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Abstract

Background: Photosynthetic proteins (PSPs) greatly differ in their structure and function as they are involved in
numerous subprocesses that take place inside an organelle called a chloroplast. Few studies predict PSPs from
sequences due to their high variety of sequences and structues. This work aims to predict and characterize PSPs by
establishing the datasets of PSP and non-PSP sequences and developing prediction methods.

Results: A novel bioinformatics method of predicting and characterizing PSPs based on scoring card method
(SCMPSP) was used. First, a dataset consisting of 649 PSPs was established by using a Gene Ontology term
GO:0015979 and 649 non-PSPs from the SwissProt database with sequence identity <= 25%. Several prediction
methods are presented based on support vector machine (SVM), decision tree J48, Bayes, BLAST, and SCM. The
SVM method using dipeptide features-performed well and yielded - a test accuracy of 72.31%. The SCMPSP
method uses the estimated propensity scores of 400 dipeptides - as PSPs and has a test accuracy of 71.54%, which
is comparable to that of the SYM method. The derived propensity scores of 20 amino acids were further used to
identify informative physicochemical properties for characterizing PSPs. The analytical results reveal the following
four characteristics of PSPs: 1) PSPs favour hydrophobic side chain amino acids; 2) PSPs are composed of the
amino acids prone to form helices in membrane environments; 3) PSPs have low interaction with water; and

4) PSPs prefer to be composed of the amino acids of electron-reactive side chains.

Conclusions: The SCMPSP method not only estimates the propensity of a sequence to be PSPs, it also discovers
characteristics that further improve understanding of PSPs. The SCMPSP source code and the datasets used in this
study are available at http:/iclab.life.nctu.edu.tw/SCMPSP/.

Background

The photosynthetic conversion of sunlight energy into
chemical energy is among the most important biochem-
ical processes on earth. Photosynthetic proteins (PSPs)
from plants, algae and photosynthetic bacteria greatly dif-
fer in their structure and function as they are involved in
many subprocesses, including solar energy harvesting,
diffusive transport, energy conversion, electron and ion
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transport reactions from water to NADP+, ATP genera-
tion, and a series of enzymatic reactions in the stroma of
the chloroplast [1]. The PSPs are localized in special
organelles, called chloroplasts, which have many inner
compartments. Although most PSPs are embedded in
thylakoid membranes, others are found in the thylakoid
lumenal space and in the soluble stroma of chloroplasts.
The stromal compartment mostly contains the compo-
nents of the Calvin cycle, which are needed for fixation of
carbon dioxide. The thylakoid membrane contains four
protein complexes: photosystem (PS) I, PSII, cytochrome
(Cyt) bef, and adenosine triphosphate (ATP) synthase,
which carry out the light reactions of photosynthesis [2,3].
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The Arabidopsis thaliana (A. thaliana) genome sequen-
cing project and subsequent proteomics studies have
revealed that the thylakoid membrane and thylakoid
lumen still contain a number of proteins with unknown
functions [4,5]. These proteins may have roles as yet
unknown subunits of the photosynthetic complexes and
may also be auxiliary proteins guiding the biogenesis,
maintenance, and regulated breakdown of the photosyn-
thetic complexes.

Considerable effort is needed to identify novel PSPs
using laboratory techniques. Several recent studies have
comprehensively analyzed the pea, spinach and
A. thaliana chloroplast proteome using various fractio-
nation and mass spectrometry methods. Kieselbach
et al. [3] isolated and characterized the luminal fraction
of spinach thylakoids by thylakoid membrane removal,
Yeda press fragmentation and centrifugation. Their stu-
dies contributed to the discovery of the extrinsic proteins
PsbO, PsbP, and PsbQ that are thought to stabilize PSII.
In Kleffmann et al. [4], tandem mass spectrometry shot-
gun proteomics was used to develop a comprehensive
map of all metabolic and regulatory pathways in A. thali-
ana chloroplasts, which enabled identification of 687
PSPs. Schubert et al. [5] studied the chloroplast lumen of
A. thaliana and used two-dimensional SDS-PAGE, mass
spectrometry, and microsequencing techniques for pro-
tein separation. Peltier et al. [6] identified thylakoid pro-
teome from pea and A. thaliana by using gel
electrophoresis, mass spectrometry and Edman degrada-
tion sequencing. They also presented the results of a
stromal proteome analysis of A. thaliana in an attempt
to quantify proteins of the Calvin cycle [7].

Because of the complexity of chloroplasts and the wide
taxonomic distribution among photosynthetic organisms,
using only experimental techniques is prohibitively time-
consuming and labour-intensive. Therefore, bioinformatics
methods have become powerful tools for photosynthetic
research. Ishikava et al. [8] performed a pilot study that
combined bioinformatic and experimental approaches to
identify nuclear-encoded chloroplast proteins of endosym-
biontic origin. Most proteins in chloroplasts are encoded
by the nucleus and require N-terminal presequences
(cTPs) to be imported into the organelle [9]. Nakai et al.
were the first to report protein cTPs in eukaryotic cells
[10]. Emanuelsson et al. [11,12] proposed neural network-
based localization predictors for discriminating cTPs
(ChloroP) and for assigning a cleavage site prediction cap-
ability (TargetP) to chloroplast, mitochondrion, ER/golgi/
secreted, and other localizations. However, not all plastid
proteins can be predicted by the localization predictors
because several known plastid proteins apparently have no
obvious ¢TPs and because outer envelope proteins of
chloroplasts do not have a cleavable cTP [13]. Recent stu-
dies have proposed the use of a classifier based on support
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vector machine (SVM) to identify the four plastid types,
including chloroplasts, by utilizing sequence features such
as amino acid composition, dipeptide composition, the
physicochemical properties of amino acids, etc [14]. How-
ever, photosynthetic bacteria have no chloroplasts with
photosynthetic proteins directly embedded into plasma
membrane. At present, Ashkenasi et al. [15] proposed the
unique method off identifying PSPs by homology match
(BLAST, PSI-BLAST, HSSP, and Pfam). They concluded
that, since the false positive rate based on overall sequence
similarity is rather high (~70%), short motifs-based
approaches can reveal functional similarities more accu-
rately. Therefore, an effective predictor for discriminating
between PSPs and non-PSPs from sequences is needed to
discover new PSPs for industrial photosynthesis.

