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Abstract

Background: Estimating the number of different species (richness) in a mixed microbial population has been a
main focus in metagenomic research. Existing methods of species richness estimation ride on the assumption that
the reads in each assembled contig correspond to only one of the microbial genomes in the population. This
assumption and the underlying probabilistic formulations of existing methods are not useful for quasispecies
populations where the strains are highly genetically related.

The lack of knowledge on the number of different strains in a quasispecies population is observed to hinder the
precision of existing Viral Quasispecies Spectrum Reconstruction (QSR) methods due to the uncontrolled
reconstruction of a large number of in silico false positives. In this work, we formulated a novel probabilistic
method for strain richness estimation specifically targeting viral quasispecies. By using this approach we improved
our recently proposed spectrum reconstruction pipeline ViQua$ to achieve higher levels of precision in
reconstructed quasispecies spectra without compromising the recall rates. We also discuss how one other existing
popular QSR method named ShoRAH can be improved using this new approach.

Results: On benchmark data sets, our estimation method provided accurate richness estimates (< 0.2 median
estimation error) and improved the precision of ViQuaS by 2%-13% and F-score by 1%-9% without compromising
the recall rates. We also demonstrate that our estimation method can be used to improve the precision and
F-score of ShoRAH by 0%-7% and 0%-5% respectively.

Conclusions: The proposed probabilistic estimation method can be used to estimate the richness of viral
populations with a quasispecies behavior and to improve the accuracy of the quasispecies spectra reconstructed
by the existing methods ViQuaS and ShoRAH in the presence of a moderate level of technical sequencing errors.

Availability: http://sourceforge.net/projects/viquas/

Background

A number of unsupervised Quasispecies Spectrum Recon-
struction (QSR) methods such as ShoRAH [1], QuRe [2],
PredictHaplo [3], ViSpA [4] and QuasiRecomb [5] are
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available in literature. Comprehensive reviews on these
methods are presented in [6] and [7]. We recently formu-
lated a novel unsupervised method named ViQuaS$ [8] for
QSR and showed that it outperforms aforementioned
popularly used methods.

A major observation on the QSR methods ViQuaS and
ShoRAH was that the precision (fraction of reconstructed
strains that are true: equation 8) of reconstructed spectra
was less than the recall rate (fraction of true strains that
are reconstructed: equation 7) owing to the reconstruction

© 2015 Jayasundara et al,; This is an Open Access article distributed under the terms of the Creative Commons Attribution License

( BioMed Central

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/

publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://sourceforge.net/projects/viquas/
mailto:d.jayasundara@student.unimelb.edu.au
mailto:saman@unimelb.edu.au
mailto:saman@unimelb.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Jayasundara et al. BMC Bioinformatics 2015, 16(Suppl 18):S3
http://www.biomedcentral.com/1471-2105/16/518/S3

of in silico false positives. However, we observed in [8] that
ViQuasS has the best recall rates among the four methods
ViQuaS, ShoRAH, PredictHaplo and QuRe. Also, ShoRAH
performs at comparable levels with PredictHaplo in terms
of recall. Furthermore, both QuRe and Predic-tHaplo
demonstrate higher precision values than the correspond-
ing recall values. Therefore, we realize that the F-score
(the geometric mean of recall and precision: equation 9)
values of the spectra reconstructed by ViQua$S and
ShoRAH can be improved by controlling the generation of
false positives without compromising the recall rates, but
such an improvement cannot be achieved in QuRe and
PredictHaplo as the spectra generated by them usually con-
tain a lower number of strains than the actual number of
strains in the population. Therefore, other algorithmic
changes will be needed to improve the F-score values of
spectra generated by QuRe and PredictHaplo without com-
promising the recall rates. In this paper, we present a novel
probabilistic method to estimate the number of strains in a
viral quasispecies population and a strategy to improve the
precision and F-score of ViQua$ analysis pipeline without
compromising the recall rates, by reducing the number of
in silico false positives using above estimates as input infor-
mation. We also show that the same strategy can be used
to improve the performance of ShoRAH.

