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Abstract

Background: microRNAs (miRNAs) play a vital role in development, oncogenesis, and apoptosis by binding to
mRNAs to regulate the posttranscriptional level of coding genes in mammals, plants, and insects. Recent studies
have demonstrated that the expression of viral miRNAs is associated with the ability of the virus to infect a host.
Identifying potential viral miRNAs from experimental sequence data is valuable for deciphering virus-host
interactions. Thus far, a specific predictive model for viral miRNA identification has yet to be developed.

Methods and results: Here, we present ViralmiR for identifying viral miRNA precursors on the basis of sequencing
and structural information. We collected 263 experimentally validated miRNA precursors (pre-miRNAs) from 26 virus
species and generated sequencing fragments from virus and human genomes as the negative dataset. Support
vector machine and random forest models were established using 54 features from RNA sequences and secondary
structural information. The results show that ViralmiR achieved a balanced accuracy higher than 83%, which is
superior to that of previously developed tools for identifying pre-miRNAs.

Conclusions: The easy-to-use ViralmiR web interface has been provided as a helpful resource for researchers
to use in analyzing and deciphering virus-host interactions. The web interface of ViralmiR can be accessed at
http://csb.cse.yzu.edu.tw/viralmir/.

Introduction
microRNAs (miRNAs) are non-protein-coding RNAs
that is approximately 22 nucleotides long, which results
in the degradation of mRNAs by complementarily bind-
ing to the 3’ untranslated regions of target genes. Recent
studies have demonstrated that miRNAs play a vital role
in development, oncogenesis, and apoptosis by binding
to mRNAs to regulate the posttranscriptional level of
coding genes in mammals, plants, and insects. In addi-
tion, miRNAs modulate viral existence in plants and ani-
mals by targeting viruses [1,2]. Conversely, miRNAs are
produced by viruses [3]. Recent studies have demon-
strated that the expression of viral miRNAs is associated
with the ability of the virus to infect a host [2,4].

Additionally, studies have reported that viral miRNAs are
associated with human diseases [2-8]. For example, the
Epstein-Barr virus, hepatitis B and C viruses, and human
papillomavirus are highly associated with gastric and
nasopharyngeal carcinoma, liver cancer, and cervical can-
cer, respectively.
Recently, several approaches have been developed for

computationally identifying miRNA precursors (pre-
miRNAs) [9-15]. Various classifiers, such as the support
vector machine (SVM), random forest, relaxed variable
kernel density estimator (RVKDE), and bootstrap aggre-
gating, were applied while different features generated
from sequences and secondary structural information
were employed. The characteristics of the approaches
are summarized in Table 1.
Triplet-SVM [9] involves applying an SVM to human

data by using features from local, contiguous structure-
sequence information for distinguishing the hairpins of
real pre-miRNAs from pseudo pre-miRNAs. Each hairpin
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is encoded as a set of 32 triplet elements. MiPred [10]
involves applying a random forest machine learning algo-
rithm to human data by using a hybrid feature, which
consists of the 32 features used in Triplet-SVM and the
minimum of free energy (MFE) of the secondary struc-
ture, and using a P-value randomization test to distin-
guish the real pre-miRNAs from other hairpin sequences
with similar stem-loops (pseudo pre-miRNAs). The de
novo SVM classifier miPred [11] identifies pre-miRNAs
without relying on phylogenetic conservation; 17 primary
sequence features, 5 secondary structural features, and 7
normalized features are used in the model. The miR-
KDE tool [12] was developed using the novel RVKDE
classifier, which exploits local information, and is particu-
larly suitable for predicting species-specific pre-miRNAs.
Each hairpin-like sequence is summarized as a 33-dimen-
tional feature vector, including the 29 features used in
miPred and 4 stem-loop features. The microPred tool
[13] uses effective machine learning methods for classify-
ing human pre-miRNA hairpins from both pseudohair-
pins and other ncRNAs. Each hairpin is encoded using
the 29 features from miPred, 6 RNAfold-related features,
4 Mfold-related features, 7 base-pair features, and 2
MFE-related features. The classification results showed
reliability in both sensitivity (SN) and specificity (SP).
The MiRenSVM tool [14] is an ensemble-SVM classifica-
tion system for detecting miRNA genes, especially those
with multiloop secondary structures; 8 triplet structural
features, 8 base-pair group features, and 16 thermody-
namic group features are considered in feature extrac-
tions of hairpin-like sequences. The miR-BAG tool [15]
uses a bootstrap-aggregation-based machine learning
approach to identify miRNA candidate regions in gen-
omes by using scanning sequences. Comparative analysis
results showed that miR-BAG performed more favorable
than the previous six tools did. A next-generation

