feature groups extracted in this study in
which two of them are physicochemical-based (over-
lapped segmented density and overlapped segmented
autocorrelation) and two of them are evolutionary-based
(semi composition and auto-covariance). To extract
physicochemical-based feature groups, we first transform
the protein sequence using evolutionary information and
then extract physicochemical-based features from these
transformed sequences [17]. We study 10 physicochem-
ical attributes for feature extraction. These 10 attributes
are selected among a wide range of physicochemical
attributes in the following manner. First, we have
extracted 117 physicochemical attributes from [18,19].
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We then extract six feature groups based on each attri-
bute using overlapped segmentation-based feature
extraction techniques that have been explained in detail
in [17]. In the next step, we have applied six different
classifiers to each feature groups namely, Naive Bayes,
KNN, SVM, Multi-Layer Perceptron (MLP), Multi-Class
Adaptive Boosting (AdaBoost.M1), and Random Forest.
Hence, we have 36 results (6 × 6) for a given attribute
and 4212 results (36 × 117) for whole set of attributes for
each data set (Gram-positive and Gram-negative). We
then select 10 physicochemical attributes that individu-
ally attains the best results compared to the attributes
(comparing the maximum, minimum, and average of all
36 results [20,21]). The experimental results for this step
for both of our data sets are available upon request.
In this study, we aim at proposing novel feature

extraction techniques to explore the potential discrimi-
natory information of an individual physicochemical
attribute of the amino acids. We have investigated these
techniques for protein fold and structural class predic-
tion problems and aim to investigate the generality of
our proposed feature extraction techniques to capture
local discriminatory information based on an individual
physicochemical attribute of the amino acids [17,20,22].
We have also investigated the combinations of features
extracted from a wider range of physicochemical attri-
butes of the amino acids for protein fold and structural
class prediction problems by using simplified segmenta-
tion-based feature extraction technique and will investi-
gate these techniques for protein subcellular localization
in our future works [23,24].
The list of selected features is as follows: (1) Average

number of surrounding residues, (2) Polarity, (3) Retar-
dation Factor (RF) chromatographic index, (4) Mean
Root Mean Square (RMS) fluctuational displacement, (5)
Solvent accessible reduction ratio, (6) Partition Coeffi-
cient, (7) Rigidity, (8) Average surrounding hydrophobi-
city, (9) Hydrophobicity scale (contact energy derived
from 3D data), and (10) Hydrophilicity scale derived
from High-Performance Liquid Chromatography (HPLC)
peptide retention data. For the rest of this study, we will
refer to these attributes by the number that are assigned
to them as in Table 1.

Features extraction
As it was mentioned earlier, we extract our physicochem-
ical-based features from the transformed protein sequence
using evolutionary information. This transformation is
done using information embedded in PSSM. The trans-
formed protein sequence is called the consensus sequence
[25]. PSSM is calculated by applying PSIBLAST [26] to
Gram-positive and Gram-negative data sets (using NCBI’s
non redundant (NR) database with its cut off value (E) set

to 0.001). The PSSM consists of a L × 20 matrix (L is the
length of a protein and the columns of the matrices repre-
sent 20 amino acids). It provides the substitution probabil-
ity of a given amino acid with all the 20 amino acids based
on its position along a protein sequence. To extract physi-
cochemical-based features from the evolutionary consen-
sus sequence, we first need to extract this sequence from
PSSM. In the evolutionary consensus sequence, amino
acids along the original protein sequence (O1, O2,...,OL) are
replaced with the corresponding amino acids with the
maximum substitution probability (I1, I2,...,IL). To do this,
for a given amino acid, we calculate the index of the
amino acid with the highest substitution probability as
follows:

Ii = argmax{Pij : 1 ≤ j ≤ 20, 1 ≤ i ≤ L}, (1)

where Pij is the substitution probability of the amino
acid at location i with the j-th amino acid in PSSM. We
then replace the amino acid at the i-th location of the
original protein sequence by the j-th amino acid to
form the consensus sequence. We replace the original
sequence with the consensus sequence and extract phy-
sicochemical-based features from this sequence. In this
manner, we can gets benefit of evolutionary and physi-
cochemical-based information simultaneously [17]. In
the following subsections, we will first explain our pro-
posed method to extract physicochemical-based features
and then the employed methods to extract evolution-
ary-based features.

Physicochemical-based features
To explore potential discriminatory information
embedded in physicochemical properties of the amino
acids, we extract overlapped segmented density and
overlapped segmented autocorrelation feature groups.
Overlapped segmented density (OSD)
Global density has been widely used in protein science.
It was shown that this feature provides important

Table 1 The list of the physicochemical attributes and
the number assigned to them.