The number of different microbial types in a mixed
population is termed as richness. Thus far we find two pop-
ular methods of estimating the richness of a mixed micro-
bial population named PHACCS [9] and CatchAll [10].
The input to both methods takes the same form. In fact,
the input is the contig spectrum of the metagenome
derived from the target mixed microbial population. Both
methods rely on probabilistic parameter estimation strate-
gies. A major assumption regarding the input is that the
reads in each contig correspond to only one of the micro-
bial genomes in the population [9], [10]. In other words, it
is assumed that the different microbes in the population do
not comprise of significant common genomic regions. This
assumption is acceptable for populations such as soil, lake
water, sea water bacterial populations and bacteriophages,
but it is unacceptable for quasispecies populations where
the viral strains are highly genetically related. Hence, the
requirement arises to formulate the richness estimation
problem for viral quasispecies in an alternative framework.

The main contributions of this work are two fold. 1) We
formulate a novel probabilistic method to estimate the
strain richness of a viral quasispecies population and 2) we
propose a reconfiguration for the recently published pipe-
line ViQuaS$ [8], that significantly improves the precision
of reconstructed quasispecies spectra without compromis-
ing the recall rate. Furthermore, we discuss how the
existing quasispecies spectrum reconstruction method
ShoRAH [1] can benefit from the proposed estimation
strategy.
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Methods

Strain richness estimation

In this work we formulate the strain richness estimation

problem as a parameter estimation task given a single

observation from a discrete probability distribution.
Consider the instance where the biological sample for

next-generation sequencing is collected, at which the

quasispecies spectrum can be safely assumed as static. Let

us assume the following notations to formulate the

proposed estimation problem.

+ L = Length of the genomic segment of the known
reference (or the wild type) genome of the quasispecies
population we are interested in reconstructing.

+ s = Number of different strains in the quasispecies
population.

« r; = Number of mutations in the / strain with respect
to the reference genome where i € {1, 2, 3, ..., s}.

+ n = Number of total possible mutations that can
occur in a single strain.

N
2.7
i=1

s

(Average number of mutations per

strain.)
+ U = The random variable defining the number of
unique mutations in the population.

It should be noted that two distinct strains can have one
or more common mutations, but not all mutations can be
common. For the formulation we assume that each strain
contains a constant number of mutations with respect to
the reference genome. We use the value r as the number
of mutations in each strain and define the probability
mass function (p.m.f.) of U under the parameters s, n and
r (Pr(U = u; s, n, r)) as in equation 1.

1 ifs=landu=r

ZPr(U:u—x; s—1, n, 1).Ps(x)
Pr(U=u; s, n, 1) =4 *0 (1)

ifse (1, (:‘)] and u € (r, min(n, 1s)]

0 otherwise

where n, r, u, se Z* and x € Ny and equation 2

defines P, (x).
-6-1
E;;_;_l) ifx=0
Py(x) = (;:f) | (n _;Hx) b)
()-con

ifxe[1, r]
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In real world populations, the number of mutations in
each strain may not be a fixed value (), but we show in
our results that the effect of this variability on the esti-
mation strategy is minimal under practical settings.

Proof

Casel:s=1

s = 1 corresponds to a population where there is only
one strain. If the number of mutations in this strain is 7,
all these mutations are unique in the population. Hence,
when s = 1 the random variable U can only take the
value U = r. Therefore,

Pr(U=u;s,nr)=1whens=1andu=r
Pr(U=u;s,n,r)=0whens=1andu = r

Case2:s5 ¢ (1, (7)]and Us<r

s > 1 corresponds to a population where there are more
than one strain. If the number of mutations per strain is r,
the first strain contributes r number of unique mutations
towards the value of U . The second strain cannot have
the same r mutations that are observed in the first strain.
Therefore, the second strain contains at least one muta-
tion which is different from the already observed r muta-
tions. Consequently, when s >1, U takes a value greater
than r. Also the total number of strains that are possible

. [(n
to be present is (r) .