sequencing module was combined with miR-BAG to pro-
vide high-throughput data analysis. Vir-Mir db [16] is a
database for collecting predictive viral miRNA candidate
hairpins into a virus genome by using the prediction fil-
ters of Srnaloop, sequences and structures, and open
reading frames.
Most of the previously developed approaches mainly

emphasized identifying pre-miRNAs in human, plants,
and other animals. Thus far, a method designed specifi-
cally for identifying viral pre-miRNAs has not been
developed. Therefore, we collected experimentally vali-
dated viral pre-miRNA data and constructed a predictive
model by using several sequencing and structural fea-
tures. This model can assist biological researchers who
study virus-host interactions in identifying potential
viral miRNAs in experimental sequencing data.

Materials and methods
Datasets
The positive dataset was collected from miRBase (Version
19). Two hundred sixty-three pre-miRNAs, including 437
mature miRNAs, from 26 virus species were collected as
the positive dataset. The negative dataset consisted of
three types of sequences, namely the virus genome,
human pre-miRNAs, and Pseudo-8494. The virus genome
dataset was composed of 789 randomly selected fragments
with lengths of 120 bps in the virus genome, and the frag-
ments containing positive data were removed. The human
pre-miRNA dataset contained 1600 human pre-miRNAs
collected from miRBase. Redundant or highly similar
sequences had been removed from the dataset. The nega-
tive dataset was obtained from Xue et al. [9] and was used
in miPred, miR-KDE, and other tools. We named this
benchmark negative dataset “Pseudo-8494” because it was
composed of 8494 fragments from the coding regions of
human chromosome 19.

Table 1 Characteristics of tools for identifying pre-miRNAs

Tool Classifier Used features SN
(%)

SP
(%)

References

Triplet-SVM SVM Each hairpin is encoded as a set of 32 triplet elements 93.3 88.1 Xue et al. [9]

MiPred Random forest 32 Triplet-SVM features and a minimum of the free energy of the secondary
structure

89.3 93.2 Jiang et al. [10]

miPred SVM 17 primary sequencing features, 5 secondary structural features, and 7 normalized
features

84.5 97.9 Ng and Mishra [11]

miR-KDE RVKDE 29 miPred features and 4 stem-loop features 88.9 92.6 Chang et al. [12]

microPred SVM 29 miPred features, 4 RNAfold-related features, 6 Mfold-related features, 7 base-
pair-related features, and 2 MFE-related features

83.3 99.0 Batuwita et al. [13]

MiRenSVM SVM 8 triplet structural features, 8 base-pair group features, 16 thermodynamic group
features

87.7 98.8 Ding et al. [14]

miR-BAG Naïve Bayes
BF Tree
SVM

4 mononucleotide features, 16 dinucleotide features, 20 triplet structural features,
consecutive paired bases, structural profile scoring, and normalized sequence-
based total-pairing features

89.8 91.5 Ashwani Jha et al.
[15]

SN: sensitivity; SP: specificity
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Feature extraction and selection
The SVM and random forest classification methods were
applied to develop predictive models for viral-pre-RNA
identification. The minimal free-energy and base-pair-
related information were obtained using the RNAfold of
the Vienna RNA package [17]. Fifty-four features were
selected from previous research [9,11,13], and the feature
score (F-score) [14] was used to evaluate the discrimina-
tive power of each feature. The features used in our
model are described in the following paragraphs.
32 triplet elements
The local contiguous triplet-structure composition was
defined as Triplet-SVM [9]. For the predicted secondary
structure, an opening parenthesis “(” or a closing par-
enthesis “)” and a dot “.” were used to denote paired and
unpaired nucleotides. Generally, the opening parenthesis
“("represents a paired nucleotide located near the 5′-end
that can be paired with another nucleotide at the 3′-end,
which is denoted by the closing parenthesis “)”. This
study used “(” for both situations. For any three adjacent
nucleotides, there are eight (23) possible triple-structure
compositions: “(((”, “((.”, “(.(”, “.((”, “(..”, “.(.”, “..(”, and “...”.
Considering the middle nucleotide, there are 32 (4 × 8)
possible structure-sequence combinations, which are
denoted as “C(((”, “A.((”, etc.
4 sequential features
The GC content ratio (%G+C), sequence length, hairpin
length, loop length in the RNA sequence, and secondary
structure were used in the model.
8 thermodynamic features
The dP, dG, zP, zG, MFEI1, and MFEI2 features were
chosen from miPred [11] and the MFEI3 and MFEI4 fea-
tures were selected from microPred [13]. The feature dP
measures the total number of base pairs present in the
RNA secondary structure S divided by the length L in
nucleotides; dG is the ratio of the MFE to L, which
measures the thermodynamic stability of the RNA struc-
ture S. The features zP and zG are the normalized var-
iants of dP and dG; for each original sequence, 1000
random sequences were generated. The feature MFEI1 is
the ratio of dG to %G+C; MFEI2 is the ratio of dG to
the number of stems S, which are structural motifs con-
taining more than three contiguous base pairs; MFEI3 is
the ratio of dG to the number of loops in the secondary
structure; and MFEI4 is the ratio of the MFE to the total
number of base pairs in the secondary structure.
8 base-pair-related features
The features |A-U|/L, |G-C|/L, |G-U|/L, %(A-U)/
n_stems, %(A-U)/n_stems, %(A-U)/n_stems, consecutive
base-pairs (ConsecBP), and Avg_BP_stem were chosen
and introduced in microPred [13], where |X-Y| is the
number of (X-Y) base pairs in the secondary structure,
(X-Y) ∈ {(A-U), (G-C), (G-U)}. The feature ConsecBP
represents the longest pairing stretch observed in a