Considering the large number of subprocesses in which
PSPs are engaged, it is clear that PSPs have a wide range
of numerous subprocesses in which they participate, PSPs
clearly have widely varying applications. The PSII complex
from plants, algae, and cyanobacteria, bacterial reaction
centers, and bacteriorhodopsin from halobacteria have the
potential to provide the core for numerous innovative
devices [16]. The PSII-based biosensors are being devel-
oped to replace more complex laboratory analyses used to
detect photosynthetic herbicides. Engineered bacterial
reaction [centers, as well as OR centers as well as OR cen-
ters and the] the isolated components of the PSI are used
in photovoltaic cells to promote the conversion of visible
light energy into electrical or chemical energy [16].
Another potential application of industrial photosynthesis
is producing biodiesel fuel from engineered cyanobacterial
organisms [17]. This work had three objectives: 1) devel-
oping an effective prediction method for identifying novel
PSPs, 2) estimating propensity scores of dipeptides and
amino acids to be PSPs for mutagenesis studies, and 3)
characterizing PSPs that have potential applications.

Since no dataset of PSPs and non-PSPs is currently
available for developing bioinformatics methods that use
machine learning, this work first establishes a dataset
(PSPGO) consisting of 649 PSPs extracted by using a
Gene Ontology term GO:0015979 and 649 non-PSPs
from the SwissProt database with sequence identity <=
25%. The proposed SCMPSP prediction method uses
the estimated propensity scores of 400 dipeptides as
PSPs based on a scoring card method (SCM) [18,19].
The derived propensity scores of 20 amino acids for the
400 dipeptides are then used to discover informative
physicochemical properties for characterizing PSPs. To
investigate potential prediction methods, several typical
prediction methods based on SVM, decision tree J48,
and Bayes classifiers with some commonly-used
sequence features are also implemented. For compari-
sons with existing prediction methods, the BLAST
method is also implemented [15]. Comparisons of the
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mean prediction accuracies of all presented prediction
methods suggest that the proposed PSPGO dataset pro-
vides a higher prediction accuracy compared to the data-
setcontaining sequences not reviewed in UniProtKB [15].

To characterize the PSPs, the propensity scores of 20
amino acids were correlated with the physicochemical
properties of amino acids in the AAIndex database [20].
Physicochemical properties with high correlation coeffi-
cients (R values) can be used to study PSPs. However, the
reported properties of amino acids for specific protein
functions can also be used. The findings of PSP charac-
teristics in this work are as follows: 1) PSPs favour hydro-
phobic side chain amino acids; 2) PSPs are composed of
the amino acids prone to form helices in membrane
environments; 3) PSPs have low interaction with water;
and 4) PSPs prefer to be composed of the amino acids of
electron-reactive side chains.

Materials and Methods

The proposed SCMPSP method based on a scoring card
method (SCM) estimates the propensity scores of 400
dipeptides and 20 amino acids for prediction and character-
ization of PSPs from their sequences. Figure 1 is a flowchart
of the system, including datasets, method, and analysis.

Datasets

Table 1 shows the three datasets used in this work:
PSPGO, ORI and ORIRW. The PSPGO dataset consist-
ing of PSPs and non-PSPs was newly established. Ashke-
nazi et al. [15] provided a dataset of PS proteins without
non-PSP sequences collected from the SwissProt. We
established both ORI and ORIRW datasets according to
this dataset [15].

ORI and ORIRW

Ashkenazi et al. [15] established the PSP dataset to
assess the false positive rate of commonly used homol-
ogy-based function prediction methods. We adopted
this dataset as positive sets of ORI and ORIRW datasets
to ensure a reliable performance comparison. However,
almost one third of the sequences from the previously
reported dataset [15] were marked as ‘unreviewed’ in
the SwissProt. Therefore, the selected PSPs of the ORI
dataset included all available PS proteins provided by
the previous study [15] (excluding obsolete entries).
While the positive part of the ORIRW dataset contained
only ‘reviewed’ PSPs. Putative non-PSPs for both ORI
and ORIRW datasets were extracted from the SwissProt
and chosen to be all the proteins, originating from the
same organisms as those of the PSPs, excluding the
positive sequences. The ORI dataset has 1236 positives
and 1236 negatives selected randomly from 10692 puta-
tive non-PSPs with 50% sequence identity. The ORIRW
dataset has 733 reviewed positives and 733 negatives
selected randomly from 7048 putative non-PSPs with
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25% sequence identity. Both ORI and ORIRW were
divided into training (ORI-TRN, ORIRW-TRN) and test
(ORI-TST, ORIRW-TST) subsets.

PSPGO

Considering the absence of several obsolete entries (from
1425 stated in paper, only 1409 found in SwissProt to
date), as well as the presence of ‘unreviewed’ sequences
in the dataset, collected from the previous paper [15]
(from 1409 entries 452 ‘unreviewed’), we established a
new PSPGO dataset using the GO terms used to collect
unique sequences belonging to the dataset of PSPs,
owing to a high quality of its functional annotations.

The PSPGO dataset was used to design the SCMPSP
method was established by collecting sequences from the
SwissProt database using the GO term GO:0015979
(Photosynthesis) and its child terms, which are not child
terms of other processes. The Ancestor chart of the
Quick GO browser was used to search relationships
among the GO terms. Totally, 30 GO terms were used.
The sequences, which were not annotated by these GO
terms, were considered putative non-PSPs. The sequence
identity of any pair of a sequences was reduced to 25% by
using USEARCH [21]. Table 1 shows how the 649 posi-
tives and 649 randomly chosen negatives were divided
into training PSPGO-TRN and test PSPGO-TST subsets.

Methods

Typical classification methods

A literature review shows that few effective methods or
tools for predicting PSPs from sequences have been pro-
posed. To develop an accurate predictor, other studies
have compared the performance of typical classification
methods such as those based on SVM, decision tree J48,
and Bayes classifiers with a single type of sequence features.
The SVM is generally considered an accurate classifier for
predicting proteins with a specific function. Generally, the
predictive performance of an SVM with effective features is
considered the gold standard for evaluating predictors.
Radial basis SVM classifiers are implemented using the
LIBSVM package [22]. The SVM parameters are evaluated
by using a grid search method to maximize 10-fold cross
validation (10-CV) accuracy in a training dataset. Some
commonly used features such as amino acid composition
(AAC), dipeptide composition (DPC), and 531 PCPs in the
AAindex are evaluated in the design of predictors.

