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Abstract

Background: Revealing protein complexes are important for understanding principles of cellular organization and
function. High-throughput experimental techniques have produced a large amount of protein interactions, which
makes it possible to predict protein complexes from protein-protein interaction (PPI) networks. However, the small
amount of known physical interactions may limit protein complex detection.

Methods: The new PPI networks are constructed by integrating PPI datasets with the large and readily available
PPI data from biomedical literature, and then the less reliable PPI between two proteins are filtered out based on
semantic similarity and topological similarity of the two proteins. Finally, the supervised learning protein complex
detection (SLPC), which can make full use of the information of available known complexes, is applied to detect
protein complex on the new PPI networks.

Results: The experimental results of SLPC on two different categories yeast PPI networks demonstrate effectiveness
of the approach: compared with the original PPI networks, the best average improvements of 4.76, 6.81 and 15.75
percentage units in the F-score, accuracy and maximum matching ratio (MMR) are achieved respectively; compared
with the denoising PPI networks, the best average improvements of 3.91, 4.61 and 12.10 percentage units in the F-
score, accuracy and MMR are achieved respectively; compared with ClusterONE, the start-of the-art complex
detection method, on the denoising extended PPI networks, the average improvements of 26.02 and 22.40
percentage units in the F-score and MMR are achieved respectively.

Conclusions: The experimental results show that the performances of SLPC have a large improvement through
integration of new receivable PPI data from biomedical literature into original PPI networks and denoising PPI
networks. In addition, our protein complexes detection method can achieve better performance than ClusterONE.

Background
Protein-protein interactions (PPI) are fundamental to
the biological processes within a cell. Beyond individual
interactions, there is a lot more systematic information
contained in protein interaction graphs. Complex forma-
tion is one of the typical patterns in this graph and
many cellular functions are performed by these com-
plexes containing multiple protein interaction partners.

Many automatic approaches have been proposed to
detect the protein complexes from PPI networks, such
as CMC [1], COACH [2], MCODE [3], MCL [4],
Cfinder [5], and ClusterONE [6]. However, most of
these methods are based on unsupervised graph cluster-
ing methods and predict protein complexes only with
pre-defined rules. Compared with them, supervised
learning methods [7,8] can utilize the known complexes
information and may achieve better performances.
At present, large number of PPI databases have been

created. Gavin [9], Krogan [10] and DIP [11] are popular
PPI databases used by the protein complex detection
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methods. However, these databases are sparse since the
fraction of known true physical interactions is limited
[12]. For example, the average numbers of interactions
per protein are 6.98, 7.86, and 9.13 in DIP, Krogan, and
Gavin, respectively. Nevertheless, large amounts of PPIs
could be found in the rapidly growing biomedical litera-
ture. Furthermore, since these PPI data are provided by
biomedical experts, they are relatively accurate. Their
Integration with the existing PPI datasets can be hopeful
to eliminate the PPI networks’ sparsity, and, therefore,
improve the complex detection performance.
In this paper, we present a complex detection approach

based on data integration and supervised learning. In this
approach, the new PPI networks are constructed by inte-
grating PPI datasets with the PPI data extracted by
PPIExtractor [13] from biomedical literature, and then
the less reliable PPI between two proteins are filtered out
based on semantic similarity and topological similarity of
the two proteins. Finally, the supervised learning protein
complex detection (SLPC) method, which can make full
use of the information of available known complexes, is
applied to detect protein complex on the new PPI net-
works. The experimental results demonstrate that our
approach outperform ClusterONE, the state-of-the-art
method.