No. Physicochemical Attirbutes

1 Average number of surrounding residues

2 Polarity

3 Retardation Factor (RF) chromatographic index

4 Mean Root Mean Square (RMS) fluctuational displacement

5 Solvent accessible reduction ratio

6 Partition Coefficient

7 Rigidity

8 Average surrounding hydrophobicity

9 Hydrophobicity scale (contact energy derived from 3D data)

10 Hydrophilicity scale derived from (HPLC) peptide retention data
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information of the global impact of a given attribute on
the folding process [2] and is defined as follows:

Dglobal density =

∑L
i=1 Ri

L
, (2)

where Ri is the attribute value (normalized) of the i-th
amino acid. However, it fails to provide adequate local
information for a given attribute [27]. In this study, we
calculate local density of the amino acids using a seg-
mentation-based technique.
In our proposed method, starting from each side of the

protein sequence (left and right) we segment the protein
sequence and calculate the density value for each segment.
Starting from left side of the attribute sequence, we calcu-

late local density as the sum SD(f )
1 = R1 + R2 + ... + Ri of

the first d% (called segmentation factor) of L (in which the
superscript f stands for starting from the left side of the
proteins). This process is carried out for different values of
d (5%, 10%, 15%,...,75%) to get 15 local densities

SD(f )
1 , SD(f )

2 , . . . , SD(f )
15
. We also compute 15 features by

analyzing the sequence starting from the right side of the
protein sequence in the similar manner. Thus, a total of
31 features using the proposed method are extracted (1
global density + 15 from the left side + 15 from the right
side). Note that we segment the protein sequence with dis-
tribution factor of d and process it from the left as well as
from the right side of the protein sequence while the left
and right side processing overlap (Figure 1). As a result,
we call this method overlapped segmented distribution
approach.
In this study, 5% distribution factor and 75% (called

overlapping factor), are selected based on the average
length of the proteins in the explored benchmarks and
the experiments that were conducted by the authors
[17]. The overlapping approach is proposed to provide
more information about the distribution of the amino
acids in the middle of a protein considering each side.
Considering the number of features (only 10 overlapping
features), this approach is able to provide important
overlapping information to tackle this problem. This

approach also enables us to explore the impact of each
attribute more comprehensively compared to previously
explored methods [17,27].
Overlapped segmented autocorrelation (OSA)
In the past the autocorrelation features have been com-
puted using the whole protein sequence of L attribute
values Ri (i = 1,...,L). Pseudo amino acid composition-
based features are good examples of these types [28].
These autocorrelation features capture the interaction of
the neighboring amino acids over the entire length of
the protein sequence. In the present study, we extend
the concept of overlapped segmented density features as
described in the previous subsection to compute the
autocorrelation features from the segmented protein
sequence. This is done to provide more local discrimi-
natory information based on the interaction of the
neighboring amino acids. Here we segment the protein
sequence using distribution factor of 10% (d = 10) and
overlapping factor of 70% (of = 70). Using a procedure
similar to the one described in the previous subsection,
we first analyze the protein sequence starting from its
left side and segment it for seven different values of d
(d = 10%, 20%,...,70%) and calculate DF number of auto-
correlation coefficients for each of these segments as
follows:

OSAi,k =
1(

D(f )
k − i

)
D(f)

k −i∑
j=1

RjRj+i, (k = 1, 2, . . . , 7 and i = 1, . . . ,DF), (3)

where D(f )
k

is corresponding to the number of amino
acids in each segments (the number of amino acids that
the summation of their physicochemical-based values is
equal to SD(f )

k
and DF is the distance factor parameter

and is set to 10 as the most effective value for this para-
meter [17]. Note that 70 (7 × DF ) autocorrelation coef-
ficients are computed in this manner by analyzing the
protein sequence from the left side. This process is
repeated to obtain another 70 (7 × DF ) autocorrelation
coefficients by analyzing the protein sequence from the
right side. We also compute the global autocorrelation
coefficient of the whole protein sequence (using DF =
10). Thus, we have extracted a total of 150 (7 DF + 7
DF + DF = 15 × DF ) autocorrelation features in this
manner. These two physicochemical-based feature
groups are extracted to provide local and global discri-
minatory information based on density, distribution, and
autocorrelation properties simultaneously [17,25].

Evolutionary-based features
We also extract two evolutionary-based feature groups,
namely Semi-composition and Auto-covariance. These
feature groups provide important evolutionary informa-
tion extracted from PSSM to tackle protein subcellular
localization [17].