The J48 and Bayes classifiers are implemented using
WEKA [23]. The J48 is a decision tree classifier gener-
ated by the C4.5 algorithm developed by Quinlan [24].
The Naive Bayes classifier is a statistical classifier that
can predict the probability of class membership under
the assumption of mutually independent features [25].
For comparison with the existing method [15], BLASTP
is used to evaluate the performance of sequence align-
ment method.
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Figure 1 The flowchart of the system design.
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Scoring card method

The SCM is a new method for predicting proteins with
a particular function and for gaining insight into the
characteristics of proteins based on OR new method for
predicting proteins with a particular function and for

characterizing proteins according to primary sequences.
Huang et al. developed the SCM-based methods [18,26].
Unlike complex classification mechanisms such as SVM,
which is not easily understood by biologists, using SCM
to estimate the propensities of amino acids and
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Table 1 Summary of the three datasets consisting of
training and test data

Dataset Sequence identity (%) Total PSP  Non-PSP
PSPGO-TRN 25 1038 519 519
PSPGO-TST 25 260 130 130
ORI-TRN 50 1980 990 990
ORI-TST 50 492 246 246
ORIRW-TRN 25 1000 500 500
ORIRW-TST 25 466 233 233

dipeptides to provide the function of interest is a simple
and easily interpretable method of prediction and analy-
sis. In terms of prediction accuracy, SCM is slightly
worse than, or comparable to, SVM when they are used
with dipeptide features [18,26]. The advantages of the
SCM method are threefold. First, the classification
mechanism of SCM adopts a weighted sum of composi-
tion and propensity scores of dipeptides to score the pro-
tein sequence. Compared with the hyperplane of the
SVM, SCM classifies proteins using a threshold value,
which is easily understood and manipulated by biologists.
Second, the propensity scores of dipeptides and amino
acids can be used to identify the PCPs that provide infor-
mation about a global property of general proteins in a
further analysis of characteristics of the proteins. Third,
the SCM is a general-purpose method of identifying pro-
tein sequences with a particular function. The proposed
SCMPSP method is based on the SCM method using the
training dataset of PSPGO-TRN. For a clear understand-
ing, the SCM and the SCMPSP algorithm are described
below.

The SCM-based predictors are designed in three main
steps: 1) preparing both positive and negative sequences
in a training dataset as inputs (519 PSPs and 519 non-
PSPs in PSPGO-TRN); 2) using a simple statistical
method to generate an initial scoring card with 400 pro-
pensity scores of dipeptides; 3) obtaining propensity
scores of 20 amino acids from those of 400 dipeptides; 4)
using a global optimization method to optimize the initial
scoring card, and 5) generating a binary SCM classifier
with a threshold value as an output of the procedure.
Further details of the SCM method and its applications
can be found in [18,26]. The SCMPSP is as follows.

Step 1: Prepare a training dataset PSPGO-TRN com-
prising 519 PSPs and 519 non-PSPs.

Step 2: Generate an initial scoring card consisting of
400 propensity scores of dipeptides, which are obtained
by subtracting the dipeptide composition of dipeptides
in non-PSPs from those in PSPs. Then, normalize all
dipeptide scores into the range [0, 1000].

Step 3: Calculate the propensity score of each amino
acid x by averaging 40 propensity scores of dipeptides
that contain X.
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Step 4: Use an intelligent genetic algorithm (IGA) to
optimize the dipeptide scores [27]. Use the fitness func-
tion of IGA to maximize both the prediction accuracy
in terms of the area under the ROC curve (AUC) and
the Pearson correlation coefficient (R value) between the
initial and optimized propensity scores of 20 amino
acids. To prevent overfitting, perform a 10-CV assess-
ment to calculate the fitness function as follows (W, =
0.9 and W, = 0.1 in this study).

Max Fit (Scard) = W1 x AUC + W) x R (1)

Step 5: Classify a query sequence P based on the scor-
ing function S(P), and determine a threshold value that
yields the highest training accuracy. The variables w;
and §; are the content and propensity score of the i-th
dipeptide, respectively. Classify P as an PSP when S(P)
exceeds the threshold value; otherwise, classify P as a
non-PSP.

400
S(P) = > wS.. (2)

i=1

Informative physiochemical properties

Physicochemical properties (PCPs) of amino acids have
been shown to have meaningful features that can be
used for predicting and analysing the functions of pro-
teins in primary sequences [19]. By using SCMP-PCP
[19] to identify the most informative of the 531 PCPs
rearranged from the AAlndex that currently contains
544 PCPs of amino acids, PCPs can be discovered, and
PSPs can be characterized. Each PCP consists of an
accession number, a simple description of the index, the
reference information, and the numerical values for the
properties of 20 amino acids. The propensity scores of
20 amino acids can be derived from the propensity
scores of 400 dipeptides.

The SCM-PCP method is performed in two main steps.
First, calculate the R value of the Pearson correlation
coefficients between the propensity scores and the
numerical values of 20 amino acids for each of 531 PCPs.
The property of interest is a candidate for PSP function
analysis when the absolute value of R is larger than 0.5.
2). Second, use the known PSP function to identify the
informative properties from existing studies, which are
not included in AAIndex. The composition of amino
acids in PSPs and non-PSPs can also be used to infer the
properties of PSPs.

Results and discussion
Propensity Scores of PSPs
For the proposed SCMPSP method, Figure 2 shows how
the training dataset PSPGO-TRN consisting of 519 PSPs
and 519 non-PSPs was used to obtain the propensity



Vasylenko et al. BMC Bioinformatics 2015, 16(Suppl 1):58
http://www.biomedcentral.com/qc/1471-2105/16/51/58

Page 6 of 16

E 48 261 21 79 9637
F 670283 342434
c 260
H 34224

| §93276 {21

41330 302 299 284 289

115 108 280 635 648
EX o7 @ 218

A CDEFGH I KL M

Figure 2 Heat map of the PSP propensity scores of dipeptides.
A\

A [766 SRBRPYARCH 622 723 498 324 740 U
C g (7395 223 777 LLR527 561287 791 24
D 8 195 RRP1 605 675 276 258 &

672416 334 691 |L¥YA323 73

225 308.566 683 (£ 706 74;432 7¥Y 267 550 283

641 431 266 445 B 7NN 330 246
PLR1127 78 79 ERUPET 76 287 233 232

- 700
739 E18236 215 738 299 Koy
RE] 725 437 70
e BN | [ {600
382 407 234 664 51
7477 5647 697 465
500
28 [EIEIM 283 356 648 759 506 H
491 506 580 304 307 269 194 219 FYRIREIA 43¢ ‘400
265 314323 357

N PQRSTVWY

36 49 LA 49
9 59 356 697 303 15

118 91 E

664 386 91

900

; 800
336

300

200

100

scores for 400 dipeptides to be PSPs. The dipeptides
with the three highest scores are AP, YL and YD (999,
999 and 995, respectively). The dipeptides with the
three lowest scores are LQ, TS and EW (0, 4 and 5,
respectively). Previous membrane protein studies indi-
cate that membrane-spanning regions are mostly -turn
rich [28] and that the X-Pro motif is contained in the -
turn structure. Since AP, which is an X-Pro motif, has
an extremely high score, PSPs have more AP dipeptides
compared to non-PSPs, and PSPs may have more f-turn
structures compared to non-PSPs.

