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Background: In highly parallel next-generation sequencing (NGS) techniques millions to billions of short reads are
produced from a genomic sequence in a single run. Due to the limitation of the NGS technologies, there could be
errors in the reads. The error rate of the reads can be reduced with trimming and by correcting the erroneous
bases of the reads. It helps to achieve high quality data and the computational complexity of many biological
applications will be greatly reduced if the reads are first corrected. We have developed a novel error correction
algorithm called EC and compared it with four other state-of-the-art algorithms using both real and simulated

Results: We have done extensive and rigorous experiments that reveal that EC is indeed an effective, scalable, and
efficient error correction tool. Real reads that we have employed in our performance evaluation are lllumina-
generated short reads of various lengths. Six experimental datasets we have utilized are taken from sequence and
read archive (SRA) at NCBI. The simulated reads are obtained by picking substrings from random positions of
reference genomes. To introduce errors, some of the bases of the simulated reads are changed to other bases with

Conclusions: Error correction is a vital problem in biology especially for NGS data. In this paper we present a
novel algorithm, called Error Corrector (EC), for correcting substitution errors in biological sequencing reads. We plan
to investigate the possibility of employing the techniques introduced in this research paper to handle insertion

Software availability: The implementation is freely available for non-commercial purposes. It can be downloaded

Introduction

In sequencing technology numerous small fragments are
generated by shredding DNA molecule in random posi-
tions. Followed by this, the chain termination method is
used to obtain reads from these small-sized fragments.
The above procedures are applied repeatedly to get multi-
ple overlapping reads. By exploiting overlap information
the resulting reads are then reassembled into their original
order to obtain the whole genomic sequence. This final
step is done by an assembler based on the overlap graph
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generation and ultimately it produces a complete and con-
tinuous sequence. But the coverage of the reads in some
specific regions of the genome can be low and again the
reads can be erroneous due to the limitation of the NGS
technologies. These events in turn produce a gap and
hence the resulting overlap graph will be clustered into
multiple disconnected components. As a consequence,
sequence assemblers typically produce multiple unordered
subsequences (i.e., contigs) instead of a complete and con-
tinuous sequence. Obtaining the exact orientation and
precise order of the contigs is a very challenging and
computationally intensive task. This step is known as scaf-
folding. If the errors can be removed from the sequencing
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reads, the number of contigs produced by an assembler
will also be very small. In turn, the scaffolding step will be
more accurate and less time consuming.

The input to the error correction problem is a large set
of reads. The output should be the same set of reads with
errors corrected. Depending on the NGS technology
used, the length of the reads can either be fixed or vari-
able within a certain range. There may be three types of
errors that can be introduced by the sequencer. These
are substitution, insertion, and deletion. One of the most
popular sequencers currently is [llumina/Solexa. This
sequencer has only substitution errors. In our algorithm
we consider only substitution errors in the reads. In fact,
most of the algorithms proposed in the literature assume
only substitution errors. Coverage of sequencing is
defined as the number of times a particular position of a
DNA molecule is sequenced. Let the size of the genomic
sequence of interest be g and the total length of all the

’
reads be ¢g’. The coverage can be thought of as (Zi In any

error correction method, coverage plays a crucial role.
A high coverage normally leads to a better accuracy in
error correction. In summary, we can formulate the pro-
blem of error correction in a generic way as follows: we
are given a set of adequately overlapping reads. We do
not know which of the reads are erroneous. The error
correction problem is to identify and correct the reads
that contain errors.

In this article we propose an effective, efficient, and
scalable error correction algorithm called EC (Error
Corrector) to correct the errors introduced by NGS tech-
nologies. To correct any read R, we need reads that come
from the same region of the genome as R. Specifically, if
we have many reads that sufficiently overlap with R, we
could align each such read with R. Each position in R can
then be corrected using the consensus for each position.
Indeed, this is the basic theme used in any error correc-
tion algorithm. We also utilize this basic theme. Error
correction algorithms found in the literature differ in
how this theme is interpreted and implemented. To
begin with EC builds k-mers from the given set of reads.
Each of the k-mers is then hashed to a unique bucket. If
two reads overlap significantly, then they are expected to
share at least one k-mer. Thus we expect that the reads
that fall into the same bucket will have a large enough
overlap and possibly come from the same region of the
genome. Reads from the same bucket are then aligned
using our greedy alignment algorithm and corrected
using consensus.

