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Abstract

Background: Principal component analysis is used to summarize matrix data, such as found in transcriptome,
proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal
axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to
experimental data. First, the identified principal components have poor generality; since the size and directions of
the components are dependent on the particular data set, the components are valid only within the data set.
Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the
experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and
independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To
address these issues, several options were introduced to the methodology. First, the principal axes were identified
using training data sets and shared across experiments. These training data reflect the design of experiments, and
their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation
was determined in accordance with the experimental design. Third, the resulting components were scaled to unify
their size unit.

Results: The effects of these options were observed in microarray experiments, and showed an improvement in
the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of
items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these
axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the
components and sharing of axes enabled comparisons of the components beyond experiments. The use of
training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the
principal axes.

Conclusions: Together, these introduced options result in improved generality and objectivity of the analytical
results. The methodology has thus become more like a set of multiple regression analyses that find independent
models that specify each of the axes.

Background
Principal component analysis is frequently used to trans-
form matrix data consisting of multiple measured items.
To represent the data efficiently, the first principal axis is
fitted to the matrix, minimizing the distances between the
data and the axis; then the next axis perpendicular to the

first axis is fitted to the data, and so on [1-3]. Since there
may be interdependence between the measured items, a
limited number of orthogonal axes will represent much of
the original data; thus, the transformed matrix can sum-
marize the original data with fewer dimensions. Addition-
ally, the summarization process is objective and has the
least number of options in the calculation. For clarity, it is
possible to describe this process by the singular valueCorrespondence: konishi@akita-pu.ac.jp
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decomposition of the matrix [2]. Let X be a sample-by-
item matrix, containing items with zero mean. The matrix
can be factorized into one diagonal and two unitary
matrices, X = UDV*. The unitary matrices U and V con-
trol the directions of the principal axes, while the diagonal
matrix D records the singular values. The principal com-
ponents for the samples in X are defined as Ys = XV (=
UD). The unitary matrix V is frequently used as loadings
for the components; however, the principal components
for the items, Yi = X*U (=VD), will be used here instead.
As discussed below, the principal component metho-

dology is unsuitable for the analysis of experimental or
diagnostic data. One reason is that the method is sensi-
tive to noise and bias in the samples; the method is
intrinsically weaker with noise compared to factor analy-
sis, which contains error terms. Additionally, because of
how distance is defined [1], both singular value decompo-
sition and principal component analysis are sensitive to
outliers. Various robust alternatives have been produced
[2-4] and they are applied to microarray data [5]. How-
ever, sensitivity to noise and to outliers could be separate
issues, since the noise of concern here is due to small
individual differences among samples in many items, not
due to outliers in particular items. Despite this weakness,
principal component methodology cannot take advantage
of an experimental design planned to reduce the effects
of noise. Indeed, it assumes an equal weight for all sam-
ples in X, even though these samples may have different
weights and dependencies. Hence, noise tends to affect
the resulting components. Skinner et al. (1986) identified
this instability in the directions of the axes in the context
of sampling design; since experimental designs often con-
sist of repeated measurements, the effects of the weights
and independencies among the data should become lar-
ger [6]. Konishi and Rao (1992) introduced a superior
data handling methodology that contains families with
differing numbers of siblings [7]. However, the design of
experiments could be biased in the families as well; for
example, some experiments and examinations in toxicol-
ogy or biopsy could include huge numbers of samples for
a particular group of chemicals or clinical conditions.
The resulting bias would affect both the directions of the
principal axes and the unit of size, as will be observed in
the examples presented below.
Another disadvantage is with the method’s generality;

the identified principal components are only valid for the
given set of data. A comparison or integration of principal
components requires specialized assumptions, for exam-
ple, that the experiments or observations to be integrated
share common data, and that the experiments differ only
in their means [2,3]. Indeed, Alter et al. (2003) applied the
method to a pair of experiments that shared a common
set of samples [8]. However, these assumptions are only
suitable for specialized combinations. Additionally, the