The PE dipeptide has a rather high score of 932. In
Mori et al. [29], multiple-sequence alignment of PSPs
from plants and bacteria showed that the PE motif is
strictly conserved in the transmembrane region of pro-
teins, which is translocated into the thylakoid membrane
via the ApH-dependent pathway. The PE motif with Glu
included in the a-helices of a transmembrane region
apparently stabilizes the protein structures by forming a

stable interaction with Lys, His or Gln. Even in proteins
such as Tha4 and TatA/E, which have different func-
tions, this protein is still conserved. The GP motif,
which has a fairly high propensity score of 743, was also
completely conserved between the membrane-spanning
helix and amphipathic helix of ApH-dependent protein
precursors [29]. The twin arginine motif RR was a dis-
tinguishing feature in protein precursors translocated
into the thylakoid membranes via the ApH-pathway.
The three dipeptides PE, GP, and RR have important
roles in the ApH-pathway.

Table 2 presents the 20 amino acid compositions of
PSPs and non-PSPs calculated from 133,744 and
210,361 residues, respectively. The high correlation coef-
ficient of R = 0.96 between the propensity scores of
amino acids and composition difference of amino acids
between PSPs and non-PSPs indicates that propensity
scores of amino acids are effective for discriminating
between PSPs and non-PSPs. The five top-ranked amino
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Table 2 The propensity scores and composition (%) of amino acids

Amino acid PS protein Composition of PS: A(%) Composition of Non-PS: B(%) Composition difference: A-B(%)
Score (Rank)

A-Ala 52290 (1) 9.97 803 194
F-Phe 516.70 (2) 512 3.68 143
Y-Tyr 49890 (3) 3.34 268 0.66
-lle 495.80 (4) 6.36 541 095
L-Leu 484.90 (5) 11.28 1020 1.08
G-Gly 482.70 (6) 7.70 6.95 0.75
V-Val 448.60 (7) 745 6.73 0.72
M-Met 447.70 (8) 277 226 051
P-Pro 429.30 (9) 4.72 5.09 -0.36
W-Trp 41740 (10) 129 1.14 0.15
T-Thr 41360 (11) 5.07 521 -0.14
S-Ser 383.60 (12) 6.79 740 -0.61
N-Asn 376.10 (13) 340 3.85 -045
H-His 373.30 (14) 1.75 233 -0.58
C-Cys 371.10 (15) 1.06 1.06 -0.69
K-Lys 370.70 (16) 4.58 551 -093
D-Asp 35880 (17) 435 524 -0.89
R-Arg 356.70 (18) 4.80 578 -0.98
E-Glu 350.90 (19) 533 6.64 -1.31
Q-GIn 313.10 (20) 290 412 -1.23
R 1.000 053 022 0.96

The total numbers of amino acids for PSPs and non-PSPs in PSPGO-TRN are 133,744 and 210,361, respectively.

acids are Ala, Phe, Tyr, Ile and Leu whereas the residues
with the lowest propensity scores are Lys, Asp, Arg, Glu,
and GIn. Most of the top-ranked amino acids are are
hydrophobic amino acids. One exception is Ala, which
has a scale close to the hydrophobic/hydrophilic thresh-
old in many well-known hydrophobicity scales [30]. We
postulate that PSPs are composed of hydrophobic amino
acids for two main reasons. First, in the main photo-
synthesis mechanism, membrane and transmembrane
proteins have important roles in energy generation reac-
tions such as electron transfer and as a driving force in
the pH gradient. In transmembrane proteins, photo-
synthesis must occur in an extremely hydrophobic
environment. The PSPs consist of hydrophobic amino
acids that reduce the protein folding free energy that
affect the stability of protein structures. As expected,
hydrophilic amino acids such as Gln, Glu, Arg and Asp
have extremely low propensity scores, which suggest
that PSPs do not favour the composition of hydrophilic
amino acids. As Figure 3 shows, the four main protein
complexes involved in the light reactions of photosynth-
esis are embedded in the thylakoid membranes of chlor-
oplasts [31,32]. Two photosystems are needed move
electrons from water to Nicotinamide adenine dinucleo-
tide phosphate (NADPH) [33]. Photosystem II (PSII)
catalyses the light-induced transfer of electrons from
water to plastoquinone and releases oxygen [16]. The

hydrophobic core of 20 proteins in this protein complex
is surrounded by a specific light-harvesting system
(LHCII) [31]. The D1 and D2 core proteins are compo-
nents of the reaction center, and each possesses five
hydrophobic transmembrane helices [31]. Photosystem I
(PSI) operates in association with PSII to generate
NADPH. The backbone of PSI is a heterodimer consist-
ing of two subunits called PSI-A and PSI-B [32]. These
two subunits contain 11 hydrophobic domains, which
form eight transmembrane helices plus two large surface
helices lying parallel to the membrane plane. This cen-
tral heterodimer binds 12 small membrane-embedded
proteins (core complex) and is surrounded by the light-
harvesting complex (LHCI) [33]. Additionally, Rees
et al. [34] conducted a study of hydrophobic organiza-
tion of the 11 transmembrane a helices of the photosyn-
thetic reaction center from Rhodobacter sphaeroides and
showed that membrane-exposed residues are more
hydrophobic than buried interior residues (Figure 4).
Second, PSPs must build hydrophobic environments
for binding with coenzymes and cofactors such as heme
and chlorophyll. For example, most electron transfer
reactions during photosynthesis result from protein bind-
ing with chlorophyll, which is a porphyrin derivative. The
PSPs with the chlorophyll as the cofactor form the trans-
membrane a-helical structures, which favour Ala as the
reaction center (review see [34]). In this reaction center,
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the top-ranked residues in terms of composition are Leu
(15%), Ala (14%), Phe (12%) and Ile (10%), all of which
are hydrophobic amino acids.

Nagata et al. [35] first reported the LH-a polypeptide, a
light harvest [4] peptide, which can assemble the LH
complex OR a light harvest [4] peptide that can assemble
the LH complex adjacent to the photosynthesis reaction

center. The LH peptides have three main segments:
N-terminal, hydrophobic core, and C-terminal. Ochiai et
al. [36] attempted to use various LH1-f peptides and
their derivatives, which have the same hydrophobic core
with variation in N- and C-terminal, to form self-
assembled monolayers (SAMs) of organic molecules.
Their experimental results suggest that the hydrophobic

\

Figure 4 Structures of Rhodobacter Sphaeroides Reaction Center. PDB entry 2WX5. (A) Distributions of side chain hydrophobicities; (B)
Hydrophobic patches highlighted. Side chains colored according to hydrophobicity palette with blue at the hydrophobicity extreme, green in
intermadiate, red for hydrophilic side chains. Figures were made by Swiss-PdbViewer 4.1.0.
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core of the LH polypeptides is invariable while the N-
and C-terminal is variable. The result shows the efficient
energy transfer and electron transfer reactions between
individual pigments on the electrode. Table 3 shows that,
in the hydrophobic cores of the LH polypeptides that
self-assemble, the hydrophobic cofactor interacts with
the hydrophobic cofactor.