Therefore,

Pr(U = u; s, n,r) =0 when s e (l, (7)] and u <r
Case3:s¢e (1, (7)] and U > min(n, rs)

Under any circumstance, the number of unique muta-
tions cannot be greater than the number of total possi-
ble mutations that can occur in a single strain (n).
Consequently, the number of unique mutations in the
entire population cannot grow beyond 7.

Furthermore, when s e (1, (:l)i| , the first strain

contributes r number of unique mutations towards the
value of U and the maximum number any subsequent
strain can contribute is also r. Hence, the value of U
cannot be higher than rs. As a result, when

s € (1, (7)] , the maximum value attainable by U is

min(n, rs). Therefore,

Pr(U = u; s, n, r) = 0 when s e (1, (Trl)] and u >

min(n, rs)
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Case4:s5¢e (1, (:l)i| and U € (r, min(n, rs)]
Based on Case 2 and Case 3 we understand that, when
se (1, (rrl):|, U can get an integer value within the

range (r, min(n, rs)].

Consider the situation where we have observed U =
u - x with (s - number of strains. The probability of
occurrence of this situation is Pr(l{ = u - x; s - 1, n, r).
In order to observe U = u with s number of strains, the
remaining s” strain should contain exactly x number of
new unique mutations. ¥ can be any natural number
in the range [0, r]. Hence, the probability of observing
U = u with s number of strains is,

T
Pr(U=u; s, n,r)=> Pr(U=u—x s—1, n, 1).Ps(x)
x=0

where P (x) is the probability of observing x (x € [0, r])
number of new unique mutations in the s strain.

Consider the case where x € [1, 7]. For the s strain to
contain exactly x number of new unique mutations out of
a total of r, only (r - x) number of mutations in the st
strain can be a subset of the already observed (u - x)
number of unique mutations. The remaining x number of
mutations should arise from the unobserved n - (i - x)
possible mutations. In addition, the total number of ways
that these r mutations can occur without being equivalent
to one of the (s - 1) number of already observed ways is

()

Hence, when x € [1, r],

() (1)
()

Consider the case where x = 0. In this case all » muta-
tions of the s” strain must come from the already
observed u unique mutations in the (s - 1) number of
strains. However, the s” strain cannot be equivalent to any
of the already observed (s - 1) strains. The number of ways

Ps(x) =

. . . fu i
this scenario can occur is (r) — (s —1). Similar to the

case where x € [1, r], the total number of ways that these r
mutations can occur without being equivalent to one
of the (s - 1) number of already observed ways is

()
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Hence, when x = 0,

()
()

We observe that for all & = u where u € [r, n), there
exist a global optimum value in the likelihood function
of s given U (i.e. L(s|U = u)) such that s is finite. Hence,
given an observed value for U we can readily use the
maximum likelihood strategy to estimate the value of s.
A closed form equation for the maximum likelihood
estimator of s (s,,.) cannot be derived. Nevertheless,
Smie can be obtained numerically in a time efficient man-
ner using dynamic programming.

The expected value of U given the value of s (i.e. E(U]s))
is a strictly increasing discrete valued function of s for
given values of # and r. Therefore, as a second strategy we
can estimate s using the method of moments.

In real world quasispecies populations, we can assume
that r, s <<<n. Since it is impractical to know the value of
n, we set n = L. This approximation is observed to have
minimal effect on the parameter estimators when r, s
<<<L (i.e. when r, s <<<u the exact value of #n has minimal
effect on the estimated value of s).

Ps(x) =

Calculating r given a NGS metagenome

For a given metagenome the chance of each strain being
completely sequenced, decreases with its relative fre-
quency. [11] extends the Lander-Waterman model of
sequencing [12] to derive the probability that all the
strains are covered by the given number of sequenced
reads assuming the reads are uniformly distributed
along the genomic region of interest. The theoretically
re-constructible minimum relative frequency (f,,;,),
derived according to [11] and [13], defines a relative fre-
quency value for the strains in the population above
which the probability of a strain being completely cov-
ered is at least p,,,;,. We set p,,;, = 0.99 in our study.