physical interpretation of the axes in the context of an
experiment is not obvious in many cases. Therefore, com-
paring or even approximating the components for differ-
ent experiments is difficult. The lack of generality for
principal components conflicts with the goal of most
experiments, which are often planned to examine hypoth-
eses and discover theories with generality. This also is pro-
blematic for the natural sciences, which requires
integration of knowledge obtained from various investiga-
tions. Furthermore, generality is expected in diagnosis or
toxicology studies.
Here, modifications to the method are introduced

which allow generality to be achieved in the results.
First, the processes of identification and application of
the axes were separated, enabling the axes to be shared
among experiments. The unitary matrices that assign
the axes are discovered using training data, which con-
sist of representatives of the groups in the experimental
design. A representative is found as the mean of a
group, such as repeated measurements of a treatment.
By taking means of repeats, the level of measurement
error is reduced. By using robust methods such as the
trimmed mean or median, the effect of outliers can be
further reduced. In addition, by assembling sets of data
into appropriate groups, bias due to unbalanced data
among the groups can be removed. Second, the center
of the data X was determined in accordance with the
experimental design. The de facto standard of the center
is the sample means, i.e., the item-wise means of all the
samples; however, these means are not always the best
choice because they are sensitive to the biases in the
groups. Rather, many experimental designs have a con-
trol group that is suitable as the center. The introduced
options for the training data and the center are used to
improve the fidelity of the methodology to the design of
experiments. With these revisions, the components pre-
sent differences of the samples from the control group,
but not the data fluctuations estimated by the standard
deviation of data. Third, the effects of the size of X on
the components were eliminated. Two categories of
principal components, i.e., that of samples and items,
are used to present the data, instead of the original
biplot. Both categories are closely related, because one is
the source of the other, and they can be represented on
identical axes. Taken together, each axis would assign
an independent multiple regression model. On an axis,
differences from the control group are presented from a
unique perspective.
The effects of these modifications were observed in two

microarray experiments. Since the microarray measures a
very large number of items, e.g., the expression level of
genes, methods to summarize the data are beneficial [9].
Indeed, principal component analysis has been used for an
exploratory estimation of the underling structure of
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microarray data [10,11]. In particular for pattern recogni-
tion and clustering, information for the data magnitude,
D, is not necessarily required; hence, the unitary matrices
could be used instead of the principal components [12].
Nevertheless, defects in the original methodology limit the
application to microarray data regardless of whether D is
used, because microarrays are often used for experiments
or examinations in which a set of data contains groups of
several repeated measurements, and these groups are fre-
quently biased. As microarrays are often used in large pro-
jects, the resulting knowledge should be shared widely and
integrated seamlessly. Here, the effects of the introduced
options are observed in the separations of the groups and
their robustness to noise. Additionally, the appropriateness
of the cancellation of the size effect becomes obvious by
the constancy in the range of the components presented.
There also exists the possibility of sharing axes, which
enables the use of a common framework among
experiments.

Methods
Preparation and pretreatment of the data matrix
This work used experiments that investigated several
groups using repeated measurements. The data appeared
in the Gene Expression Omnibus [13]: a time course in
mammary gland development, GSE8191 that was carried
out by Anderson et al. (2007) [14], and expression data
from a rat liver 48 hours after treatment with different
toxic compounds, GSE5509 that was carried out by
Spicker et al. (2008) [15]. Perfect match sample data were
parametrically normalized, and gene expression levels
were estimated by summarizing the normalized data by
taking the trimmed mean as was described in my previous
study [16]. The process was performed using the Super-
NORM data service (Skylight Biotech Inc., Akita), and the
normalized perfect match data and summarized gene data
are available in Gene Expression Omnibus under accession
of GSE31375. The significance in the expressional changes
was tested using a two-way analysis of variance on the
normalized perfect match data, assuming a linear relation-
ship: (data difference) = (probe sensitivity) + (group effect).
A threshold of 0.01 was used for the two-sided test.