The lowest score for these five hydrophobic cores is
518.91, which is much higher than the threshold 441.29
of the PSP classifier. In this LH polypeptide, Leu has the
highest average composition (20.23%) followed by Ala
(14.50%). The hydrophobic cores revealed no extreme
polar residues such as Asp, Asn, Glu and Gln.

Performance comparisons of PSP predictors

Three datasets were used to design various PSP classifiers
and to compare prediction performance in all classifica-
tion methods with various feature types. The proposed
SCMPSP method was compared with SVM, decision tree
J48, and Bayes classifiers. For each classifier, we evaluated
three kinds of features: 1) amino acid composition
(AAC), 2) dipeptide composition (DPC), and 3) 531 PCPs
in AAindex.

The first comparison was with methods that use BLAST
[15], a commonly-used strategy for classifying proteins
based on sequence similarity. The BLAST-based method
BLSTP estimates the performance of a sequence align-
ment method. This method uses similar regions or seg-
ments of sequences, which are referred as “hot spots” on
the sequence, and extends the other regions of the query
protein. The training datasets are used to build sequence
database for BLSTP. The test dataset is used as query
sequences to align against the database. The E-value
ranges from 0.1 to 0.00001. The sequences with the high-
est score are used to classify the query sequence. Table 4
shows the three training datasets PSPGO-TRN, ORI-TRN,
and ORIRW-TRN corresponding to the three test datasets
PSPGO-TST, ORI-TST, and ORIRW-TST. The BLSTP
method obtains the best results when the e-value is 0.01.
For PSPGO-TST, ORI-TST, and ORIRW-TST, the BLSTP
has accuracies of 58.46%, 40.85%, and 32.40%, respectively,
which are much smaller than those of SCMPSP, SVM,
decision tree J48, and Bayes classifiers.

Table 3 The hydrophobic core of the light harvesting
polypeptide

Name sequence reference Propensity score
LH1-b  VYMSGLWLFSAVAIVAHLAVYIW [54] 55477

LH-a ALVGLATFLFVLALLIHFILLST [54] 51891

Cut-a ALVGLATFLFVLALLIHFILLST [54] 51891
Typel ALVGLATFLFVLALLIHFILLST [54] 51891

LH-b IFTSSILVFFGVAAFAHLLYWIW [55] 604.77

The mean score of 400 dipeptide propensity is 420.27 and the threshold of
the SCMPSP classifier is 441.29.
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Table 4 Performance of established datasets as
compared for various E-value cut-offs by BLSTP

e-value PSPGO-TST ORI-TST ORIRW-TST
0.1 58.46% 40.85% 3240%
0.01 5731% 38.21% 30.26%
0.001 56.15% 36.99% 28.76%
0.0001 53.46% 35.98% 2747%
0.00001 51.92% 34.15% 26.39%

Table 5 compares the prediction accuracies of SCMPSP
and other methods with the three features. The compari-
son results show that PSPGO-TST has the highest test
accuracy in all three datasets. Themean test accuracies of
PSPGO-TST, ORI-TST, and ORIRW-TST are 68.85%,
55.23%, and 57.54%, respectively. The SVM-based
method performed well, and the SVM-based, decision
tree J48-based, and Bayes-based methods with three fea-
ture types had mean test accuracies of 64.93%, 57.84%,
56.04%, respectively. The mean test accuracy is higher
with the dipeptide features (60.20%) than with the amino
acids features (60.20%). The comparisons reveal that
SVM-based methods, dipeptide composition features,
and PSPGO-based datasets can be used to develop effec-
tive methods of predicting PSPs.

The experimental results can be briefly summarized as
follows. The performance of SCMPSP, SVM-based, J48-
based, and Bayes-based methods to predict PSPs outper-
form BLSTP. The PSPGO datasets are more suitable to
develop methods of predicting PSPs than the ORI and
ORIRW datasets. For predicting PSPs, SVM-based meth-
ods are more effective than J48- and Bayes-based methods.
Bayes-based methods do not perform well in predicting
PSPs. The performance of the SCMPSP method is com-
parable to that of the SVM-DPC method, which outper-
forms J48-DPC and Bayes-DPC in the PSPGO-TRN and
PSPGO-TST datasets.

Performance evaluation of SCMPSP

Table 6 presents the results of ten independent runs of
SCMPSP on the PSPGO dataset consisting of PSPGO-
TRN and PSPGO-TST. Experiment 7 has the highest
training accuracy (83.82%), and the corresponding test
accuracy, sensitivity, specificity, AUC, and threshold are
71.54%, 0.7154, 0.7154, 0.9, and 441.29, respectively. The
optimization approach improves the training accuracy
15.03% from 68.79% to 83.82%.

The SCMPSP method achieves a test accuracy of
71.54%, an MCC of 0.43, a sensitivity of 0.72, and a spe-
cificity of 0.72 in PSPGO-TST. The SVM-DPC method
using SVM with DPC features achieves a test accuracy
of 72.31%, an MCC of 0.45, a sensitivity of 0.75, and a
specificity of 0.70. These experimental results indicate
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Table 5 Comparison of the prediction accuracies (%) of PSP predictors

Classifier PSGO-TRN PSGO-TST ORI-TRN ORI-TST ORIRW-TRN ORIRW-TST Mean
SCMPSP 83.82 71.54 77.78 6260 818 6438 66.17
SVM-AAC 8545 78.85 7136 5061 71.20 57.30 62.25
SVM-DPC 8333 7231 68.94 69.11 67.30 6137 67.60
SVM-AAindex 79.19 7538 7140 71.03 7136 71.14 7252
J48-AAC 6850 73.84 64.24 6341 6821 49.79 6235
148-DPC 63.20 6192 5525 51.22 5570 5944 57.53
J48-AAiIndex 65.03 7038 62.50 6202 6146 68.09 66.83
Bayers-AAC 67.92 69.20 64.65 63.00 65.00 65.02 65.74
Bayers-DPC 6541 6731 5828 57.32 58.80 60.73 61.79
Bayes-AAindex 66.09 64.62 62.70 6030 6273 57.11 6068
Mean 72.79 70.54 65.71 61.06 6637 61.44

that SCMPSP is comparable to SVM-DPC in terms of
predicting PSPs.

Propensity analysis using informative PCPs

Table 7 shows the tree physicochemical properties (PCPs)
selected by SCM-PCPs from the AAindex database. The
correlation between these PCPs and the propensity scores
derived from SCMPSP is evaluated with the Pearson cor-
relation coefficient (the R value). The three PCPs are
BLAS910101 (R = 0.7955), PUNT030101 (R = -0.7948)
and WOLR810101 (R = 0.7597). The analysis results for
the three PCPs for PSPs are discussed below.