Methods
Extracting PPI data with PPIExtractor
In our work, we use PPIExtractor [13] to extract PPI inter-
actions from biomedical literature and then integrate them
into the PPI networks. PPIExtractor is a useful tool pub-
licly available for extracting new PPI data from a large col-
lection of biomedical literature. Experimental evaluations
show that it can achieve state-of-the-art performance on a
DIP subset with respect to comparable evaluations.
PPIExtractor contains four modules: (i) Named Entity

Recognition (NER) module which aims to identify the
protein names in the biomedical literature; (ii) Normali-
zation module which determines the unique identifier of
proteins identified in NER module; (iii) PPI extraction
module which extracts the PPI information in the bio-
medical literature; (iv) PPI visualization module which
displays the extracted PPI information in the form of a
graph. Figure 1 shows the architecture of PPIExtractor.
127,217 PubMed abstracts were downloaded from

PubMed website (http://www.ncbi.nlm.nih.gov/pubmed)
with the query string “((Saccharomyces cerevisiae) OR
yeast) AND protein” and PPIExtractor extracted a total
of 126,165 protein interactions from these abstracts.
Since most of the protein names in the PPI databases

are systematic names for nuclear-encoded ORFs begin
with the letter ‘Y’ (for ‘Yeast’) while those in PubMed
abstracts are not, we built a yeast protein alias name list
with about 6,000 entries from the UniProt website

(http://www.uniprot.org/uniprot/? query=yeast&sort=
score). The list is used to convert the protein names in
PubMed abstracts to systematic names for nuclear-
encoded ORFs.

PPI datasets
DIP, Krogan, Gavin, three yeast PPI datasets, are used in
our work. The details of these PPI datasets are shown in
Table 1. For each dataset, original PPI and denoising PPI
networks are built, respectively, to verify our method’s
effectiveness. Original PPI networks are original three
yeast PPI datasets mentioned above. Denoising PPI net-
works are three filtered PPI datasets, in which low relia-
bility interactions are removed with different denoising
thresholds. As a matter of fact, protein interaction data
produced by high-throughput experiments are often
associated with high false positive and false negative
rates. Therefore, a method based on both semantic and
topological similarity of the two proteins is applied in our
work to measure the reliability of the interaction. GO
(The Gene Ontology Consortium [14]) annotation from
SGD [15] is used in this measurement approach. In this
method, a PPI’s reliability is defined as formula (1):

rel(m, n) =

√
−|C(m, n)| × log(

min |Ti(m, n)|
Tmax

) + NE(m, n) (1)

Figure 1 The architecture of PPIExtractor.

Table 1. Properties of three yeast PPI datasets

Datasets DIP Krogan Gavin

Number of proteins 4928 3581 1430

Number of interactions 17201 14076 6531

Yu et al. BMC Bioinformatics 2015, 16(Suppl 12):S3
http://www.biomedcentral.com/1471-2105/16/S12/S3

Page 2 of 9

http://www.ncbi.nlm.nih.gov/pubmed
http://www.uniprot.org/uniprot/?


Where |C(m, n)| denotes the number of terms in
C(m, n), the set of the GO terms in which annotation
proteins m and n are included. | Ti(m, n) | denotes the
number of terms in Ti(m, n), the set of annotated pro-
teins on GO term gi in whose annotation m and n are
included. Tmax denotes the maximum size of annotated
proteins on all GO terms. The GO term’s specificity
can be quantified by the proportion of the annotation
size of a GO term (Ti(m,n)) to the total number of
annotated proteins (Tmax), i.e. a GO term is regarded
to be more specific if it has less annotated proteins.
NE(m, n) denotes the number of neighbors that m and
n share. The formula (1) demonstrates that if the GO
term proteins m and n share is more specific, or if
they have more common neighbors or GO terms, the
interaction between them is more reliable. The details
of the denoising PPI networks are shown in Table 2.