Settle the reference of experiment as the center of data
The matrix of expression levels is subtracted using the
reference data,

X =

⎛
⎜⎝
s11 · · · s1m
...

. . .
...

sn1 · · · snm

⎞
⎟⎠ −

⎛
⎜⎝
r1 · · · rm
...
. . .

...
r1 · · · rm

⎞
⎟⎠ (1)

where s is the normalized sample data, r is the refer-
ence found for each item, and n and m are the number
of samples and items, respectively. The reference, which

determines the origin of the principal components, were
found as the item-wise means of all the samples for the
time-course data, or of the control group for the toxi-
cology data. Missing data in X were replaced with zero;
the same replacement was performed to remove certain
items, such as negative genes in the analysis of variance
test. This replacement is based on a fail-safe design: as
zero elements in X indicates that there is no difference
from the reference, the replacement of certain values
with zero tends to move the resulting principal compo-
nents closer to the origin, but not distally, which may
suggest positive results.

Scaling of principal components
In X, the number of functional items, mf, could differ
among samples due to missing data; hence, differences
in mf should not affect the size of the principal compo-
nents so that comparability is maintained. Such differ-
ences in mf would be much larger when comparing
results obtained from different sets of items, for exam-
ple, whether test-negative genes are included or not.
However, the size or magnitude of the principal compo-
nents depends on mf, as follows.
Theorem 1. Let y be an element of the principal compo-

nents for samples, Ys, of a matrix X that contains mf func-
tional items, and v be an element of the unitary matrix V
derived from X. For the j th component of the k th sample,
ykj ∝ mf

1/2.
Proof. Since V is a unitary matrix, V*V = I, thus∑mf

l=1

(
vlj

)2
= 1 for any j. Hence, vj ∝mf

-1/2. According to

the definition of principal components, the value of yk for

the j th component is calculated as ykj =
∑mf

l=1 xklvlj .

Hence, ykj ∝ mf x̄k × m−1/2
f = mf

1/2x̄k , where x̄k is the

average of xk. We can assume stability of x̄k regardless of
the selection of items, since x̄k is estimated from centered

data (1). Therefore, ykj is proportional to mf
1/2 . □

To maintain the principal components’ compatibility
regardless of the size of mf, the components should be
scaled. After a singular value decomposition is performed
on the matrix with mf functional items, the scaled compo-
nents for the samples are estimated as

Zs = mf
−1/2Ys; (2)

according to Theorem 1, this will unify the magnitude of
PC. Although scaling in principal component analysis
tends to be employed in the context of the pre-scaling of
data or multidimensional scaling for biplots [2,3], the
method proposed here finds the average contribution of
each element to the principal components. As this scaling
will not cancel the singular values of D, the ratios among
the axes will be retained. In the same manner, the ratios
for the items are scaled as Zi = nt

-1/2Yi, where nt is the
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number of data samples of the matrix in which U was
found.

Locating orthogonal axes in training data
The axes were identified in a set of predetermined training
data matrices that were intentionally chosen. Unless other-
wise stated, the training data T was the set of the sample
means from each group, for example, each point in the
time-course data or each chemical in the toxicology data,
subtracted with the reference as in (1). The axes were
found using singular value decomposition, T = UTDTVT

*.
The principal components for the samples are defined as
Ys = XVT, and those for the items are defined as Yi =
T*UT. Additionally, the effects of robust alternatives to sin-
gular value decomposition algorithms were observed using
two different functions in R (R development Core Team,
2011): [17] the robustSvd function (Liu, et al., 2003) [5] in
the pcaMethods library [18] and the PcaHubert function
(Hubert, et al., 2005) in the rrcov library [19]. In the data
analysis examples presented here, the directions of the
corresponding axes were unified within the decomposition
results by manually reversing the signs of some of the
columns of Ys or Yi. The obtained components were
scaled as in the previous section. The source code for R is
available as Additional file 1.