Figure 1 Overlapped segmented distribution-based feature
extraction method.
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Semi-composition (PSSM-SC)
This feature group is called semi-composition because
we calculate the summation of the substitution probabil-
ity for each amino acid from PSSM, rather than using
the protein sequence directly when calculating the com-
position feature group. The semi-composition derived
from the PSSM (consisting of 20 features) is calculated
as follows:

PSSM − SCj =
1
L

L∑
i=1

Pi,j,(j = 1, . . . , 20). (4)

Evolutionary-based auto covariance (PSSM-AC)
The concept of PSSM-AC has recently been used in the
literature to provide more information about the interac-
tion of the amino acids with each other along a protein
sequence [17,25]. PSSM-AC gives the auto covariance of
the substitution score of each amino acid with its neigh-
boring amino acids along a protein sequence and is
defined as follows:

PSSM − ACk,j =
1

(L − k)

L−k∑
i=1

(
Pi,j − Pave,j

) (
Pi+k,j − Pave,j

)
,

(j = 1, . . . , 20 and k = 1, . . . ,DF),

(5)

where Pave,j is the average substitution score of the
amino acid j in the PSSM. A distance factor (DF) of 10
is used as the most effective value for this parameter
[17]. Hence, there are 200 features (20 × DF) calculated
for this feature group.

Classification technique (Rotation Forest)
Rotation Forest is generally categorized as a Meta classifier
and is based on the Random Forest classifier, Bagging, and
Principal Component Analysis (PCA) [29]. It was intro-
duced in [30] to enhance the performance of the Random
Forest classifier by increasing the impact of diversity and
individual prediction accuracy of its base learners (also
called weak learners). The Rotation Forest works in the
following manner. It builds independently trained decision
trees to construct an ensemble of classifiers in a parallel
scheme and then combines their predictions using major-
ity voting [30]. The Rotation Forest uses a rotated feature
space rather than using random subsets of features (as it is
used in the Random Forest classifier) to train each base
learner. To do this, the feature set of size N is split ran-
domly into K subsets (where K is the number of base lear-
ners in this classifier) and then PCA is applied separately
to each subset to linearly transform the feature vector.
Then, by combining all K transformed feature subsets, a
new set of M features is built to train each base learner
[31]. Note that M is equal to N when none of the eigenva-
lues are zero and M < N when some of the eigenvalues are
equal to zero [30,32].

As it was mentioned earlier, in the Rotation Forest clas-
sifier, the aim is to increase diversity within the ensemble
classifier better than the Random Forest classifier by using
the principle components [33]. This is better than the Bag-
ging and Random Forest classifiers that use bootstrap
sampling and random selection to encourage diversity
[31,32,34]. Also, the individual accuracy of the base learner
is considered in the Rotation Forest classifier. Unlike the
Random Forest classifier, the Rotation Forest can be used
with a wide range of classifiers as its base learner. Hence,
it is easier to build different ensemble classifiers using the
Rotation Forest classifier compared to the Random Forest
classifier [30]. For this classifier, the individual accuracy is
enhanced by using more accurate base learner than the
Random Forest which uses naive decision tree as its base
learner [30]. In this study, C4.5 decision tree is chosen
because of its sensitivity to the rotation of the features, as
shown by [30]. In this experiment, the data mining toolkit
WEKA is used for the classification, K is set to 100 (as the
most effective value for this parameter [31,32]) and J48
(WEKA’s own version of C4.5 decision tree algorithm)
was used as the base classifier.

Results and discussion
To investigate the effectiveness of our proposed methods,
we first construct a feature vector consisting of the com-
bination of features extracted in this study. To do this,
for each of the selected physicochemical attributes inves-
tigated in this study, we first extract overlapped segmen-
ted density and overlapped segmented autocorrelation
feature groups. Then we combine these two feature
groups with semi-composition and auto-covariance fea-
ture groups extracted from PSSM. Hence, for each physi-
cochemical attribute, we build a feature vector consisting
of 401 features (OSD(31 features), OSA (150 features),
PSSM-SC (20 features), and PSSM-AC (200 features)).
For the rest of this study, these feature vectors will be
referred as Comb_<number> in which number refers to
the number assigned to each physicochemical attribute
in Table 1. The general architecture of our proposed sys-
tem is shown in Figure 2.
To be able to directly compare our results with those

previously reported, we use the 10-fold cross validation
method. In the 10-fold cross validation method, the data
set is randomly divided into 10 subsets in which in each
iteration, 9 subsets are selected as training data while
the remaining sub set is used as the test data. This pro-
cess continues 10 times and until all the subsets are
used once as the test data set [8,35]. We report our
results in terms of protein subcellular prediction accu-
racy (in percentage) which is defined as follows:

Q =
C
N

× 100, (6)
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where C is the number of the correctly classified sam-
ples and N is the total number of samples. We apply
Rotation Forest classifier to the Comb_1 to Comb_10
for our employed data sets and report the results for all
the subcellular locations as well as overall prediction
accuracy, as has been done in previous studies [35]. The
results for Gram-positive and Gram-negative data sets
are reported in Table 2 and Table 3 respectively.
As is shown in Table 2 we achieve over 81.0% predic-

tion accuracy for all the feature vectors extracted from
the physicochemical attributes explored in this study.
These results are better than the 80.3% prediction accu-
racy reported in the literature for this task [8]. Achiev-
ing high results for all the physicochemical attributes
emphasizes the effectiveness of our proposed feature
extraction techniques for this task. In addition, we reach
83.6% prediction accuracy for attribute number 9
(Hydrophobicity scale (contact energy derived from 3D
data)) which is better than all the other physicochemical

attributes explored in this study which emphasizes the
effectiveness of this attribute for protein subcellular
localization. We enhance Gram-positive subcellular loca-
lization 3.3% over previously reported results found in
the literature [8].
For Gram-negative data set we achieve over 75.0% pre-

diction accuracy for all the physicochemical attributes
explored in this study. These results are better than the
best results reported for this data set (73.2% in [35])
which emphasizes on the effectiveness of our proposed
feature extraction methods. Similarly, among the
explored physicochemical attributes, using attribute
number 9 (Hydrophobicity scale (contact energy derived
from 3D data)) we achieve the best result. We report
76.6% prediction accuracy for Gram-negative subcellular
localization which is 3.4% better than previously reported
results for this data set [35]. Note that better prediction
performance for Gram-positive is because of its simpli-
city compared to Gram-negative subcellular localization.
For Gram-positive subcellular localization, the number of
locations is just four and the distribution of samples in
different location is more consistent. While there are
eight subcellular locations for Gram-negative bacterial
proteins and the number of samples in different locations
is inconsistence (there are 557 and 410 samples are in
the Cell inner membrane and Cytoplasm while there are
8 and 12 samples in the Flagellum and Nucleoid loca-
tions). Therefore, the prediction performance for Gram-
positive is better than the prediction performance for
Gram-negative which is consistent with previously
reported results for these two tasks [35]. Achieving high
results for both Gram-negative, and Gram-positive data
sets shows the generality of our proposed methods and
also preference for the Hydrophobicity scale (contact

Figure 2 The overall architecture of our proposed approach.

Table 2 Results achieved for the feature vectors
extracted for all 10 physicochemical-based attributes for
Gram-positive data set (in percentage %) for all 4
subcellular locations ((1) Cell membrane, (2) Cell wall (3)
Cytoplasm, (4) Extracellular, which are numbered from
one to four respectively)

Features (1) (2) (3) (4) Overall

Comb_1 79.9 16.7 89.9 79.7 81.6

Comb_2 78.7 16.7 89.4 80.5 81.2

Comb_3 78.7 16.7 88.9 81.3 81.2

Comb_4 81.0 11.1 88.9 79.7 81.5

Comb_5 76.4 16.6 90.7 82.1 81.5

Comb_6 78.2 16.7 89.9 80.5 81.3

Comb_7 77.0 16.7 91.3 80.5 81.5

Comb_8 77.6 16.7 90.4 82.1 81.7

Comb_9 82.2 16.7 92.3 80.5 83.6

Comb_10 79.9 16.7 91.8 82.9 83.1

Table 3 Results achieved for the feature vectors
extracted for all 10 physicochemical-based attributes for
Gram-negative data set (in percentage %) for all 8
subcellular locations ((1) Cell inner membrane, (2) Cell
outer membrane, (3) Cytoplasm, (4) Extracellular, (5)
Fimbrium, (6) Flagellum, (7) Nucleoid, (8) Periplasm
which are numbered from one to eight respectively)