A. PSPs favour hydrophobic side chain amino acids

The BLAS910101, which can be described as “Scaled
side chain hydrophobicity values”, had the highest posi-
tive correlation (R = 0.7955) [37]. Estimation of hydro-
phobicity profiles has proven to be a powerful approach
to protein sequence analysis. Many scales have been
developed to quantify the hydrophobic properties of the
standard 20 amino acids. The values of BLAS910101
property were calculated by using a modification of the

Table 6 10 independent runs of the SCMPSP on PSPGO-
TRN

# Fitness Train Sensitivity Specificity Threshold
Score Accuracy (%)
1 09016 82.5626 0.7154 0.6615 459.0526
2 0.9097 82.0809 0.7231 06538 4545208
3 09105 83.8150 06615 0.6308 460.6491
4 0.9022 82.9480 0.6692 0.7231 4294792
5 09136 83.6224 0.6462 0.7385 465.0526
6 0.9051 82.6590 0.6700 05923 456.3793
7 09114 83.8150 0.7154 0.7154 4412917
8 0.9046 824663 06615 0.6700 456.5833
9 0.9027 81.6956 0.7231 0.6846 4414901
10 0.9088 82.5626 0.7308 0.6000 4483220
Mean 09070 82,8227 06916 06670 4512821
STDV 00043 07253 0.0325 0.0500 10.9653

‘hydrophobic fragmental constant’ approach developed
by Rekker [6], i.e., only the side chains of the post- or
cotranslationally modified amino acyl residues were con-
sidered and not the peptide backbone [37].

The high positive correlation indicates that PSPs favour
hydrophobic amino acids. Table 7 shows that the top five
amino acids are Ala, Phe, Tyr, Ile and Leu. According to
the property BLAS910101, four of these residues (Phe,
Leu, Ile and Tyr) possessed the highest side chain hydro-
phobicity values. However, the Ala residue had a rank of
10] [37].

As mentioned in the primary analysis of the propensity
scores, the overall hydrophobicity of the PSPs is high. In
SCM-PCPs, however, the hydrophobic characteristics of
the side chains do not include the backbone hydrophobic
characteristics because BLAS910101 does not include the
backbone hydrophobicity. Based on these experimental
results, we postulate that side chains play an important
role in reducing the folding free energy and to construct
the hydrophobic environments for cofactor binding.

The high correlation between the property BLAS910101
and propensity scores of PSPs indicates that the side chain
hydrophobicity is important to PSPs. As noted above, the
LH polypeptides have a hydrophobic core for porphyrin-
derivative binding. For further insight into their structure,
PDB structures containing the LH1-B hydrophobic core
sequence VYMSGLWLFSAVAIVAHLAVYIW is used in a
PDB database search. The 4JC9, an LH complex contain-
ing 64 LH peptides and 128 cofactors, is then selected. Of
14 peptides containing the LH1-B hydrophobic core
sequences, one is used for further analysis. The selected
peptides have a score of 496.90, which is higher than the
SCMPSP threshold of 441.29 but lower than the hydro-
phobic core score of 554.77. Figure 5 shows that the LH1-
B hydrophobic core sequence forms helix-like structures.
The sequence shows a gradient hydrophobicity that the
two tails of this peptide show a hydrophilic character, but
the middle of the sequence shows an extremely hydropho-
bicity. The middle segment uses the side chain to to form
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Table 7 The amino acids scores derived from SCMPSP and physicochemical properties selected by SCM-PCPs

Amino acid PS protein 'BLAS910101 Score (Rank) 2WOLR810101 Score (Rank) 3PUNT030101 Score (Rank)
Score (Rank)

A-Ala 5229 (1) 062 (10) 1.95 (5) 017 (15)
F-Phe 516.7 (2) 1.00 (1) -0.76 (6) -041 (20)
Y-Tyr 4989 (3) 0.88 (4) 611 (13) -0.09 (13)
I-le 4958 (4) 0.94 (2) 215 (3) -0.28 (18)
L-Leu 4849 (5) 094 (3) 228 (2) -0.28 (19)
G-Gly 4827 (6) 0.50 (11) 239 (1) 001 (10)
V-Val 4486 (7) 083 (6) 1.99 (4) 017 (16)
M-Met 4477 (8) 0.74 (7) -148 (8) 026 (17)
P-Pro 4293 (9) 071 (8) 368 (9) 0.13 (7)
W-Trp 4174 (10) 0.88 (5) -5.88 (12) 015 (14)
T-Thr 4136 (11) 045 (12) -4.88 (10) 0.02 (9)
S-Ser 3836 (12) 036 (13) 506 (11) 0.05 (8)
N-Asn 376.1 (13) 0.24 (16) 968 (16) 0.18 (5)
H-His 3733 (14) 017 (17) -10.27 (18) 002 (11)
C-Cys 3711 (15) 068 (9) 124 (7) 006 (12)
K-Lys 370.7 (16) 028 (14) 952 (15) 032 (3)
D-Asp 3588 (17) 0.038 (19) -10.95 (19) 037 (1)
R-Arg 356.7 (18) 0.00 (20) -19.92 (20) 037 (2)
E-Glu 3509 (19) 004 (18) -10.20 (17) 0.15 (6)
Q-GIn 313.1 (20) 025 (15) 938 (14) 026 (4)
R 1.000 0.7955 076 -0.79

'BLAS910101 = Scaled side chain hydrophobicity values (Black-Mould, 1991).
2WOLR810101 = Hydration potential (Wolfenden et al., 1981).

3PUNTO030101 = Knowledge-based membrane-propensity scale from 1D_Helix in MPtopo databases (Punta-Maritan, 2003).

the hydrophobic surface, and the cofactors are in contact
with a hydrophobic side chain. These sequencing results
suggest that the side chain can construct the hydrophobic
environment for cofactor binding and can interact with
the cofactors.

B. PSPs are composed of the amino acids prone to form
helices in membrane environments

The PUNTO030101 property, described as “Knowledge-
based membrane-propensity scale from 1D_Helix in
MPtopo databases”, showed the highest negative correla-
tion (R = -0.7948) [38]. Of the many hydropathy scales
currently available for protein analysis, one of the most
widely used is the knowledge-based amino acid mem-
brane-propensity scale developed by Punta et al. [38],
which exhibits strong correlation with several representa-
tive hydropathy scales, and approaches different prediction
tasks. This scale is derived using a set of transmembrane
helices segments from MPtopo databases with the require-
ment that each component of the set must have an OR
database. However, each component of the set must have
a free energy lower than that of a typical soluble protein
sequence of the same length [38]. Punta et al. attempted
to use this index to solve two problems: predicting the
soluble/membrane proteins and predicting c.-helical trans-
membrane/signal segments. Hence, PUNT030101 has two
characteristics: the propensity to form a membrane and

the propensity to form an a-helical structure in the
membrane.