Background

Correction of short biological sequencing reads is a very
critical task. Many algorithmic techniques to correct
short reads generated from NGS platforms can be found
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in the current literature. Based on the techniques used
in correcting errors we can classify them into three
types: k-spectrum based, suffix tree/array based, and
multiple sequence alignment (MSA)-based. In k-spec-
trum based techniques the reads are at first decomposed
into overlapping substrings of length k. Each substring
is called a k-mer and the set of all k-mers is termed as
k-spectrum [1]. The first k-spectrum based error correc-
tion algorithm has been built into the assembly tool
Euler SR [1,2]. It uses a spectral alignment method
where it deduces a spectrum of trusted (i.e., most prob-
ably true) k-mers from the input data and then corrects
each read in such a way that every read contains only
sequences from the spectrum. According to [1] a k-mer
is considered solid if its multiplicity exceeds a prede-
fined threshold and insolid otherwise. Reads containing
insolid k-mers are then transformed to solid k-mers
using a minimum number of edit operations. [3] follows
a variant of this mechanism to correct erroneous reads.
[4] presents a parallel algorithm to correct erroneous
reads. This algorithm is based on spectral alignment
proposed by [1] and [2] and uses the CUDA program-
ming model. Quake [5] applies the same k-mer spec-
trum framework as described above. In addition, it
introduces quality values and rates of specific miscalls
computed from each sequencing project. It calculates an
appropriate coverage cutoff between trusted and erro-
neous k-mers. It is based on calculating the weight of a
k-mer as the weighted sum of all its instances, i.e., bases
using the quality values assigned to each base.

Reptile [6] also incorporates the k-mer spectrum
approach and exploits quality information of bases when
available. It corrects errors by simultaneously examining
possibilities to correct erroneous reads employing a Ham-
ming distance-based approach and contextual information
between neighboring reads. The algorithmic approach of
[7] is very similar to Reptile. At first it sorts the k-mers to
find the set of distinct k-mers and also the multiplicity of
each distinct k-mer. It then constructs the Hamming
graph and then finds the connected components from the
graph. Each connected component is termed as a cluster.
Each cluster is then processed to find a consensus string
and erroneous reads are corrected based on the consensus
string. Musket [8] is an efficient multi-stage k-mer based
corrector for Illumina short-read data. It employs Bloom
filter to count the number of occurrences of all non-
unique k-mers. To correct errors Musket employs three
mechanisms namely two-sided conservative correction,
one-sided aggressive correction, and voting-based refine-
ment. Another k-spectrum based error correction tool is
RACER [9]. In RACER a predefined threshold ¢ is intro-
duced to correct errors. A nucleotide a following a k-mer
is assumed correct if the count of the k-mer is > ¢ and
erroneous otherwise.
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In the alignment approach, multiple alignments are
computed for the probable aligned reads. The errors are
then detected and corrected based on the columns of
the alignment. Some of the early error correction tools
using multiple alignments include MisEd [10] and
Arachne [11]. Coral [12] and ECHO [13] are two of the
most recently developed multiple alignments based tech-
niques. Coral starts by indexing all the k-mers and their
reverse complements. It records each k-mer and a list of
reads associated with the k-mer by creating a hash table.
After indexing, each read is taken as a base read and is
aligned with other reads that share at least one k-mer
with the base read. Needleman-Wunsch algorithm is
used for alignment. A problem with any alignment-
based approach is that it is a computationally very
expensive procedure. SHREC [14] and HiTEC [15] avoid
the computation of multiple alignments by traversing a
suffix tree/array data structure. SHREC is based on the
generalized suffix tree. On the contrary, HiTEC is based
on a more space efficient suffix array data structure.
One of the variants of SHREC is Hybrid-SHREC [16].