given structural sequence, and Avg_BP_stem is the ratio
of the total number of base pairs to the number of
stems in the secondary structure, where a stem is a
structural motif containing more than three contiguous
stack of base pairs as defined in miPred.
2 RNAfold-related features
The frequency of the MFE structure (Freq) and the
structural diversity (Diversity) were included. These fea-
tures were generated using the RNAfold program [17]
with the “-p“ option at 37 °C, which calculates the parti-
tion function and the base paring probability matrix
according to the algorithms proposed in [18].

Classification and performance evaluation
SVM is a machine learning approach for solving classifi-
cation and regression problems. It constructs a set of
hyperplanes in a high- or infinite-dimensional space and
has been widely applied to biological sequence classifica-
tion. Random forest is a nonparametric tree-based
ensemble method that is broadly applied in machine
learning and can account for interactions and correla-
tions among features. It constructs multiple decision
trees during training time and outputs the class that is
the mode of the classes output by individual trees. Here,
LIBSVM [19] and random forest approaches [20] were
adopted to develop the predictive models for viral pre-
miRNA identification.
Fivefold cross validation was applied in a performance

evaluation of the predictive models. The SN, SP, preci-
sion (PRE), accuracy (ACC), balanced ACC, and Mat-
thew’s correlation coefficient (MCC) were used to
measure the classification performance and were defined
as follows: SN = TP/(TP + FN); SP = TN/(TN + FP);
PRE = TP/(TP + FP); balanced ACC = (SN + SP)/2;
ACC = (TP + TN)/(TP + FP + TN + FN); and

MCC =
TP× TN − FP× FN

√
(TP + FN)× (TP + FP)× (TN + FP) × (TN + FN)

,

where TP, FP, TN, and FN are the numbers of true posi-
tives, false positives, true negatives, and false negatives
[21], respectively. The MCC value is between -1 and 1,
where 0 is a completely random prediction, 1 is a perfect
prediction, and -1 is a perfectly inverse correlation.

Results
Classification results of the SVM and random forest
models using different features
Table 2 shows the feature scores of the 54 features as
sorted by F-score in descending order. The features with
the highest F-scores, namely 1.09, 1.08, and 1.04, were
“G(((“, “C(((“, and “G((.”, respectively. The performance
results from the fivefold cross validation of the SVM
and random forest models conducted using different
negative datasets are shown in Tables 3 and 4. The clas-
sification results showed that the SVM model had
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superior performance when applied to the Pseudo-8494
and human pre-miRNA datasets and that random forest
had superior performance when applied to the virus
genome dataset.
Additionally, a compact model was constructed using

the features with F-scores higher than 0.6; 40 features were
used in this model. The classification results for the SVM
and random forest models are shown in Tables 5 and 6.

The results showed that the performance of both models
increased after feature selection. The performance of the
SVM model was superior to that of the random forest
model for all datasets, achieving ACC values of 86.02%,
97.85%, and 90.23% when applied to the negative virus
genome, Pseudo-8494, and human pre-miRNA datasets,
respectively. Therefore, the SVM model was chosen as our
final predictor for viral pre-miRNA identification.