Integration of the extracted PPI data into the PPI
networks
PPIExtractor assigns the extracted PPIs from the biome-
dical literature weights representing their reliability [13].
In our study, only PPIs with the weights equal to or
higher than an integrating threshold are integrated into
the original PPI dataset. In addition, both two proteins
in a new PPI should already exist in the PPI dataset.
The amounts of the PPI added into the original PPI net-
works with different integrating thresholds are shown in
Table 3.
The weights of the PPIs added into the denoising PPI

networks are higher than the integrating threshold -0.6.
the reason is that our SLPC method have the best per-
formance on the original PPI networks with the inte-
grating threshold -0.6. What is more, the PPIs, when
integrated into the denoising PPI networks, are also fil-
tered with different denoising thresholds. The amounts

of the PPIs added with different denoising thresholds
are shown in Table 4.

Protein complexes detection with SLPC
In our work, a supervised learning protein complex
detection (SLPC) method is employed to predict the pro-
tein complexes from PPI networks. Currently, most of
protein complex detection methods are unsupervised
ones, without utilizing the known complexes informa-
tion. However, in the research field of protein complexes,
numerous complexes have been provided, which can be
used as the prior knowledge of the complex detection
methods. In previous work, we presented a supervised
learning protein complex detection (SLPC) method to
predict protein complexes [8]. The SLPC method utilizes
the features including Graph density [3], Degree statis-
tics, Edge weight statistics, Clustering coefficient [16],
and Topologic change [17]. Experimental evaluations
show that SLPC can achieve better performances than

Table 2. Properties of denoising PPI networks with
different denoising thresholds

den_thred DIP Krogan Gavin

#Pro. #Int. #Pro. #Int . #Pro. #Int.

0.5 3669 11617 2400 9507 1318 5971

0.6 3536 11316 2331 9367 1315 5963

0.7 3536 11316 2331 9367 1315 5963

0.8 3490 11190 2309 9313 1312 5958

0.9 3450 11084 2273 9223 1304 5942

1.0 3402 10933 2235 9143 1301 5928

1.1 3205 9486 2103 7736 1267 5492

1.2 3164 9381 2078 7676 1261 5486

1.3 3095 9219 2043 7572 1255 5469

1.4 3011 9019 1998 7451 1252 5449

#den_thred. denotes the different denoising thresholds; #Pro. denotes the
number of proteins. #Int. denotes the number of interactions.

Table 3. The amounts of the PPIs added into the original
PPI networks with different integrating thresholds

int_thred DIP Krogan Gavin

0 1206 857 205

-0.1 1661 1166 288

-0.2 2197 1525 371

-0.3 2789 1953 455

-0.4 3534 2470 568

-0.5 4470 3079 684

-0.6 5713 3907 866

-0.7 7257 4879 1096

-0.8 9153 6091 1447

-0.9 11314 7482 1821

-1.0 13257 8669 2125

-1.1 14241 9242 2270

-1.2 14580 9433 2315

#int_thred. denotes the different integrating thresholds.

Table 4. The amounts of the PPIs added into the
denoising PPI networks with different denoising
thresholds

den_thred DIP Krogan Gavin

0.5 4214 2149 685

0.6 4156 2110 684

0.7 4156 2110 684

0.8 4132 2103 683

0.9 4088 2069 679

1.0 4062 2032 678

1.1 3411 1612 590

1.2 3357 1595 585

1.3 3277 1546 581

1.4 3204 1524 570

#den_thred. denotes the different denoising thresholds.
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other present protein complex detection methods. SLPC
algorithm is showed in Table 5 and more details are pro-
vided in [8].

Experiments and results
Gold standard protein complexes
We constructed the gold standard protein complexes by
combining MIPS [18], Aloy [19], SGD [15] with TAP06
[9]. Proteins absent from the corresponding PPI net-
works are filtered out from the gold standard. In addi-
tion, only the protein complexes including at least two
different proteins are retained as the research shows
that most of the protein complexes include more than
one protein [20]. The details of the gold standard pro-
tein complexes of original PPI networks and denoising
PPI networks are shown in Tables 6 and 7, respectively.