Materials and methods

Any read R can be corrected using reads that sufficiently
overlap with R. These overlapping reads can be aligned
to R and each character in R can then be corrected
using consensus. If the number of overlapping reads is
large and the error rate is low, one would expect that
the number of incorrect characters in any column in the
alignment will be very small and hence the consensus
will indeed be the correct character. To identify overlap-
ping reads, we employ hashing based on k-mers (for a
suitable value of k). Next we describe our error correct-
ing algorithm EC. There are 3 main basic steps of EC:

Candidate neighbors generation

At the beginning, for each read we identify a set of reads
coming from the same genomic region with a high confi-
dence. This is done by employing a hashing scheme.
Specifically, we generate k-mers in each of the reads and
hash the reads using the k-mers. As a consequence, we
can expect that similar reads fall into the same hash
bucket. In this approach any read R will be hashed into at
most 7 - k + 1 entries (i.e., buckets) of the hash table
where r = |R|, the length of the read. For every read R we
collect reads from the buckets that R falls into. Reads
from the same buckets where at least one k-mer of R falls
will be candidate neighbors of R.

True neighbors selection

Since candidate neighbors of each read R are identified
by considering at least one identical k-mer shared
between R and its candidate neighbors, some of those
neighbors may not come from the same genomic region.
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In this step we discard those candidate neighbors that
are not likely to be true neighbors of R. True neighbors
are those candidate neighbors of R that come from the
same genomic region with high probability. This is the
most time consuming step in the EC algorithm. Let R
be any read and let R’ be the candidate neighbor that
has a sufficient overlap with R. In this elimination step
we compute the Hamming distance between the two
reads in the overlapping region. If this distance is
greater than a threshold, we eliminate R’ from the
neighbor list of R. If not, we keep R’ as a true neighbor
of R. It is to be noted that the two reads from the same
genomic region might fall into more than one buckets
together. In this case we identify and use the largest
overlap between the pair.

Alignment and correction
If R is any read and T (R) is the list of true neighbors of
R, we correct R using T (R). We align every R’ (from
T (R)) with R using our greedy alignment algorithm
[17]. After aligning the reads in T (R) with R, we correct
R using consensus. Specifically, let i be any position of
R. We observe the characters in the reads of T (R) that
occur in the same position and from out of these char-
acters we pick the consensus (i.e., the character that
occurs the most). The consensus character is used to
correct the character in position i of R. Note that in this
step both corrected and uncorrected reads are used to
perform the correction. A corrected read is called perfect
if the correction procedure could not find any incorrect
bases. Specifically, let R be any read. Then T (R) will
have both corrected and uncorrected reads. We align all
the reads of T (R) with R. Since we can be more confi-
dent that the perfect reads are error free, we give a lar-
ger weight for perfect reads than other reads while
correcting R. For example, while correcting a specific
position of R, we look at all the characters in the reads
of T (R) that occur in the same position. From out of
these characters, any character from a read which is not
perfect will be given a weight of 1 and any character
from a perfect read will be given a weight of w (for
some w > 1), while calculating the consensus character
for this position. When the coverage is high we choose
a smaller value for w than when the coverage is low.
Steps of the algorithm are shown in Algorithm 1.

Algorithm 1: EC

Input: A set S of reads

Output: A set S’ of corrected reads

1 Generate k-mers of each read and hash the reads
based on these k-mers. Equal k-mers fall into the same
bucket. If R is any read, any other read that falls into at
least one of the buckets that R falls into is treated as a
candidate neighbor of R. For every read R create a list
C(R) of candidate neighbors.
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2 Let R be any read. Align every read in C(R) with
R. Let R be any read in C(R). If R and R’ overlap suffi-
ciently and if in the overlapping region the Hamming
distance between R and R’ is small, then we treat R’ as a
true neighbor of R. For every read R construct a list
T (R) of neighbors of R in this fashion.

3 Let R be any read. R is corrected using the reads
in T (R). Greedily align R" with R for every R € T(R). R
is corrected by taking a consensus across every column
in the alignment. Perform this step for every read R.