Table 2 F-scores of the 54 features

Feature F-score Feature F-score Feature F-score

G((( 1.09 dP 0.83 MFEI2 0.63

C((( 1.08 %(G-C)/stems 0.81 MFEI3 0.63

G((. 1.04 G(.( 0.80 Avg_BP_Stem 0.61

U((( 1.03 |A-U|/L 0.78 |G-U|/L 0.60

A((( 1.01 Diversity 0.78 G.(. 0.58

C(.( 1.01 C.(( 0.77 C... 0.58

U.(( 1 |G-C|/L 0.76 U.(. 0.57

U((. 1 U(.( 0.75 zP 0.56

A.(( 1 MFEI1 0.72 A.(. 0.54

C((. 0.99 Frequency 0.71 MFEI4 0.51

G(.. 0.97 U... 0.71 U(.. 0.48

G.(( 0.97 A..( 0.70 zG 0.47

A(.. 0.96 %(A-U)/stems 0.69 hairpin length 0.43

A(.( 0.95 dG 0.66 G..( 0.43

C.(. 0.94 %(G-U)/stems 0.66 G... 0.41

ConsecBP 0.94 Loop length 0.66 C..( 0.37

A((. 0.91 C(.. 0.66 sequence length 0.34

U..( 0.87 %G+C 0.65 A... 0.32

Table 3 Classification results of the SVM model

Negative dataset TP TN FP FN SN SP ACC

Virus genome 213 661 128 50 80.98% 83.77% 83.07%

Pseudo-8494 202 8403 91 61 76.80% 98.92% 98.26%

Human pre-miRNA 204 1498 102 59 77.56% 93.62% 91.35%

Table 4 Classification results of the random forest model.

Negative dataset TP TN FP FN SN SP ACC

Virus genome 215 669 120 48 81.74% 84.79% 84.03%

Pseudo-8494 198 8306 188 65 75.28% 97.78% 97.11%

Human pre-miRNA 203 1464 136 60 77.18% 91.50% 89.47%

Table 5 Classification results of the SVM model using the 40 features with the highest F-scores.

Negative dataset TP TN FP FN SN SP ACC

Virus genome 224 690 99 39 85.17% 87.45% 86.88%

Pseudo-8494 207 8389 105 56 78.70% 98.76% 98.16%

Human pre-miRNA 211 1487 113 52 80.22% 92.93% 91.14%
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Comparison with previous studies using an independent
dataset
For a comparison of our approach with previously pro-
posed approaches, 63 viral pre-miRNAs from a positive
dataset and 189 sequences from a virus genome dataset
were collected as an independent testing dataset, and our
model for the comparison was constructed using the
remaining data. Seven tools, namely Triplet-SVM,
MiPred, miPred, miR-KDE, microPred, MiRenSVM, and
miR-BAG, were used for the comparison. The classifica-
tion results are shown in Table 7. The results showed
that miPred had the highest SP (93.65%), ACC (86.9%),
and MCC (0.63). Our approach had the highest SN
(79.36%) as well as the highest balanced ACC (83.06%),
which is calculated by considering the inflation of perfor-
mance estimates caused by the use of an imbalanced
dataset. Some testing data could be used from previous
approaches when constructing the model, potentially
resulting in an increase of the prediction performance.
In addition to the use of the partial dataset for indepen-

dent testing, 32 newly released virus pre-miRNAs from

miRBase (Version 20) were collected as the positive data,
and 96 randomly selected fragments from the virus gen-
ome were generated as the negative dataset. The classifi-
cation results are shown in Table 8. The results showed
that Triplet-SVM had the highest specificity (91.67%)
and ACC (85.94%). Our model, ViralmiR, had the highest
sensitivity (78.13%), ACC (85.94%), balanced ACC
(83.33%), and MCC (0.64). The results showed that Viral-
miR exhibited favorable performance in viral pre-miRNA
identification and was superior to related predictors.

Web interface
A ViralmiR web interface was developed for identifying
viral pre-miRNAs in RNA sequences. As shown in
Figure 1, the ViralmiR web page provides a user-friendly
interface and information related to predictive results.
Users of the website can submit a sequence in the
FASTA format to identify potential viral pre-miRNA.
The positive dataset and three negative datasets used in
this study are also provided on the website. The web
server is available at http://csb.cse.yzu.edu.tw/viralmir/.