Given a NGS metagenome, we use ViQua$ algorithm
presented in [8] to reconstruct the unsupervised quasispe-
cies spectrum of the viral population. We demonstrated in
[8] that ViQuaS reconstructs a highly reliable spectrum for
strains having a relative frequency greater than the theore-
tically re-constructible minimum relative frequency (f,,,;,,)-
Hence we obtain an approximate value for r by calculating
the median number of mutations present in the recon-
structed strains having a relative frequency greater than
fmin'

Alternatively, if we can safely assume that the sequenced
reads provide a uniform coverage across the genomic
region of interest, following formulae can be used to calcu-
late the parameter r.
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Total number of sequenced bases

aligned within the genomic region  (3)
coverage = . .
length of the genomic region (L bp)

Total number of mutations in reads

aligned within the genomic region (4)
r =
coverage

Calculating U given a NGS metagenome

Depending on the information we are interested in, we use
different strategies to calculate U/ . Let us denote s, as the
total number of strains in the population (i.e. richness) and
sras the number of strains having a relative frequency
greater than f,,,;,.

Each read in the metagenome carries zero or more
mutations belonging to a single strain of the original
population. However, it is unlikely that all the mutations
carried by the strains having a relative frequency less than
finin are captured during sequencing. Hence, defining U as
the number of unique mutations captured in all reads of
the metagenome leads us to an estimate of s (§;)less than
s; (i.e. a lower bound for s,).

As a second strategy, we define U as the number of
unique mutations captured in the local haplotypes of the
ViQuaS$ analysis pipeline having a local haplotype fre-
quency greater than f,,;,. Due to the presence of common
genomic regions, reads originating from two or more low
frequency strains can form a single local haplotype having
a local haplotype frequency greater than f,,,;,. Therefore,
the second strategy gives us a U value corresponding to
a number of strains slightly higher than s Hence, the
estimated value (§7) is an upper bound for s

Reconfiguration of ViQua$S
The ViQuaS analysis pipeline presented in [8] performs an
unsupervised reconstruction of strains given a NGS read
set. We propose to reconfigure the original ViQuaS pipe-
line as follows. First, the unsupervised algorithm provides
information needed to calculate the parameter r and the
observation U as outlined in the previous subsections,
facilitating the calculation of 5. This 5 value is fed back
to the global spectrum reconstruction algorithm of
ViQuaS to decide whether it should continue with the
unsupervised result or terminate after having recon-
structed §y number of strains. Assume the unsupervised
ViQuaS$ pipeline has reconstructed sz, number of strains
with a frequency greater than f,;,. Then,

if, sfu > § = Terminate after §; strains else, continue
with the unsupervised result

Data sets
For the ease of comprehension and comparison of
results, we used the simulated data sets (SS1, SS2, SS3,
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8§54, SS5, §S6, SS7 and SS8 ) described in detail in [8] to
benchmark the ViQuaS and ShoRAH using the pro-
posed reconfigurations presented in this paper. (We
have provided the description in [8] as Additional File 1
for the ease of comprehension.) We also used the
V11909 real Roche 454 HIV-1 data set to demonstrate
the applicability of the estimation strategy on real data.
Details of V11909 are provided in [8].

Results

Validation of strain richness estimation theory

We used 4800 simulated quasispecies populations with
known input parameters to validate the strain richness
estimation theory for practical settings where the number
of mutations per strain and the number of strains are
much less than the target genome length (7, s <<<L). The
simulated samples have the following parameter spaces: n
= 1000, r € {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and s € {3,
5,7, 10, 25, 50, 75, 100}. Apart from the three parameters
mentioned in Strain richness estimation subsection, we
used the parameter v € {0, 0.1, 0.2, 0.3, 0.4, 0.5} to model
the variability of  within a given population. For example,
each simulated population has s number of strains and the
distribution of the number of mutations in each strain has
a discrete normal distribution with mean r and standard
deviation vr.