Features (1) (2) (3) (4) (5) (6) (7) (8) Overall

Comb_1 86.9 54.0 88.5 51.1 56.3 16.7 12.5 61.7 76.4

Comb_2 86.3 50.0 88.8 50.4 59.4 25.0 00.0 58.9 75.6

Comb_3 86.7 53.2 88.3 52.6 62.5 00.0 00.0 58.9 76.0

Comb_4 87.5 56.5 87.1 49.6 59.4 00.0 12.5 62.2 76.4

Comb_5 87.4 51.6 87.3 45.9 68.8 08.3 12.5 61.7 75.9

Comb_6 86.9 52.4 86.3 52.6 68.8 00.0 25.0 62.8 76.2

Comb_7 87.0 54.0 88.3 48.9 65.6 16.7 00.0 58.9 76.0

Comb_8 86.4 55.6 87.8 51.1 59.4 08.3 25.0 61.7 76.3

Comb_9 87.7 53.2 87.6 49.6 68.8 16.7 12.5 61.7 76.6

Comb_10 86.4 53.2 87.7 51.1 65.6 08.3 12.5 60.6 75.8
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energy derived from 3D data) attribute for Gram-positive
and Gram-negative protein subcellular localization. Note
that for the rest of our experiments we will use this attri-
bute (Comb_9).
In order to investigate the statistical significance of

our achieved improvement for Gram-negative and
Gram-positive subcellular localization prediction pro-
blems we use paired t-test. The probability value calcu-
lated for the pairwise t-test (p = 0.0047) emphasizes the
statistical significance of our reported results and the
enhancement achieved in this study.

Impact of using Rotation Forest
To investigate the effectiveness of the Rotation Forest for
protein subcellular localization, we apply the neural net-
work that was used in [8] (back propagation ANN using
Radial Basis Function (RBF) activation function) to our
extracted features and compare the results with those
achieve here. We achieve 77.4% and 71.1% prediction
accuracies which are 6.2% and 5.5% less than using the
Rotation Forest for Gram-positive and Gram-negative
protein subcellular localization data sets, respectively.
This shows the effectiveness of using the Rotation Forest
which has not been explored at all for this task.

Investigating the importance of the explored feature
groups in this study
We apply the Rotation Forest to each of the explored fea-
ture groups to investigate their effectiveness on the
achieved results. We then add these four feature groups
together and apply the Rotation Forest to these combina-
tions to see the impact of adding each feature group to the
achieved results (using physicochemical attribute number
9). As it is shown in Table 4 combining these four feature
groups together increases the prediction accuracy monoto-
nically and the best results is achieved by combining all
the feature groups together. This emphasizes the

effectiveness of all the feature groups explored in this
study to enhance Gram-positive and Gram-negative pro-
tein subcellular localizations.

Conclusion
In this study we have proposed a pattern recognition-
based approach to solve Gram-positive and Gram-negative
protein subcellular localizations in the following steps.
First, we have investigated a wide range of physicochem-
ical attributes using several classifiers and feature extrac-
tion techniques and selected the 10 attributes that attained
the best results for protein subcellular localization. Second,
using the evolutionary information embedded in PSSM,
we transformed the protein sequence and also extracted
semi-composition and auto-covariance feature groups
directly from PSSM. Third, we extracted physicochemical-
based feature groups by proposing overlapped segmented
density, and overlapped segmented autocorrelation feature
groups from the transformed protein sequence for all 10
physicochemical attributes mentioned earlier. Fourth, all
four feature groups extracted here were combined to
make a feature vector that contains both evolutionary and
physicochemical discriminatory information simulta-
neously. Finally, by applying the Rotation Forest classifier
to our extracted feature groups, we achieved 83.6% and
76.6% prediction accuracies for Gram-positive and Gram-
negative subcellular localization which are 3.3% and 3.4%
better than previously reported results for these two tasks,
respectively [8,35].
These enhancements emphasizes the effectiveness of

our proposed feature extraction techniques, the discri-
minatory information embedded in physicochemical-
based features, and finally the Rotation Forest classifier
that has not been explored for this task. For our future
work, we aim at exploring wider range of feature extrac-
tion techniques to reduce the number of features as well
as enhancing protein subcellular localization.
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Table 4 The overall prediction accuracy achieved using
Rotation Forest to each feature groups investigated in
this study (in percentage)

Features Gram-
positive

Gram-
negative

PSSM_AAC 75.7 71.2

PSSM_AC 79.5 72.2

OSD 63.9 63.9

OSA 67.7 68.9

PSSM_AAC + PSSM_AC 80.5 74.9

PSSM_AAC + PSSM_AC + OSD 81.3 75.6

PSSM_AAC + PSSM_AC + OSD + OSA 83.6 76.6

It also shows the results achieved using Rotation Forest to the combination of
feature groups to build the Combination of all for feature groups together.
We use attribute number 9 (Hydrophobicity scale (contact energy derived
from 3D data) attribute) for this experiment as using this attribute we attain
our best results.
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