Results
Improvement in separating repeating groups
The effects of using training data and the focus on the
positive genes of the test were investigated in mammary
gland development data taken from Anderson et al.
(2007), with a view towards group separation [14]. In
the time-course experiment, ten groups of time points
were measured: pregnancy (groups 0 to 5), lactation
(groups 6 to 8), and involution (group 9). The scaled
principal components for samples on the first and sec-
ond axes are presented in Figure 1. Compared with the
original method that found axes for the full data matrix
X (Figure 1A), the separation of groups was improved
when axes were found for selected genes (Figure 1B) or
for the training data (Figure 1C). The samples for each
group were located nearer to each other, creating better
separation between the groups; this improvement is
especially obvious in the second axes. Accordingly, the
axes are self-explanatory in Figures 1B and 1C; the
developmental stages of the mammary gland appeared
in a straight line along the first axis, and the involution
appeared separately along the second axes. Also, while
the axes were calculated with only half of the genes in
Figure 1B, the range of the components remained the
same. This demonstrated the appropriateness of scaling
the components.
The alternative algorithms, which are robust to outliers,

did not improve the group separations (Additional file 2).

In the two cases, using all the genes and using only the
ANOVA-positive genes, the separation of groups
degraded. This inefficiency demonstrates that robust algo-
rithms cannot solve the problems in the application to
experimental data. This could be due to individual differ-
ences, which primarily cause data noise, because they may
not appear as outliers in particular genes but only as the
smaller differences in many genes [16]. Additionally, by
pre-scaling X, the group separation degrades (Additional
file 2). This suggests that in microarray data, pre-scaling
would enhance the effects of noise.

Robustness to individual differences among samples
The effects of using training data were further investigated
on the principal components for the items. Figures 2A and
2B show the components found in the original matrix and
in the training data, respectively. Let us focus on two clus-
ters of genes, CL1 and CL2; these genes are located in
both of the graphs at slightly different positions. In
Figure 2A, both clusters were outside of the large cluster
at the origin of the graphs, which was the gathering of
genes that did not show large expressional changes. In
contrast, with the axes found in the training data, cluster
CL2 was located inside of the center cluster (Figure 2B).
Five genes were randomly selected in both clusters, and
their expressional changes are presented in Figures 2C and
2D. In cluster CL1, the expression levels changed rather
uniformly, while the genes in cluster CL2 showed larger
differences between the samples. Since the effect of the
outlying samples have been reduced by taking sample
means in the training data, the genes in cluster CL2 were
located closer to the origin in Figure 2B, showing robust-
ness to the outlying samples.

Robustness to biases in the groups
The effects of training were further studied using toxicol-
ogy data. Spicker et al. (2008) measured three toxic chemi-
cals (groups 1, 3, and 5), three nontoxic chemicals (groups
2, 4, 6), and one nontoxic control; there were five repeats
[15]. Besides the training data set that included all of the
chemicals’ sample means, two alternative sets of training
data were prepared. One was used to simulate bias in
groups. To accomplish this, in one of the toxic com-
pounds (group 3) the sample means were replaced with all
the samples; hence, the training data contained six group
means and five group 3 samples. The calculations were
performed using only the positive genes in the test. In the
axes of the original training data, the first axis separated
the toxic and nontoxic chemicals, and the second axis
separated the toxic chemicals (Figure 3A). However, in the
artificially-biased training data, the first axis emphasized
group 3 with a higher magnitude of the principal compo-
nents, and the second axis separated the group 3 samples
(Figure 3B). It is obvious that the bias had unnecessarily
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increased the importance of group 3, by emphasizing
rather trivial differences between the samples.