Evaluation metrics
In our study, F-score, Accuracy (Acc), maximum match-
ing ratio (MMR) are used as the evaluation metrics. The
neighborhood affinity score NA(A, B) defined as follows
is used to evaluate the similarity of two protein com-
plexes A and B:

NA(A, B) =
|VA ∩ VB|2
|VA| × |VB|

If the NA(A, B) is large than or equal to 0.25, com-
plexes A and B are regarded to be matching.
F-score, a popular metric of evaluating complex detec-

tion method, is used as the first measure to evaluate the
performance.

Ncb = |{b|b ∈ B, ∃p ∈ P, NA(p, b) ≥ 0.25}| (3)

Ncp = |{p|p ∈ P, ∃b ∈ B, NA(p, b) ≥ 0.25}| (4)

Pr ecision =
Ncp

|P| , Re call =
Ncb

|B| (5)

F − score =
2 × Pr ecision × Re call
| Pr ecision + Re call| (6)

Where P and B are the predicted and gold standard
complex sets, respectively; Ncb is the number of the
gold standard complexes matching at least one predicted
complex and Ncp is the number of the predicted com-
plexes matching at least one gold standard complex and
F-score is calculated as the harmonic mean of precision
and recall values.
The second measure we used is the geometric accu-

racy as introduced by Broh´ee et al. [21], which is the
geometric mean of clustering-wise sensitivity (Sn) and
clustering-wise positive predictive value (PPV). A high
Sn value indicates that the protein complex prediction
has a good coverage of the proteins in the gold standard
complexes, and a high PPV value indicates that the pre-
dicted protein complexes are likely to be true protein
complexes. Assuming the number of the gold standard
complexes is n and the number of the predicted com-
plexes is m. Tij denotes the number of proteins that are

Table 5. Protein complex detection algorithm

Input : an unweighted network, a weighted network built via GO annotation and a training set
Complex detection process:
Step 1: construct the feature vector space for the complexes in the training set from the unweighted and weighted PIN networks and
train the Regression model
Step 2: find maximal cliques in the PIN by the Cliques algorithm

-rank the clique set C={C1, C2, ..., Cn} in descending order of the scores given by the Regression model
-for each clique Ci, check all the cliques (denoted as Cj) with lower scores, if Ci∩Cj > threshold, then remove Cj.
-output: the updated clique set

Step 3: grow the cliques
-for each clique Ci, the set of its neighbors is denoted as N(Ci), do update operation as

follows:
-check all the nodes in N(Ci)
-select vi∈N(Ci), which makes vi∪Ci achieve higher score given by the Regression model
-update Ci= vi∪Ci, N(Ci) = N(Ci) - vi

-repeat the update operation until there is no node vj in N(Ci) that leads to score(vj∪Ci) > score(Ci)
-output: the candidate complex set C = {C1, C2, ..., Cn}

Step 4: filter the candidate complexes
-rank the candidate complexes in descending order of the score given by the Regression model
-for each candidate complex Ci, check all the candidates Cj with lower scores

-if overlap (Ci, Cj) > merg_thred
if score(Ci∪Cj) > score(Ci) do merge operation: update Ci = Ci∪Cj
else do remove operation: remove Cj from the candidate set

output: the predicted complex set

Table 6. The details of the gold standard protein
complexes of original PPI networks

DIP Krogan Gavin

Number of complexes 732 623 584

The average size of complexes 7.18 6.95 6.27
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found both in gold standard complex i and predicted
complex j. The Sn, PPV, Acc are defined as follows:

Sn =

∑n
i=1 max

j
{Tij}∑n

i=1 Ni

PPV =

∑m
j=1 max

i
{Tij}∑m

i=1 T.j

T.j =
∑n

i=1
Tij

Acc =
√

Sn × PPV

The third metric we used is the maximum matching
ratio (MMR) [6], which is based on a maximal one-to-
one mapping between gold standard complex and pre-
dicted complex.