Complexity analysis

In this section we analyze the time complexity of EC. Let
n be the number of reads, r be the read length, and ¢ be
the coverage. In the first step of EC, we build hash tables
and generate the candidate neighbors. The number of
k-mers generated from each read is r - k + 1. Let k(.) be
the has function employed. We think of the hash table as
an array of buckets (or lists). Each bucket has an integer
as its index. If the size of the array is N, then the index of
any bucket is an integer in the range [1, N]. The expected

size of each bucket is (r—k+1)n =0 (z) The total

time spent in building the hash table is O(rn). After con-
structing the hash table we find candidate neighbors of
each read. A read falls into at most r - k + 1 <r buckets

and hence the expected number of candidate neighbors
2

for each read is O (an ) For every bucket we spend an

2
expected O ((Z]l) ) time. Thus the total time spent in

finding candidate neighbors has an expected value
2,2
of O nn

In Steps 2 and 3 we find true neighbors and align reads.

Specifically, if R is any read and C(R) is the list of candidate
2

neighbors of R, then the expected size of C(R) is O (TNn )

For every read R € C(R), we align R’ with R and compute
the Hamming distance between R and R’ in the overlapping
region. Thus for every R € C(R) we spend O(r) time. As a
result, the total time spent in Step 3 for each read is

3
expected to be O (TNn ) Summing this over all the reads,

3,2
the total expected time spent in Step 2 and 3 is O (an )

In summary, the expected run time of EC is

3,2
O(rn+rn )
N

Probabilistic analysis
In this section we provide a probabilistic analysis for the
effectiveness of EC. Consider a random model for the
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genomic sequence. Such models have been employed by
others in their analyses as well. See e.g., [15]. In particu-
lar, assume that each character of the genome G has
been uniformly and randomly picked from {g, ¢, ¢, aj}.
When we hash a read R based on its k-mers, all the
neighbors of R should also fall into the same buckets.
Also, the number of reads that are not neighbors of R
and that fall into the same bucket as R should be small.
Let x be a k-mer of R. Let R’ be any read that is not a
neighbor of R. Let y be any k-mer in R. We can com-
pute the probability that R and R’ fall into the same
bucket as follows. If x and y are two random k-mers,

k
probability that they are equal is (i) . The probability
that x is the same as one of the k-mers of R’ is thus <

k
r(i) . Also, the probability that R and R’ will share at

k
least one k-mer is < r2(4) . Here we have assumed

that the hash function is one-to-one.

Note that in each read, errors are introduced with an
error rate of € in the sequencing process. Even when
we incorporate these errors, the above analysis will
remain the same since if we have two random bases a
and b and each is either kept the same or changed to
another random base with probability €, the probability
that these two bases are equal will remain the same
as 1/4.

Example: If » = 50 and k = 15, then the above prob-
ability is < 2.33 x 10-6. For the same value of r, if k =
20, then this probability is < 2.27 x 10-9.

In summary, if we choose k to be large enough then,
for any read, the size of C(R) will be very nearly the
same as that of T (R).

We also have to ensure that for any read R, each neigh-
bor R’ of R will fall into at least one bucket that R falls
into. In other words, we have to show that R and R’ will
share at least one k-mer. Let the length of the overlap-
ping region between R and R’ be w. There are w - k + 1
k-mers in this region for each of R and R’. Let x and y be
any such k-mers of R and R’, respectively. Probability

k
that x and y are the same is p = |:(1— )+ ;€2i| .

Prob[x = y] = 1 - p. Probability that x is not the same as
any k-mer in the overlapping region in R’ is (1 - p)"* ",
Clearly, this statement assumes independence among the
k-mers in the same read which may not hold. Such ana-
lyses have proven to yield some good guidelines in prac-
tice (see e.g., [18]). The probability that no k-mer in the
overlapping region of R is the same as any k-mer in the
overlapping region of R’ is (1— p)(w—k+1)2. As a result, the



Saha and Rajasekaran BMC Bioinformatics 2015, 16(Suppl 17):52
http://www.biomedcentral.com/1471-2105/16/517/52

probability that R and R’ share at least one k-mer in the
overlapping region is 1 — (1 — p)w—*+1)", This probability
can be made very large by choosing an appropriate value
for k. If we do so, then for every read R, we will be able
to identify a large fraction of its neighbors.