High correlation with PUNT030101 suggested that
PSPs tend to be composed of amino acids with high
membrane propensity. Since negative values for
PUNTO030101 indicate high membrane propensity, a
strong inverse correlation between SCMPSP and
PUNTO030101 scores implies a high membrane propen-
sity of the photosynthetic proteins. Table 7 shows that
the amino acids with the 5 highest propensity scores cor-
respond to the bottom- and middle-scored Phe, Leu, Ile,
Ala and Tyr residues at ranks 20, 19, 18, 15 and 13,
respectively. In contrast, those with the lowest scores
were Gln, Glu, Arg, Asp and Lys, with PUNT030101
ranks of 4, 6, 2, 1 and 3, respectively. Notably, only Lys is
a hydrophobic amino acid. A high hydrophobicity is a
characteristic feature of amino acids belonging to trans-
membrane regions, which is in agreement with the pre-
viously described BLAS910101 property correlation
results [38]. Figure 3 shows that chlorophyll-protein
complexes, which catalyze the light reactions of the
photosynthesis, are known to be embedded in the thyla-
koid membranes of chloroplasts. The photosynthetic thy-
lakoid membrane encloses a single lumen space and
differentiates into cylindrical stacked grana and intercon-
necting single membrane regions called the stroma
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hydrophobicity. The graph is generated from the Discovery Studio 4.0.

Figure 5 The structures of light harvesting peptide, LH1, and cofactor, bacteriochlorophyll A. The peptide structure is extracted from the
light harvesting complex containing 64 peptides, 4JC9. The cofactors (yellow sticks) contacting with it are also extracted. Red sticks denote the
hydrophobic core residues. The colors of the surface from brown (the most hydrophobic) to blue (the most hydrophilic) indicate the

lamellae. The four membrane-associated components of
the photosynthetic apparatus include PSI and ATPase,
which are located in the stroma lamellae of thylakoids,
PSII, which resides mainly in the grana membranes, and
the cytochrome b6/f complex, which is almost evenly dis-
tributed between the two membrane types [2]. In each
case, the overall organization and the number of trans-
membrane regions differ. Remarkably, both PSI and
ATPase complexes have bulky stromal-exposed parts
whereas the PSII core and cytochrome b6/f complexes
protrude from the lumenal side [2]. These results indicate
the important role of the membrane in photosynthesis, so
some PSPs must have functions in the membrane
environment.

The high correlation with PUNT030101 also indicates
that PSPs tend to be composed of amino acids that
form transmembrane helices. In the photosynthetic

reaction centers (RCs), the membrane-spanning helices
are the main structures. For example, the RCs from pur-
ple bacteria have 11 membrane-spanning helices that
can form a hydrophobic binding site for cofactor bind-
ing; in contrast, some external helices that are exposed
outside the membrane connect to the membrane-span
helices.

C. PSPs have small interaction with water

The property of WOLR810101, described as “Hydration
potential”, was selected by SCM-PCPs with R = 0.7597
[39]. The hydration potentials of amino acid side chains
represent their free energies of transfer from the vapor
phase to dilute water. The structures of macromolecules
can be determined by comparing amino acid residues in
terms of their strength of solvation by water. Many
researchers have attempted to calculate solvation proper-
ties of the natural amino acid side chains. By using more
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sensitive techniques compared to earlier measurements,
Wolfenden et al. developed a scale of effective free ener-
gies of transfer of amino acid side chains from the vapor
phase to neutral aqueous solution buffered at pH 7. Since
highly hydrophilic amino acid side chains strongly release
energy after they are dissolved in water, those lower
score amino acids in WOLR810101 indicated these resi-
dues favour interaction with water molecules and vice
versa. Wolfenden et al. reported the results for a scale of
hydration potential spanning a range of ~22 kcal/mol.
The residues with the five lowest scores were Arg, Asp,
His, Glu and Asn [39].

Table 7 shows that the residues with the five lowest
propensity scores were hydrophilic residues Gln, Glu,
Arg, Asp and Lys, with Arg being at rank 18. According
to the previously reported scale, aliphatic side chains of
Gly, Leu, Ile, Val and Ala can only form weak bonds with
water and exhibited positive free energies of transfer
from vapor phase to water [39]. Among the SCMPSP
top-5 scored residues, Ala, Ile and Leu are found together
with aromatic Phe and Tyr residues. The Phe and Tyr
were ranked 6 and 13, respectively, by a previously
reported scale of amino acid affinities. Wolfenden et al.
not only determined affinities of amino acid side chains,
but also identified a statistically significant relationship
between the resulting scale and the inside-outside distri-
butions of amino acids in globular proteins. The outside
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residues directly interact with water while the inside ones
do not. Based on earlier solvent accessibility calculations,
they showed that residues with negative free energies of
transfer from the vapor phase to water tend to appear on
the surface rather than in the interior of globular proteins
[9]. Thus, unlike the accessible Arg, Asp, His, Glu and
Asn residues, the Gly, Leu, Ile, Val and Ala amino acids
tend to be “buried”.

The strong positive correlations between reported
hydration potentials scale and SCMPSP propensity scores
indicated that the amino acid interact with water mole-
cules do not prefer to be the elements of PSPs. This phe-
nomenon leads us to the assumption that the PSPs less
interact with water molecules. Figure 6 shows that the
weak interaction between PSPs and water molecules
results from the photosynthetic process in thylakoid. The
PSPs often work with co-enzymes such as Cyt-b6f and
the PSII antenna complex and need to work with plasto-
quinone (PQ) while the PSI antenna complex works with
NADP. The movable electrons are generated from water
by the PSII antenna complex in PSIL After the electron is
transported to PQ and plastocyanin (PCy), PCy carries
the electron to PSI and then transfers the electron to
NADP. The coenzymes PQ and NADP are hydrophobic
molecules, and the interaction with the water molecules
would create a polar environment that is unfavorable to
such hydrophobic molecules. The composition of the

\

Figure 6 A schematic representation of the photosynthetic apparatus in the thylacoid membrane.
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amino acid residues and the low interaction with water
keeps the environment of electron transport chain stable
and efficient.