Figure 1 summarizes the performance of Method of
Moments (MoM) estimation strategy for the parameter s
under different values of r and v = 0 (i.e. constant number
of mutations per strain). For the simulated ranges of r and
s, estimation error shows a roughly increasing pattern with
both r and s, while keeping the mean error below 0.07. We
observed that the estimated values are highly accurate
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(mean absolute percentage error < 1%) when the number
of strains (s) is small (i.e. s = 3, 5, 7, 10) but the estimation
error grows high with the value of s when s > 10 for our
simulated samples. Equation 5 was used to calculate abso-
lute percentage error:

|estimated value — true value| * 100% (5)
true value

absolute percentage error =
Figure 2 shows the variations of estimation error of s
when the number of mutations per strain is variable with
a mean value of r and a standard deviation of vr. Estimates
are highly sensitive to the variability in the number of
mutations per strain when the mean is small (i.e. when the
strains are highly similar to each other or the populations
are less diverse), but shows minimal sensitivity when the
mean values increase (i.e. when the populations are con-
siderably diverse), while keeping the mean error over all
values of s below 0.05. These two observations (Figures 1
and 2 validate our estimation strategy as well as the sim-
plification used in our calculations to consider r as a fixed
parameter for a given population ignoring the variability in
the number of mutations per strain.

Estimating s; and s; in quasispecies populations using
NGS data

We used the simulated data set SSI to evaluate the
performance of the richness estimation method on
NGS data derived from viral quasispecies populations.
For each sample, the value of the random variable U
was calculated at two stages as described under the
Calculating U given a NGS metagenome subsection
corresponding to st and sx Figures 3 and 4 illustrate

| s=3 [ s=5 s |

ls=10 [l s=25 I s=50 I =75 -s=1oo\

70/0 T T

6%

5%

4%

3%

Mean absolute
percentage error

2%

1%

0%

5 10 15 20

\

Figure 1 Mean absolute percentage error of parameter s when v = 0 and n = 1000 for different values of r and s.

25 30 35 40 45 50
r (v=0)
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values of s.
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Figure 2 Mean absolute percentage estimation error of parameter s when n = 1000 for different values of r and v averaged over all

T T

r

the distributions of estimation errors of s, and sy
respectively. Estimation error was calculated as follows:

. estimated value — true value
estimation error = (6)
true value

We observed that the estimation errors of both para-
meters decrease with increasing Diversity (Diversity « r)
and increase with increasing s,. Furthermore, we observe
that the estimation errors of s, are predominantly negative
(706 out of 800 instances in SSI ) and that of sy are predo-
minantly positive (787 out of 800 instances in SSI ) and
the magnitudes of median error are close to zero. The
major causes of positive estimation error of st are: (i) sig-
nificant difference between the calculated r and the actual
r used in simulating data and (ii) the existence of samples
where St = $f. The major cause of negative estimation
error of s, is the significant difference between the calcu-
lated r and the actual value. This confirms our claim in
Calculating U given a NGS metagenome subsection that
the corresponding estimates (5, and §;) give a lower

bound for s, and an upper bound for s

Enhanced QSR performance in ViQuaS and ShoRAH

In our previous work [8] we observed that the precision
of reconstructed quasispecies spectra are significantly
lower than the recall rate under all simulation settings
due to the reconstruction of a significantly higher num-
ber of false positive strains. Using the estimated value 3¢
as an upper bound for s we controlled the growth of
false positive strains and obtained significant gain in pre-
cision (2%-13%) as shown in Figure 5. Consequently we
also observed significant gain in F-score values (1%-9%)
for reconstructed spectra using ViQuaS (Figure 6).
(Refer [8] for the comparison of performance between

the methods ViQua$, ShoRAH, QuRe and PredictHaplo
under the same simulation settings.)