Example: Consider the case where r = 60, w = 40,
€ = 0.05, and k = 20. The value of p = 0.1309. Probabil-
ity that R and R’ share at least one k-mer in the overlapping
region is > 1 - 1.34 x 10-27. If r = 60, w = 40.€ = 0.05, and
k = 25, then this probability is = 1 - 1.76 x 10-10.

Once we align the potential neighbors of R with R and
prune those that are not likely to be neighbors and keep
only valid neighbors, we perform error correction. If the
number of neighbors we have identified for any read is
large enough then the error correction will be effective.
Let g be the number of neighbors available for a specific
position of the read R. Then the number e of errors occur-
ring in this position across all the neighbors is Binomially
distributed with parameters g and €. We want the number

of errors to be strictly less than Z . Using Chernoff bounds,
Proble > (1 +a)q €] < exp(—a?q € /3), for any fixed o >
. 0.4
0. For a choice of a = ( — 1), we get:
€

2
Prob[e > 0.4q] < exp |:—<O: - 1) q3€:| )

Example: Consider the example of g = 20 and € =
0.05. The expected number of errors is 1. Probability
that the number of errors is 10 or more is

20 . .
> (2.0) el(1—€)*=1.134 x 1078,
i=10 1

Results

The effectiveness of our algorithm EC has been evalu-
ated by comparing it with some of the state-of-the-art
algorithms in this domain, namely, Racer, Musket,
Coral, and Reptile. We have evaluated EC on a number
of Illumina/Solexa datasets and compared the results
with the aforementioned error correction algorithms.
The simulation results show that our proposed algo-
rithm is indeed very effective and competitive. More
details follow.

Table 1. Real Sequencing Datasets
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Datasets

We have employed both real and synthetic datasets in
our evaluation. Real datasets used are Illumina-gener-
ated short reads of various lengths (see Table 1). The
six experimental datasets listed in Table 1 have been
taken from Sequence and Read Archive (SRA) at NCBI.
Reference genomes are Sanger assembled bacterial gen-
omes of various kinds. Although our error correction
procedure is entirely de novo, the reference genome is
necessary for evaluating the effectiveness of any error
correction method. Synthetic datasets have been gener-
ated as follows. We have used various reference gen-
omes for this purpose. We have generated reads from
each reference genome. Specifically, each read was gen-
erated starting from a random position in the genome
(see Table 2). To introduce errors in these synthetic
datasets, we have changed each base in any read to
some other base with error probabilities of 2%. A read
length of 60 and a coverage of 50 have been used in
D7-D12. Please note that Gz, |G|, |R|, and |r| refer to
accession number of the reference genome, genome
length, total number of reads, and read length,
respectively.

Experimental setup

All the experiments were done on an Intel Westmere
compute node with 12 Intel Xeon X5650 Westmere
cores and 48 GB of RAM. The operating system run-
ning was Red Hat Enterprise Linux Server release
5.7 (Tikanga). To compile the C++ source code we used
the g++ compiler (gcc version 4.6.1) with the -O3
option. Time was measured by taking the CPU clock
time which gives the instruction level elapsed time a
program takes.

Evaluation metrics

To determine the effectiveness of any short read error
correction algorithm, the corrected reads are mapped to
the genome and the number of mismatches is counted.
This is a procedure that is routinely used (see e.g., [1]).
Although this procedure has some drawbacks (e.g., we
have to align the reads with the reference genome with
a certain number of mismatches), this is the best

Dataset Name Accession Gr |G| | IR Coverage
D1 L. lactis SRR088759 NC 013656.1 2,598,144 36 4,370,050 60
D2 E. coli SRR022918 NC 000913.1 4,771,872 47 6,740,651 68
D3 E. coli SRR396536 NC 000913.2 4,639,675 75 3,453,957 55
D4 B. subtilis DRR000852 NC 000964.3 4,215,606 75 1,744,210 31
D5 E. coli SRR396532 NC 000913.2 4,639,675 75 4,341,061 70
D6 L. interrogans L SRR353563 NC 004342.2 4,338,762 100 3,530,694 81
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Table 2. Random Sequencing Datasets
Dataset Name Accession Gr |G| |R|