MMR =

∑n
i=1 max

j
NA(i, j)

n

Where n denotes the number of the gold standard
complexes; m the number of the predicted complexes; j
as the member of the predicted complexes. MMR offers
a natural, intuitive way to compare predicted complexes
with a gold standard and it explicitly penalizes cases
when a reference complex is split into two or more
parts in the predicted set, as only one of its parts is
allowed to match the correct reference [6].
The Acc measure explicitly penalizes predicted com-

plexes that do not match any of the reference complexes.
However, gold standard sets of protein complexes are

often incomplete [22]. As a consequence, predicted com-
plexes not matching any known reference complexes
may still exhibit high functional similarity or be highly
co-localized, and therefore they could still be prospective
candidates for further in-depth analysis. In other words, a
predicted complex that does not match a reference com-
plex is not necessarily an undesired result, and optimiz-
ing for the geometric accuracy measure might prevent us
from detecting novel complexes from a PPI dataset.
Therefore, in the performance comparison, the F-score
and MMR are used as the main metrics; the Acc is only
used as an auxiliary one.

The performances of SLPC on original PPI networks
First we tested SLPC on three original PPI networks, i.e.
DIP, Krogan and Gavin. The results of F-score, accuracy
and MMR are shown in Tables 8, 9, and 10, respec-
tively. It can be seen that the performances measured
with these metrics keep improving on these networks
with the integrating threshold decreasing from 0 to -0.6.
With the threshold -0.6, SLPC achieves the highest aver-
age improvements on all three original PPI networks:
4.76, 6.81 and 15.75 percentage units in F-score, accu-
racy and MMR, respectively. This shows that the intro-
duction of PPIs extracted from literature into the
original PPI datasets can boost the performance. The
reason is that, the higher integrating threshold means
more reliable new PPI interactions are integrated into
the original PPI networks, which relieves the sparse pro-
blem of PPI networks. As shown in Table 11, in most
cases, the average size of complexes predicted from
extended PPI networks is much closer to the one of the
gold standard protein complexes than that from the ori-
ginal PPI networks, and, therefore, SLPC achieves better

Table 7. The details of the gold standard protein
complexes of denoising PPI networks with different
denoising thresholds

den_thred DIP Krogan Gavin

#complex #size #complex #size #complex #size

0.5 679 7.01 565 7.04 542 6.49

0.6 673 7.03 563 7.03 542 6.49

0.7 673 7.03 563 7.03 542 6.49

0.8 673 7.01 563 7.02 542 6.49

0.9 668 7.03 557 7.03 534 6.55

1.0 667 7.03 552 7.07 533 6.56

1.1 660 7.03 541 7.1 518 6.66

1.2 658 7.04 539 7.12 517 6.67

1.3 653 7.06 538 7.11 517 6.67

1.4 649 7.05 533 7.12 515 6.68

#den_thred. denotes the different denoising thresholds; #Den. denotes the
denoising PPI network; # Den.Ext. denotes the denoising extended PPI
network (denoising PPI network added new PPI data); #complex denotes the
number of complexes; #size denotes the average size of complexes.

Table 8. The F-score performances of SLPC on original
PPI networks with different integrating thresholds

int_thred DIP Krogan Gavin Avg.Δ

Origin 0.5531 0.5029 0.6389

0 0.5543 0.5298 0.6518 2.53%

-0.1 0.5463 0.5348 0.6665 3.14%

-0.2 0.5481 0.5382 0.6658 3.44%

-0.3 0.5621 0.5515 0.6623 4.98%

-0.4 0.5527 0.5485 0.6642 4.32%

-0.5 0.5577 0.544 0.6638 4.30%

-0.6 0.553 0.5543 0.665 4.76%

-0.7 0.5418 0.5355 0.6638 2.78%

-0.8 0.5409 0.5329 0.6685 2.80%

-0.9 0.5335 0.5471 0.6694 3.34%

-1.0 0.5224 0.5445 0.6511 1.54%

-1.1 0.5138 0.5403 0.6501 0.69%

-1.2 0.5166 0.5368 0.6487 0.56%

#int_thred. denotes the different integrating thresholds; Avg.Δ denotes the
average F-score improvement over that on the original PPI networks.
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performance on extended PPI networks than on original
PPI networks.
However, Tables 8 and 10 show that, F-score and

MMR values begin to decline after they reach the high-
est values. The reason is that the lower integrating
threshold will introduce more unreliable PPI interac-
tions and therefore, deteriorate the performance of
SLPC algorithm.