Table 6 Classification results of the random forest model using the 40 features with the highest F-scores

Negative dataset TP TN FP FN SN SP ACC

Virus genome 219 686 103 44 83.26% 86.94% 86.02%

Pseudo-8494 201 8368 126 62 76.42% 98.51% 97.85%

Human pre-miRNA 208 1473 127 55 79.08% 92.06% 90.23%

Table 7 Performance comparison with previous studies using a partial dataset

Tool Positive dataset/negative dataset TP TN FP FN SN SP ACC Balanced ACC MCC

Triplet-SVM 44 171 18 19 69.84% 90.47% 85.32% 80.15% 0.61

MiPred 41 175 14 22 65.07% 92.59% 85.71% 78.83% 0.60

miPred 42 177 12 21 66.66% 93.65% 86.90% 80.16% 0.64

miR-KDE 63/189 39 176 13 24 61.90% 93.18% 85.31% 77.51% 0.59

microPred 48 159 30 15 76.54% 84.12% 82.14% 80.16% 0.56

MiRenSVM 45 161 28 18 71.45% 85.21% 81.75% 78.30% 0.54

miR-BAG 46 166 23 17 73.01% 87.83% 84.13% 80.42% 0.59

Our approach 50 164 25 13 79.36% 86.77% 84.92% 83.06% 0.63

Table 8 Performance comparison with previous studies using newly released data from miRBase.

Tool Positive dataset/negative dataset TP TN FP FN SN SP ACC Balanced ACC MCC

Triplet-SVM 22 88 8 10 68.75% 91.67% 85.94% 80.21% 0.62

MiPred 20 79 17 12 62.50% 82.29% 77.34% 72.40% 0.43

miPred 24 85 11 8 75.00% 88.54% 85.16% 81.77% 0.62

miR-KDE 32/96 23 81 15 9 71.88% 84.38% 81.25% 78.13% 0.53

microPred 23 86 10 9 71.88% 89.58% 85.16% 80.73% 0.61

MiRenSVM 19 81 15 13 59.38% 84.38% 78.13% 71.88% 0.43

miR-BAG 22 82 14 10 68.75% 85.42% 81.25% 77.08% 0.52

ViralmiR 25 85 11 7 78.13% 88.54% 85.94% 83.33% 0.64
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Discussion and conclusion
As shown in Table 2 the features with high F-scores are
related to triplet elements, with “G(((” and “C(((” being
the features having the highest F-scores. Other base-
pair- and thermodynamic-related features, such as Con-
secBP, dP, and %(G-C)/stems, also had high F-score
values. The results showed that the G-C base-pair-
related features play vital roles in viral pre-miRNA iden-
tification. In our analysis pipeline, the secondary struc-
ture for sequences was derived using RNAfold.
However, in many instances, the structure predicted
using the MFE may not resemble the real structure,
and, thus, the predicted structure of the viral pre-miR-
NAs could not be formed as a hairpin-like shape, affect-
ing the performance of the predictive models. An
examination of our positive dataset showed that only
219 of the 263 viral pre-miRNAs could be formed into

hairpin-like shapes by using the MFE. The other pre-
miRNAs were formed in other shapes. Table 9 shows
the number of hairpin-like and non-hairpin-like shapes
in true-positive and false-negative predictions. The
results show that most sequences (more than 93%) of
true positive prediction were formed in hairpin-like
shapes and most sequences (more than 77%) of false
negative prediction were not formed in hairpin-like
shapes in SVM model. e similar situations present in
random forest model, showing that the prediction per-
formance is highly associated with structural prediction.
Therefore, further analysis of various folding parameters
and window sizes is warranted to facilitate obtaining a
more suitable parameter combination for predicting the
secondary structure of viral pre-miRNAs.
A tool for predicting viral pre-miRNAs in sequences can

benefit biomedical researchers who study interactions

Figure 1 Web interface of ViralmiR.
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between viral miRNAs and host genes. In this study, we
present a virus-specific pre-miRNA prediction model,
ViralmiR, based on sequence and RNA secondary-structure
information. ViralmiR achieved a balanced ACC higher
than 83%, which is superior to that of previously developed
predictors. The easy-to-use ViralmiR web interface has
been provided as a helpful resource for researchers to use
in analyzing and deciphering virus-host interactions.

Availability and requirements
The ViralmiR system is freely available at http://csb.cse.
yzu.edu.tw/viralmir/.
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Table 9 Number of hairpin-like shapes and non-hairpin-like shapes in prediction results

True-positive predictions False-negative predictions

Hairpin-like
shapes

Non-hairpin-like
shapes

Hairpin-like
shapes

Non-hairpin-like
Shapes

SVM model 210 (93%) 14 (7%) 9 (23%) 30 (77%)

Random forest model 208 (95%) 11 (5%) 11 (25%) 33 (75%)
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