D7 L. lactis SRR088759 NC 013656.1 2,598,144 2,165,120

D8 T. pallidum SRR361468 CP002376.1 1139417 949514

D9 E. coli SRR396536 NC 000913.2 4,639,675 3,868,043

D10 B. subtilis DRR000852 NC 000964.3 4,215,606 3,513,005

D11 P. aeruginosa SRR396641 NC 002516.2 6,264,404 5,220,336

D12 L. interrogans L SRR353563 NC 004342.2 4,338,762 3,615,635

ossible way to infer the accuracy of the error correc- S TP — FP

tpion metho};ls. In this context, \Zfe have used RMAP We can define it as follows: Accuracy = TP =FN’ It

(v2.05) by [19]. It aligns short reads with a known geno-
mic sequence by minimizing mismatches. For testing
the accuracy we need to align as many corrected reads
as possible so that the result will be correct with a high
confidence. Keeping this in mind, we have allowed up to
10 mismatches per read for all of the datasets listed in
Table 1. In brief: at first the error correction methods of
interest are given the whole set of reads. After correction
we align the reads over the genome of interest using RMAP
within 10 mismatches and compute the performance
metrics based on this alignment. Note that if we employ
synthetic datasets, there is no need for mapping since we
have information about true reads and erroneous reads.

A number of measures have been introduced in the
literature for judging the performance of any error cor-
rection altorithm. True positives (TP) is a measure of
how many erroneous bases have been corrected while
false positives (FP) is the number of true bases that have
been changed incorrectly. True negatives (TN) shows
how many true bases remain unchanged while false
negatives (FN) is the number of erroneous bases that
have not been detected by the algorithm. Using these
statistics we can define the following evaluation metrics:

1 Sensitivity: Sensitivity (also called the true positive

rate, or the recall rate) measures the proportion of

actual positives which are correctly identified as such

(e.g., the percentage of sick people who are correctly

identified as having the condition). In this context
TP

TP +FN’

2 Specificity: Specificity (sometimes called the true

negative rate) measures the proportion of negatives

which are correctly identified as such (e.g., the per-

centage of healthy people who are correctly identi-

fied as not having the condition). So, the specificity
N

TN + FP’

3 Accuracy: Accuracy indicates the fraction of errors
effectively removed from the experimental dataset.

sensitivity is defined as: Sensitivity =

is: Specificity =

is evident from the above definition that if the accu-
racy of an algorithm is large, then it is very effective
in correcting errors. A negative value of accuracy
indicates that the method of interest introduces
more errors than it corrects.

4 Erroneous base assignment (EBA): EBA is proposed
in [6]. Let b, be the number of erroneous bases that
are identified correctly by the error correction
method but it replaces the erroneous bases with
wrong bases. EBA is defined as follows:

EBA = Pbe . Clearly, EBA reflects an algorithm’s

+ 0c
efficiency in correcting a base when it identifies this
base to be erroneous. The lower this value the better
is the algorithm.
5 Cumulative Hamming Distance (CHD): After align-
ing a read R; onto the genomic sequence, we calculate
the Hamming distance d; between the aligned read
and the corresponding sequence in genome. Adding
all such d; for all the reads R;, we get CDH. It reflects
how close the corrected reads are to a genomic
sequence of the same species in terms of substitution
errors.
6 % Mapped Reads: The fraction of reads from the
entire space of reads aligned onto the reference gen-
ome with up to d mismatches.

Parameters configuration

An algorithm always should tune its parameters with
respect to a given dataset. Our algorithm has a set of para-
meters that are tuned automatically. Keeping this in mind
we took the default parameter values for the different error
correction methods that we have used for comparison:

+ Reptile: Standard parameters.