Furthermore, we applied the same reconfiguration we
proposed on Vi-QuaS$ using the estimated upper bounds
for s; (5r) on an existing QSR methods named ShoRAH
to evaluate the performance enhancement attainable via
our new estimation strategy. Table 1 summarizes the
gain in precision and F-score attained by the two meth-
ods, ViQuaS and ShoRAH. Similar to ViQuaS, we
observe that ShoRAH also attains considerable gain in
precision and F-score when the added knowledge of §;
values is used. Most importantly, no compromise in
recall rates were observed associated with the gain in
precision of both ViQuaS and ShoRAH. (Original recall
values are presented in [8]. Performance measures of
QuRe and Predic-tHaplo are not included in this table
as they cannot be improved using the proposed reconfi-
guration strategy.) The three performance measurement
terms recall, precision and F-score were calculated
according to the following equations. Further details
regarding the calculations are found in [8].

True Positive Strains with a relative frequency > finin

Recall =
eca Expected Number of Strains (Nj) )

True Positive Strains with a relative frequency > fiuin (8)

Precision = .
Total number of reconstructed strains with a relative frequency > fin

(Recall x Precision)
F - Score = 2 x

)

(Recall + Precision)

Application on real data

Analyzing V11909 [14] using the estimation method we
found that it contains 16 mutations per strain on average
(r = 16) within the 1044 bp long region of interest. The
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Diversity, number of strains, exact nucleotide sequences
and the relative frequencies of the strains in the popula-
tion are unknown. The estimated technical error rate of
this sample is 0.11% [13], mean read length is 90bp and
the total number of reads (7;0.,) is 5177. The theoretically
re-constructible minimum relative frequency (f,,,;,,) for this
set of reads is 2.5%. The number of unique mutations
found in the total set of reads was 752 and the number of

unique mutations found in the local haplotypes having a
relative frequency greater than f,;, was 90. Accordingly,
our method estimated that §, = 82 and §y = 6 for V11909
HIV-1 data set using the p.d.f. Pr(l; s, n = 1044, r = 16).

Discussion and Conclusions
To the best of our knowledge there exists no dedicated
method in literature to estimate the number of strains
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Figure 4 Estimation error of s; in quasispecies populations having different Diversity and s, values of simulated sample set SS1.

\

in a viral quasispecies population. Our previous studies
highlighted that the unsupervised quasispecies spectrum
reconstruction methods such as ShoRAH [1] and QuRe
[2] reconstruct respectively higher and lower number of
in silico false positive strains. These methods were not
aimed at providing accurate estimates for the number of
strains in a population. Estimation of species richness in
mixed microbial populations is a problem that is closely

related to the problem discussed here. However, meth-
ods addressing mixed microbial population richness esti-
mation are not applicable to the problem at hand due to
the characteristic differences between the subjective
populations. We presented in this paper a novel prob-
abilistic method to estimate the number of strains in a
quasispecies population based on the distribution of
mutations among different strains.
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Figure 5 Performance comparison of ViQuaSs in terms of precision with and without using the estimated upper bound for s;. Each
point indicates mean value of the measure.

The derived p.m.f. Pr(U = u; s, n, r) shows a significant
relationship to the well known hypergeometric distribu-
tion. We were unable to derive closed form expressions
for the maximum likelihood and Method of Moments esti-
mators for the parameter s. They were calculated using
dynamic programming as both estimators are determinis-
tic. We chose to use the Method of Moments estimator as
it provided marginally better estimates than the maximum
likelihood estimator on benchmark data sets.

We demonstrated that the variability in the number of
mutations per strains in a population has minimal effect
on the estimation method under practical parameter
values of n, r and s. However, the estimates are consid-
erably sensitive to the parameter r. This implies that
identifying the location of the distribution (i.e. median,
mean or mode) of the number of mutations per strain is
a critical step in the presented method. Accordingly, we
identified that significant differences between the calcu-
lated and correct r values as the main cause of the out-
liers (high error values) of the error plots in Figures 3
and 4.