Classifying unknown samples by applying previously
found VT
Another training data set was used to investigate the
application of previously found or even shared VT, for
estimating the principal components for unknown sam-
ples. The training data was prepared using all sample

means except those from group 3. The obtained first
axis successfully separated the group 3 samples from the
nontoxic chemicals, and the second axis separated the
toxic chemicals (Figure 3C).

Discussion
Enhancements to principal component analysis were
introduced in this paper: separating the identification
and application of the unitary matrix V, developing

Figure 1 Scaled principal components for samples in the time-course experiment, with the axes found in different sets of data. Data
were obtained for mammary gland development (Anderson et al., 2007); groups 0 to 5: days 1 to 19 of pregnancy; groups 6 to 8: days 1 to 9 of
lactation, group 9: day 2 of involution [14]. A. Results of the original method. The axes were found with all samples of 12,487 genes. Scaled
principal components (sPC) of the first and second axes are shown. B. Axes were found in 5,892 positive genes with the analysis of variance test.
C. Axes were found in the training data, prepared by using each group’s sample means of 12,487 genes. D. An example of biplot-like
presentation. Scaled principal components for the training data for gene items (open circles) and groups (0 to 9) are presented in a same scale.
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options in the training data and the reference, and scal-
ing the components. The use of training data improved
the resolution between groups (Figure 1). This improve-
ment may have been derived by the reduction of noise
effects; indeed, a similar improvement was observed by
focusing on analysis of variance positive genes (Figure
1B); de Haan et al. (2007) have reported the same noise
reduction effects [20]. Additionally, robustness was also
achieved in the identification of groups of genes using
principal components for the items (Figure 2). The
superiority of using training data is seen in the

robustness to sample biases. These bias effects are
obvious in Figure 3B, and the problem cannot be solved
by focusing on certain genes; rather, it can be simply
avoided by selecting appropriate groups for the training
data (Figures 3A and 3C).
The introduced options may somewhat reduce the

objectivity of the original method; however, the total
objectivity of the methodology may be preserved. In the
original method, both U and V and hence Ys and Yi are
calculated rather automatically for the given X. On the
other hand, preparing a training data set and the

Figure 2 Effect of training data on the scaled principal components for items. A. Results of the original method, corresponding to Figure
1A, showing the two clusters, CL1 and CL2. B. Axes were found in the training data, corresponding to Figure 1C. C. Expression levels of five
genes randomly selected from CL1. D. Those selected from CL2, showing higher within group variances.
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reference requires a selection of samples and/or groups,
which may reflect the analyst’s ideas. However, each
experiment has its own design for the grouping of data.
The first choice for the reference should be representa-
tive of the control group, and those for the training data
should be representatives of the experimental groups. In
addition, the appropriateness of the data and group

selections can be verified by comparing the results for
alternative selections; even if potential alternatives are
not found, the falsifiability can be retained.
This comparable character of the scaled components is

also beneficial for verification, since as expected, the scaled
version shows likely ranges with those calculated with dif-
ferent numbers of items (Figures 1B and 1C). Actually, the

Figure 3 Scaled principal components for samples in toxicology data measured by Spicker et al. (2008), found in various training data
sets [15]. Groups 1, 3, and 5 were those for carcinogens, groups 2, 4, 6 were those for nontoxic compounds, and C was the mock control. A.
Training data was prepared by using all of the groups’ sample means. B. To mimic bias, the sample means of group 3 were replaced with all the
samples. The increased sensitivity towards the group 3 samples is obvious, especially in the second axis. C. Training data were prepared without
group 3, and the data of group 3 were subjected as unknown samples. The carcinogens including group 3 were separated from the nontoxic
groups. D. An example of biplot-like presentation. Scaled principal components of the training data for genes and groups are presented in a
same scale.
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use of proper training data resulted in a better separation
of groups, facilitating interpretation of the axes (Figure 1).
It should be noted that the original method is objective in
the calculation processes, but not in interpreting the phy-
sical meaning of the axes. If the introduced options result
in the axes becoming self-explanatory, the objectivity of
the analysis would be improved in total.
The options improved the methodology by resulting in