The performances of SLPC on denoising PPI networks
Denoising PPI networks are the ones form which the
low reliable PPIs are removed as discussed in the Sec-
tion PPI datasets. And the denoising extended PPI net-
works are the ones into which the PPIs extracted from
literature are integrated. More specifically, the new PPIs
are also filtered out with different denoising thresholds

like those PPIs in original PPI networks, and then inte-
grated into the corresponding denoising PPI networks.
The performances of SLPC on denoising PPI networks

are shown in Tables 12, 13 and 14. The performance of
SLPC on the denoising extended PPI network is better
than that on the corresponding denoising PPI network
with any denoising threshold. With denoising threshold
0.9, SLPC achieves highest average improvement of 3.91,
4.61 and 12.10 percentage units in F-score, accuracy and
MMR, respectively on denoising extended PPI networks
over denoising PPI networks. This shows, once again,
that the introduction the PPIs extracted from literature
can boot the performance of complex detection
methods.
In addition, Tables 12, 13 and 14 also show that, since

the higher denoising threshold means more PPIs are fil-
tered from the original PPI networks, which may lead to
the missing of some real PPIs, the performances of
SLPC algorithm on the denoising PPI networks and
denoising extended PPI networks begin to decline after
they reach the highest values.
The performance of ClusterONE, the state-of-the-art

complex detection method, is also tested (its parameters
are set as those described in [6]). With the denoising
threshold 0.9, it achieves average improvements of 0.31,
0.40 and 1.29 percentage units in F-score, accuracy and
MMR, respectively on denoising extended PPI networks
over denoising PPI networks. This indicates that the
introduction the PPIs extracted from literature can also
boot the performance of ClusterONE. In addition,
experimental results show that SLPC achieves better
performance than ClusterONE. With the denoising
threshold 0.9, the average performance improvement of
SLPC over ClusterONE is 26.02 and 22.40 percentage
units in F-score and MMR, respectively.

Conclusions
Protein complexes, consisting of molecular aggregations
of proteins assembled by multiple protein interactions,
are of the fundamental units of macro-molecular organi-
zations and play crucial roles in integrating individual
gene products to perform useful cellular functions. Large
amounts of PPI data generated by high-throughput
experimental techniques can be used to predict protein
complexes from PPI networks. At the same time, numer-
ous accurate PPIs could be found in the rapidly growing
biomedical literature since they are provided by biomedi-
cal experts. Their Integration with the existing PPI data-
sets can be hopeful to eliminate the PPI networks’
sparsity, and, therefore, improve the complex detection
performance.
In this paper, an approach of introducing PPIs from

biomedical literature into existing PPI networks and
applying supervised learning method in protein complex

Table 9. The Accuracy performances of SLPC on original
PPI networks with different integrating thresholds

int_thred DIP Krogan Gavin Avg.Δ

Origin 0.3212 0.2984 0.3238

0 0.323 0.3112 0.3285 2.10%

-0.1 0.3249 0.3108 0.3309 2.50%

-0.2 0.3241 0.3185 0.3331 3.50%

-0.3 0.3275 0.3233 0.3327 4.35%

-0.4 0.3284 0.3249 0.3336 4.72%

-0.5 0.3339 0.3301 0.3336 5.87%

-0.6 0.3353 0.3347 0.3363 6.81%

-0.7 0.3401 0.337 0.3369 7.62%

-0.8 0.3424 0.3411 0.3383 8.46%

-0.9 0.3397 0.3409 0.3367 8.00%

-1.0 0.3453 0.3428 0.3376 8.88%

-1.1 0.3423 0.3425 0.3378 8.56%

-1.2 0.3427 0.342 0.3386 8.63%

Table 10. The MMR performances of SLPC on original PPI
networks with different integrating thresholds