+ Coral: Standard parameters.

« Racer: Appropriate genome length of interest.

o Musket: Standard parameters.

+ EC: No parameters to be selected. Parameters are
empirically estimated based on an analysis of the
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input data. For example k varies from 14 to 17,
Hamming distance ranges from 1 to 3, etc. The
method has an interface where parameters can be
fine tuned by the users if they are not satisfied with
the results.

Outcome

We have compared our algorithm with 4 other state-of-
the-art algorithms based on both real and simulated reads.
We have done extensive and rigorous experiments to rea-
lize that EC is indeed an effective and competitive error
correction tool. Real sequencing data are taken from
Sequence Read Archive (SRA) as described above. The
results for the real sequencing datasets listed in Table 1
can be found in Table 3. The results for the synthetic data-
sets listed in Table 2 can be found in Table 4. We include
erroneous base assignment (EBA) and cumulative ham-
ming distance (CHD) measures as well. As mentioned

Table 3. Performance evaluation on real sequencing datasets
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previously, for simulated reads there is no need to con-
sider the alignment of reads using any alignment.

Discussion

Consider the results shown in Table 3 for real sequen-
cing datasets. In D1 dataset, Racer performs better than
all other algorithms including EC in terms of sensitivity
and accuracy. Although the fraction of the mapped
reads produced by Masket is better and also it takes less
time to correct reads, its sensitivity and accuracy are
very poor compared to Racer and EC. EC is comparable
with Racer in D2 dataset and performs better than the
rest of the algorithms. Although EC’s accuracy and frac-
tion of the mapped reads are slightly less than Racer, it
clearly beats all the algorithms in terms of sensitivity
and computation time. For D3-D5 datasets EC clearly
performs better than all the algorithms including Racer
with respect to sensitivity and accuracy. Its fraction of
the mapped reads is slightly lower than Racer in D4

Dataset Method % Sensitivity % Specificity % Accuracy % Mapped Reads CPU Time (m)
D1 EC 88.59 99.99 85.78 95.75 5.76
Racer 96.98 99.99 96.87 95.81 12.58
Musket 80.99 99.99 80.94 95.82 475
Coral 71.06 99.99 70.64 95.79 40.98
Reptile 1.77 99.99 1133 95.81 9.83
D2 EC 94.44 99.94 93.22 80.02 12.10
Racer 93.92 99.99 93.89 83.94 13.93
Musket 47.82 99.99 47.79 66.33 38.62
Coral 33.68 99.99 33.22 65.32 141.64
Reptile 44.76 99.99 44.73 67.51 3402
D3 EC 95.68 99.97 94.03 96.79 12.62
Racer 88.87 99.99 88.75 96.09 13.68
Musket 69.50 99.99 69.43 94.09 19.00
Coral 67.53 99.99 67.25 93.78 20713
Reptile - - - - -
D4 EC 94.89 99.98 93.41 94.79 4.65
Racer 9342 99.99 93.30 94.90 6.40
Musket 74.52 99.99 7443 93.20 823
Coral 7440 99.99 74.07 92.54 2847
Reptile - - - - -
D5 EC 96.41 99.97 95.07 95.76 18.27
Racer 89.97 99.99 89.77 94.99 14.38
Musket 63.64 99.93 63.58 91.44 27.22
Coral 61.56 99.99 61.23 91.08 98.839
Reptile - - - - -
D6 EC 93.04 99.99 86.32 89.51 2433
Racer 94.20 99.99 93.81 90.79 12.63
Musket 84.58 99.99 84.39 89.79 11.32
Coral 89.34 99.99 83.28 90.14 23333
Reptile - - - - -