superior generality of the results. In the original method, a
closed intelligent framework is formed in each set of data,
since the resulting unit of size and directions of principal
axes are valid only within the original data set. Therefore,
the components and obtained knowledge are difficult to
integrate among experiments. Here, the scaling of the
components unified the unit of size. In addition, separat-
ing the identification and application of the axes enabled
the same unitary matrices VT, which define the directions
of the axes, to be shared between samples obtained in var-
ious experiments or laboratories. By sharing the axes and
the unit size, laboratories can use a common framework.
Indeed, the prearranged training data could classify
unknown material appropriately (Figure 3C). Trivial differ-
ences between experiments could be cancelled using an
appropriate reference found in each experiment. This type
of usage is especially beneficial in applications for diagno-
sis and toxicology applications, enabling the classification
of subjected samples. Also, we can compare responses
found in particular conditions by swapping the unitary
matrices between different studies. Such compatibility is
advantageous for achieving deeper understanding of
experimental data.
Another benefit to the scaling is that it allows biplot-like

presentations. According to Jackson’s definition, biplots
present cUD and (1-c)DV*, where 0<c <1; they are com-
plementary and can reproduce information for X [2].
However, if we present principal components for the sam-
ples and items together, the information for the size fully
appears in both of them; thus, differences in the magni-
tude of the axes will become quantitatively obvious. This
is also beneficial to determining relationships between par-
ticular samples and items. For example, genes that actually
separate group 9 of Figure 1C could be found from Figure
1D. Indeed, genes outlying in the second axis showed such
an expression pattern (Figure 2C), and such relationships
are easily found in plots like Figures 1D and 3D. Although
the ranges of Ys and Yi could differ largely especially when
the numbers of samples and items are distinctively differ-
ent; however, those in the scaled Zs and Zi will become
similar, hence they can be presented together.
By separating finding and applying the axes, the metho-

dology has become analogous to a set of multiple regres-
sion analyses; each of the axes shows an independent
regression model. On an axis, principal components for
group representatives show which target is estimated. The

principal component for a sample is a result of the regres-
sion; it shows the tendency of the sample to the estimated
target. Components for the items show which items are
contributive for the regression model. For example, PC1
for the mammary gland development data, which is
assigned on the X-axis in Figure 1C, represents gland
development; the value increased as pregnancy and lacta-
tion proceeded, and rapidly decreased after the termina-
tion of lactation. Many of the genes having the highest
scores (located on the right side of Figure 1D) were those
related to lipid synthesis, such as adjusting saturation of
fatty acids, which are major components of milk. Coeffi-
cients of the regression model, stored in a column of V,
multiply the gene items of a sample stored in a row of X,
to find the target estimation of the regression function.
The estimation of the component of a sample is stored in
the corresponding column of Ys and Zs. The contributive
gene item gets a high score in the corresponding columns
of V, Yi, and Zi. However, this methodology is not purpo-
sive in finding out certain relationships of interest, unlike
in multiple regression analysis. It represents relationships
between groups rather objectively. Therefore, the analyst
has to ascertain the proper axis by observing separation of
the group scores.

Additional material

Additional file 1: R scripts. The complete scripts to import, analyze, and
output the data.

Additional file 2: Results of principal components for samples,
calculated by using other methods or conditions. E. Results of the
robustSvd function [5] to the whole set of 12,487 genes. Scaled principal
components (sPC) of the first and second axes are shown. F. Axes were
found in 5,892 positive genes with the analysis of variance test. G.
Results of the PcaHubert function [19] to the whole set of 12,487 genes.
H. Axes were found in the 5,892 positive genes. I. Effect of pre-scaling on
the data. The whole set of 12,487 genes of centered data were divided
by standard deviation before subjected to PCA. J. Axes were found in
the 5,892 positive genes.
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