int_thred DIP Krogan Gavin Avg.Δ

Origin 0.306 0.2933 0.3562

0 0.3156 0.3135 0.3646 4.13%

-0.1 0.3224 0.3180 0.3722 6.09%

-0.2 0.3269 0.3244 0.3802 8.06%

-0.3 0.3364 0.3328 0.3811 10.13%

-0.4 0.3385 0.3420 0.3880 12.05%

-0.5 0.3468 0.3529 0.3898 14.36%

-0.6 0.3475 0.3600 0.3952 15.75%

-0.7 0.3478 0.3603 0.3984 16.12%

-0.8 0.3603 0.3684 0.4000 18.55%

-0.9 0.3669 0.3767 0.4084 21.00%

-1.0 0.3626 0.3796 0.4064 20.67%

-1.1 0.3632 0.3767 0.4062 20.39%

-1.2 0.3633 0.3766 0.4087 20.62%
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Table 11. The details of predicted complexes of SLPC on original PPI networks with different integrating thresholds

int_
thred

DIP Krogan Gavin

#gl_sz #cluster #size #matched #gl_sz #cluster #size #matched #gl_sz #cluster #size #matched

Origin 7.18 844 9.49 543 6.95 710 14.97 419 6.27 337 9.01 273

0 7.18 981 9.14 606 6.95 787 12.30 486 6.27 351 8.99 289

-0.1 7.18 1033 9.92 616 6.95 816 12.71 497 6.27 360 8.98 299

-0.2 7.18 1110 8.66 652 6.95 853 11.42 516 6.27 369 8.85 303

-0.3 7.18 1195 8.5 717 6.95 891 10.28 549 6.27 380 8.81 308

-0.4 7.18 1271 8.39 736 6.95 968 10.45 578 6.27 396 8.86 319

-0.5 7.18 1396 8.26 797 6.95 1040 10.03 595 6.27 397 8.94 318

-0.6 7.18 1580 8.42 889 6.95 1149 9.55 653 6.27 426 8.97 337

-0.7 7.18 1713 8.47 918 6.95 1243 9.26 663 6.27 446 9.07 347

-0.8 7.18 1928 8.72 1006 6.95 1402 9.24 718 6.27 475 8.89 367

-0.9 7.18 2147 8.77 1084 6.95 1555 9.10 816 6.27 521 9.01 395

-1.0 7.18 2171 9.12 1043 6.95 1612 8.83 834 6.27 540 8.88 393

-1.1 7.18 2139 9.40 995 6.95 1618 9.08 825 6.27 555 8.81 404

-1.2 7.18 2171 9.46 1016 6.95 1636 9.26 830 6.27 555 8.93 402

#gl_size denotes the average size of the gold standard protein complexes on original PPI networks; #size denotes the average size of predicted complexes.
#cluster denotes the number of predicted complexes on extended PPI networks; #matched denotes the matching number between the predicted complexes and
the gold standard protein complexes;

Table 12. The F-score performances of SLPC on denoising PPI networks with different denoising thresholds