D. PSPs tend to be composed of amino acids with
electron-reactive side chains

Photosynthetic machinery that collects solar energy and
converts it to chemical energy is susceptible to oxidative
damage resulting from an excess light [40,41]. Strong
light causes oxidation and increases production of reac-
tive oxygen species [42]. Many studies of the effects of
reactive oxygen species (ROS) on various proteins
[43-45] indicate that ROS cause oxidative damage to pro-
teins, which results in biological dysfunctions such as
perturbed activity of enzymes, transport proteins and
receptors [46], which can oxidatively modify the proteins
and enhance the proteolysis process in orgasms. ROS are
also generated by the light-driven reactions of electron
transfer decrease PSII activity and lead to irreversible oxi-
dation of the D1 protein in photosynthesis systems [47].
To reduce ROS damage, some ROS catalytic enzymes
such as glutathione peroxidase and superoxide dismutase
have been studied because they apparently have impor-
tant roles in destroying ROS and the interplay between
cyclic, linear and pseudocyclic electron transport path-
ways is required for the prevention of over-oxidized state
and coordination of energy metabolism during photo-
synthesis [40]. Some studies of mechanisms that over-
come the oxidative stress have postulated that the
photosynthesis system has a prevention mechanism in
which the PSPs can immediately capture the ROS gener-
ated from light, and prevent the ROS to attack other
PSPs. However, the AAindex database does not have an
ROS-related index.

As expected, the extent to which different amino acid
side chains are oxidized varies. Davies et al. attempted to
quantify these differences by using a scale of rate con-
stants for reaction of the hydroxyl radical (HO*), which is
among the most reactive and least selective ROS, with
free (zwitterionic) amino acids, and small peptides, at pH
ca. 7 [48]. Table 8 shows that our comparisons of this
scale with the propensity scores obtained from the
SCMPSP method obtained slightly positive correlation
results (R = 0.3146). Since the oxidant reaction rate con-
stants are measured from the side chain oxidation, the
influences of side chain would be considered. The Gly,
Pro and Ala eliminate the side chain beyond the B carbon
and would not provide additional side chain effects.
Further analysis led us to hypothesize that the functional
group of side chain would be more important to react
with the ROS. Hence, the three amino acids Ala, Pro and
Gly, which lack side chain effects, are not capable of
reacting with electrons.

Therefore, Ala, Pro and Gly were excluded from
further correlation analysis. After excluding these three
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Table 8 The SCMPSP scores and Rate constants by Davies
et al. [48]

Amino acid PS protein Rate constants by Davies et al. [48]
Score (Rank)

A-Ala 5229 (1) 77 %107
F-Phe 516.7 (2) 65 x 107
Y-Tyr 4989 (3) 13x 10
-Hle 4958 (4) 18 x 10°
L-Leu 4849 (5) 1.7 x 10°
G-Gly 4827 (6) 1.7 x 107
V-Val 4486 (7) 76 x10°
M-Met 4477 (8) 83 x 10°
P-Pro 4293 (9) 48 x 10°
W-Trp 4174 (10) 13 % 10'"°
T-Thr 4827 (1) 51 % 10°
S-Ser 4486 (12) 32x10°
N-Asn 4477 (13) 49 x 10’
H-His 4293 (14) 13 % 10'°
C-Cys 4174 (15) 34 % 10
K-Lys 370.7 (16) 34 x10°
D-Asp 3588 (17) 75 % 107
R-Arg 356.7 (18) 35 % 107
E-Glu 3509 (19) 23x10°
Q-GIn 313.1 (20) 54 x10°
R1° 1.00 031

R2° 1.00 050

a. all amino acid residues
b. excluding the amino acids lacking the side chain effect

amino acids, the correlation dramatically increases from
0.31 to 0.50. This phenomenon indicates that PSPs tend
to be composed of amino acids with high ROS reacting
side chains.

In the ROS reaction constant analysis, Ala has the
highest propensity score, but its side chain has a weak
interaction with ROS. Some researchers have hypothe-
sized that most PSPs function in the membrane environ-
ment and are composed of the alpha-helical structures.
Arkin and Brunger [49] provided statistical results show-
ing that Ala tends to be composed of transmembrane
alpha-helical structures since structures that influence
protein functions are more important for PSPs than for
capturing ROS. The Trp with a rapidly ROS interacting
ability is rank tenth, which indicates that PSPs and non-
PSPs would have equal propensity to be composed of
Trp. Although the experiments show that Trp has a good
ability to react with ROS, Trp is a high energy amino
acid that needs most energy to be produced. This
explains why PSPs do not use this residue to protect
against ROS.

The correlations obtained for the highly oxidizing HO*
radical indicate that the PSPs tend to be composed of
amino acids that deplete rapidly. The advantage of this
amino acid composition is the neutralization of the ROS
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that cause protein damage and prevent ROS from
destroying the photosynthesis system. Studies of the cell
cycle also indicate that an overdose of ROS can trigger
apoptosis. (review see [50]) Although live organisms have
enzymes such as glutathione peroxidase and super oxide
dismutase that can catalyze ROS, rapidly neutralizing
ROS may be a good strategy for preventing ROS accumu-
lation. In the photosynthesis system, however, generation
of the energy and oxidative stress uses the energy saving
strategy that Trp, an energy cost amino acid but having
better ability to absorb the ROS, is not preferential in
PSPs compared to non-PSPs.

The above understanding is needed to engineer photo-
synthetic organisms with enhanced oxidative stress toler-
ance [51]. Therefore, plants with enhanced antioxidant
content should be selectively engineered to reduce oxida-
tive stress. Recent studies have also focused on searching
for or creating antioxidant peptides [41,52]. Peptides, most
of which are food-derived antioxidant peptides, are
thought to promote the health and disease preventing.
Although most peptides are extracted from milk or fish,
understanding how proteins prevent ROS would also help
to generate new proteins with highly oxidative reacting
ability.

Conclusions

The current work proposed a novel SCM-based SCMPSP
method for predicting and analysing of PSPs from their
sequences. Several other homology-based and machine-
learning approaches have been explored: BLAST, support
vector machine (SVM), decision tree J48 and Bayes. The
performance of the SCMPSP method was comparable to
that of the SVM-based method, which in turn outper-
formed J48- and Bayes-based methods when applied to
independent test set. Additionally, the propensity scores
derived from the SCMPSP resulted in identification of
informative physicochemical properties, providing
insights into the nature of PSPs. Our SCM_PCPs method
yielded high correlation results with such PCPs, as:
BLAS910101, PUNTO030101 and WOLR810101. Addi-
tional correlation analysis has been conducted to explore
the nature of PSPs in their interaction with ROS. In sum-
mary, PSPs are more likely to be composed of amino
acids with hydrophobic, and electron-reactive side chains,
as well as those, which reinforce the formation of helices
in membrane environments. Moreover, PSPs have low
interaction with water. The SCMPSP source code and
the datasets used in this study are available at http://
iclab.life.nctu.edu.tw/SCMPSP/.
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