Using the estimated upper bound of s; (57), we reconfi-
gured the Vi-QuaS analysis pipeline to control the growth
of in silico false positives. The summarized results pre-
sented in Figures 5, 6 andTable 1 show that the reconfi-
gured ViQuaS pipeline improves the precision and F-score
of reconstructed spectra compared to the previously pro-
posed ViQuasS pipeline [8]. The highlight of the proposed
reconfiguration is that we use the knowledge from both
the unsupervised algorithm and the probabilistic estima-
tion method to make a well informed decision to limit the
number of false positives. This strategy allows the reconfi-
gured ViQuasS pipeline to compensate for errors intro-
duced by: (i) the uncontrolled growth of strains when
using the unsupervised algorithm alone and (ii) the sensi-
tivity of the estimation method to calculation errors of the
parameter 7.

We also demonstrated that, similar to ViQua$, the
performance of the existing method ShoRAH can be
substantially improved using the added knowledge of

the estimated 5 values. It will be an interesting study to
see whether QuRe and PredictHaplo can be improved
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Figure 6 Performance comparison of ViQuaS in terms of F-score with and without using the estimated upper bound for s;. Each point
indicates mean value of the measure.

Table 1 Comparison of the improvement in ViQuaS and ShoRAH with and without using the estimated upper bound
for s¢ (§f) under different quasispecies population characteristics and NGS sequencing characteristics when Diversity >
3%

Sample Set Name Method Precision without Precision with F-score without §f F-score With Sy
SS1 ViQuaS 0.782 0.857 0.830 0.875
ShoRAH 0.657 0.710 0.682 0717
SS2 ViQuaS 0.786 0.845 0.851 0.887
ShoRAH 0.791 0.809 0.805 0.816
SS3 ViQuaS 0.499 0.628 0.560 0.647
ShoRAH 0.381 0442 0403 0.445
554 ViQuaS 0.830 0.853 0.853 0.867
ShoRAH 0.776 03815 0.778 0.803
SS5 ViQuaS 0.778 0.841 0.827 0.865
ShoRAH 0.664 0.718 0.687 0.723
5S6 ViQuaS 0.566 0.661 0.594 0.656
ShoRAH 0.405 0473 0420 0.468
SS7 ViQuaS 0.765 0.821 0.786 0.818
ShoRAH 0.000 0.000 0.000 0.000
SS8 ViQuas 0.776 0.829 0.796 0.827

ShoRAH 0.000 0.000 0.000 0.000
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by giving the estimated §; values as input to the global

spectrum reconstruction stage of the algorithms. This
will require the ability to edit the source code of the
respective methods. Also, the reconfiguration proposed
in this paper can be used to reduce the computational
cost to a certain extent by appropriately reducing the
number of strains being reconstructed in the global
strain reconstruction stage of a quasispecies spectrum
reconstruction pipeline.

Although the method can handle an error rate of 0.1%
(theoretical maximum substitutional error probability of
quality trimmed reads with a PHRED threshold of 30), we
identify the absence of a proper discounting method to
overcome the effect of technical sequencing errors (in
cases of very high error rates) when calculating different
parameters of the estimation method as the main draw-
back of our proposal. We plan to study further on such a
discounting strategy that can overcome both substitutional
and homopolymeric errors.

We also plan to study further on the p.m.f. with the view
of improving the efficiency of the calculation methods and
providing sound mathematical proof for the observed
properties of the parameter estimators. We hope this new
probability distribution will be useful in many theoretical
and applied statistical problems in the future.

In addition to modeling the distribution of mutations
as proposed in this paper, a quasispecies population
may also be modeled using master equations [15-17] to
estimate the strain richness. However, solving highly
complex master equations has been a main bottleneck
for decades [18] when using such techniques.

Additional material

Additional File 1: Description of simulated data sets. Detailed
description of the simulated data sets SS7-SS8.
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