Threshold DIP Krogan Gavin Avg.Δ

#Den. #Den.Ext. #Den. #Den.Ext. #Den. #Den.Ext

0.5 0.5815 0.5889 0.5393 0.5761 0.6789 0.7006 3.76%

0.6 0.5849 0.5912 0.543 0.5854 0.6789 0.7021 4.10%

0.7 0.586 0.5905 0.5418 0.5778 0.6789 0.7012 3.57%

0.8 0.5834 0.5939 0.5414 0.5778 0.6767 0.7001 3.99%

0.9 0.5852 0.5962 0.5456 0.5819 0.6839 0.7057 3.91%

1.0 0.5881 0.596 0.5503 0.5864 0.6855 0.7072 3.69%

1.1 0.5538 0.5785 0.5624 0.5993 0.6627 0.7006 5.58%

1.2 0.5568 0.5776 0.5645 0.5972 0.6634 0.7015 5.09%

1.3 0.5572 0.582 0.5691 0.5984 0.6634 0.7011 5.09%

1.4 0.5537 0.5845 0.565 0.5989 0.6672 0.7065 5.82%

ClusterONE(0.9) 0.4412 0.4241 0.4834 0.4847 0.6418 0.6710 0.31%

Δ(0.9) 40.58% 20.05% 17.42% 26.02%

#Den. denotes the denoising PPI network. #Den.Ext. denotes the denoising extended PPI network. Avg.Δ denotes the average F-score improvement with the different
denoising threshold over that on the corresponding denoising networks. Δ(0.9) denotes the improvement of SLPC over ClusterONE with the denoising threshold 0.9.

Table 13. The Accuracy performances of SLPC on denoising PPI networks with different denoising thresholds

den_thred DIP Krogan Gavin Avg.Δ

#Den. #Den.Ext. #Den. #Den. #Den.Ext

0.5 0.331 0.3515 0.3215 0.3375 0.3309 0.3415 4.79%

0.6 0.3312 0.3508 0.322 0.3374 0.3312 0.3415 4.60%

0.7 0.3313 0.351 0.3216 0.3373 0.3312 0.3413 4.63%

0.8 0.3307 0.3513 0.3227 0.338 0.3308 0.3425 4.84%

0.9 0.3315 0.3516 0.3242 0.3393 0.3316 0.3419 4.61%

1.0 0.3314 0.3528 0.3256 0.3401 0.3324 0.3419 4.59%

1.1 0.3229 0.3482 0.3215 0.3391 0.3268 0.3412 5.91%

1.2 0.324 0.3478 0.3218 0.3401 0.327 0.3408 5.75%

1.3 0.3232 0.3477 0.3229 0.3405 0.327 0.3413 5.80%

1.4 0.3227 0.3461 0.3231 0.3397 0.327 0.34 5.45%

Clusterone(0.9) 0.4284 0.4267 0.3937 0.3985 0.4108 0.4124 0.40%

Δ(0.9) -17.60% -14.86% -17.10% -16.52%

Yu et al. BMC Bioinformatics 2015, 16(Suppl 12):S3
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detection is presented. In the approach, the new PPI
networks are constructed by integrating PPI datasets
with the large and readily available PPI data from bio-
medical literature, and then the less reliable PPI between
two proteins are filtered out based on semantic similar-
ity and topological similarity of the two proteins. Finally,
the supervised learning protein complex detection,
SLPC, which can make full use of the information of
available known complexes, is applied to detect protein
complex on the new PPI networks.
The best average improvements of 4.76, 6.81 and 15.75

percentage units in F-score, accuracy and MMR are
achieved respectively, on original extended PPI networks.
In addition, the best average improvements of 3.91, 4.61
and 12.10 percentage units in F-score, accuracy and
MMR are achieved, respectively, on denoising extended
PPI networks. All these results show that, the introduc-
tion of PPIs extracted from literature into the original
PPI datasets can boost the performance significantly. The
reason is that the sparsity problem of PPI networks is
remitted by integrating PPI data from biomedical litera-
ture. The results also show that our method outperforms
ClusterONE, the state-of-the-art method. This is because
our method makes full use of the information of available
known complexes. To summarize, our complex detection
method, based on supervised learning method and inte-
grating PPI data from biomedical literature, can achieve
the better performances than other complex detection
methods.
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