Best results are shown in bold.
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Table 4. Performatnce evaluation on simulated sequencing datasets having length 60 and coverage 50
Dataset Method % Sensitivity % Specificity % Accuracy EBA CHD CPU Time (m)
D7 EC 98.13 99.99 97.99 251 x107° 52,281 6.49
Racer 98.86 99.91 9443 955 x 107 147,171 5.72
Musket 95.63 99.99 9561 699 x 107° 114,474 942
Coral 9347 99.99 92.76 108 x 107 1,88,584 23.02
D8 EC 98.11 99.99 97.79 6.88 x 107 25,238 291
Racer 99.44 99.98 98.34 211 x 107 19,108 213
Musket 95.67 99.99 95.67 2.02 x 107° 49,438 6.84
Coral 9346 99.99 93.15 516 x 107 78,162 9.57
D9 EC 98.05 99.98 97.10 150 x 107 1,35,092 12.26
Racer 98.92 99.95 96.36 557 x 107* 1,71,542 9.10
Musket 95.63 99.99 95.59 7.87 x 107° 2,04,776 16.88
Coral 9345 99.98 9253 142 x 107* 347,258 38.01
D10 EC 98.14 99.99 97.78 599 x 107 93,821 11.12
Racer 99.00 99.96 9713 428 x 107 1,22,798 7.88
Musket 95.70 99.99 95.69 3.12x 107° 181,777 22.76
Coral 93.51 99.99 93.07 632 %107 2,92,345 3421
D11 EC 98.08 99.99 97.69 7.21 x 107° 1,45,035 19.64
Racer 98.12 99.58 77.23 423 %1073 14,46,476 14.18
Musket 95.54 99.99 9547 136 x 107 2,84,642 2944
Coral 9348 99.98 92.75 110 x 107* 454814 59.33
D12 EC 97.52 99.84 89.51 134 x 1073 4,59,980 1643
Racer 97.27 99.69 82.19 296 x 107 782,370 9.19
Musket 94.78 99.99 94.46 5.76 x 107* 2,42,375 28.50
Coral 93.31 99.91 88.79 7.00 x 107* 4,88,658 5091

Best results are shown in bold.

dataset. In D5 dataset EC’s computation time is slightly
greater than Racer. Overall EC is clearly the winner on
D3-D5 datasets. On D6 dataset Racer beats every algo-
rithm including EC. Please note that Reptile was not
able to output corrected reads on D3-D6 datasets. Please
see Figure 1 and 2 for a visual comparison of the algo-
rithms on real sequencing datasets.

% Accuracy for Real Sequencing Datasets
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Figure 1 % Accuracy of different algorithms including EC for
real sequencing datasets D1-D6.

Now consider the results shown in Table 4 for syn-
thetic datasets. On datasets D7 through D12, EC per-
forms better than all the algorithms in terms of accuracy
and CHD except for datasets D8 and D12. Its execution
times are also comparable with Racer except for dataset
D12. Although Musket performs better than all other
algorithms in terms of EBA in most of the datasets, it

Elapsed Time in Minutes for Real Sequencing Datasets
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Figure 2 Elapsed time of different algorithms including EC for
real sequencing datasets D1-D6.
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% Accuracy for Synthetic Datasets
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Figure 3 % Accuracy of different algorithms including EC for
synthetic datasets D7-D12.

performs poorly in terms of sensitivity, accuracy, etc.
except for dataset D12. On D12 dataset, Musket per-
forms better than the rest with respect to accuracy, EBA,
CHD, and execution time. Reptile could not be run on
the simulated datasets as it needs quality information of
the bases. Please see Figure 3 and 4 for a visual compari-
son of the algorithms on simulated datasets.

Conclusions

In this article we have proposed an efficient, scalable,
and robust error correction algorithm for correcting
short reads. The steps of EC can be broken into three
independent tasks. At first it builds k-mers and hashes
the k-mers into hash tables. Using these hash tables it
finds the neighbors of each of the reads. Each read is
then corrected using the neighbors of the read. We have
introduced a number of techniques to correct reads
more effectively. We have compared our algorithm with

Elapsed Time in Minutes for Synthetic Datasets
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Figure 4 Elapsed time of different algorithms including EC for
synthetic datasets D7-D12.

Page 9 of 10

four state-of-the-art algorithms based on both real and
simulated reads. Our experiments reveal that EC is
indeed effective and competitive. At this time EC can
only handle substitution errors. In future we plan to
develop similar techniques to handle insertion and dele-
tion errors also.
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