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Abstract

With the development of various high throughput technologies and analysis methods, researchers can study
different aspects of a biological phenomenon simultaneously or one aspect repeatedly with different experimental
techniques and analysis methods. The output from each study is a rank list of components of interest. Aggregation
of the rank lists of components, such as proteins, genes and single nucleotide variants (SNV), produced by these
experiments has been proven to be helpful in both filtering the noise and bringing forth a more complete
understanding of the biological problems. Current available rank aggregation methods do not consider the
network information that has been observed to provide vital contributions in many data integration studies. We
developed network tuned rank aggregation methods incorporating network information and demonstrated its
superior performance over aggregation methods without network information.
The methods are tested on predicting the Gene Ontology function of yeast proteins. We validate the methods
using combinations of three gene expression data sets and three protein interaction networks as well as an
integrated network by combining the three networks. Results show that the aggregated rank lists are more
meaningful if protein interaction network is incorporated. Among the methods compared, CGI_RRA and
CGI_Endeavour, which integrate rank lists with networks using CGI [1] followed by rank aggregation using either
robust rank aggregation (RRA) [2] or Endeavour [3] perform the best. Finally, we use the methods to locate target
genes of transcription factors.

Introduction
As new biotechnologies, such as microarray, genotyping,
and next generation sequencing (NGS), continue to be
developed and the cost of biological experiments
decreases, a biological phenomenon can be studied using
different technologies or by different research groups.
Each study can yield a rank list of genes according to the
strength of association of genes with the biological phe-
nomenon of interest. These studies can include the
detection of differentially expressed genes under certain
perturbations, disease status or treatments; association of
single nucleotide variants (SNV), copy number variation
(CNV), methylation, and alternative splicing with pheno-
types; or identification of target genes of transcription

factors or other regulatory molecules including various
RNAs. For example, in the study of associating SNVs to a
disease, SNVs can be ordered using the p-values based
on the c2 test for equal allele frequency between the
cases and controls. Similarly, in the study of differentially
expressed genes for a disease status, genes can be ranked
by comparing the genes’ expression levels between cases
and controls. Regulatory targets of a transcription factor
can be ranked according to the differential expression
levels of genes from knock out experiments of the tran-
scription factor.
In order to have a more complete understanding of

the biological phenomena of interest taking into account
the multiple studies rather than using individual ones,
efficient aggregation of the results from the individual
studies is needed. Since these studies can use different
technologies and are generally carried out from different
laboratories, global normalization of the data across
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these studies can be challenging. Thus, aggregation of the
rank lists of the genes provides a promising approach for
integrating the results from these studies allowing scien-
tists to better interpret experimental results, understand
the potential mechanism and determine following up
experiments [4-6]. The inputs of rank aggregation are
gene (or SNP, domain, protein, pathway) rank lists and
the output is a combined rank list that is anticipated to
be more meaningful than any single rank list.
Many methods have been developed for rank list aggre-

gation using the same type of data such as gene expres-
sion profiles, which we refer as horizontal data
integration. Manor et al. [7] proposed a method to rank
the risk of SNVs causing disease, in which the data is re-
sampled multiple times and a SNV ranking is generated
for each such sample, with the final SNV ranking being
an aggregation of rankings from all the samples. Aerts
et al. [3] integrated disease gene rank lists from multiple
data sources using order statistics [8]. Alder et al. [9]
used rank aggregation method to merge information
from different microarray data sets into a single global
rank list to show the expression level similarity. Kolde
et al. [2] developed a new rank aggregation method
intended to improve the order statistic from [3]. Jiang
et al. [10] used a similar rank aggregation method as in
[3] to integrate multiple information sources to rank cau-
sal genes for livestock diseases. Sun et al. [11] developed
a software package for integrating rank lists from path-
way enrichment analysis of different data sets, such as
transcriptomics, proteomics, metabolomics and genome
wide association studies (GWAS). Trepper et al. [12]
found genes showing mRNA-level response to changes in
DAF-16 activity for further experimental validation by
integrating publicly available data from genome wide
association studies with a rank integration method. Lin
[13] reviewed the available rank aggregation methods at
that time and classified them into three categories. The
first category is based on Thurstone’s model [14] that is
originally designed for marketing and advertisement
research. The second category is based on heuristic algo-
rithms including Borda’s method [15] and Markov chain
based methods [16]. The third category is based on sto-
chastic optimization minimizing the average distance
between the input rank lists and the aggregated rank list
[17]. In a more recent study, Deng et al. [18] developed a
Bayesian approach for rank aggregation that can estimate
the reliability of different rank lists and use the reliability
to weight the different lists.
Another type of integration is to combine different types

of data such as gene expression profiles and molecular
networks, which we refer as vertical data integration.
Realizing that genes that are in the same pathway or close
together in networks are more likely to perform similar
functions and thus have similar ranks, investigators have

developed a variety of different methods to integrate
different types of data such as gene expression and net-
works [19-21] or association results of genes with molecu-
lar networks [22-24]. Wang et al. [21] proposed a network
guided gene ranking method by firstly utilizing networks
to find coordinative components representing the underly-
ing biological processes or pathways and then projecting
gene expression data onto the coordinative components to
estimate the association strengths of genes to a biological
phenomenon. These association strengths are then used to
rank the genes. Lavi et al. [20] introduced a kernel based
on the network topology and then used support vector
machine to detect disease biomarkers from gene expres-
sion data. Garcia et al. [19] proposed an approach to find
the sub-network component associated with extreme
values of a list of genes. Hofree et al. [22] developed a
method to stratify the different cancer types into informa-
tive subtypes by clustering together patients with muta-
tions in similar network regions based on integration of
somatic mutation profiles and networks. Novarino et al.
[24] studied the genetic basis of hereditary spastic paraple-
gias (HSP) by using whole-exome sequencing in combina-
tion with network analysis. They identified 18 previously
unknown putative HSP genes and generated a host of
other candidate genes for future study. Jia and Zhao [23]
put forward a cancer driver gene prediction method by
firstly identifying the significantly mutated genes with gen-
eralized additive models based on sample-specific muta-
tion profiles and then collected the novel interaction
neighbors of the mutant genes in the network with the
help of random walk with restart. Mutant genes and the
corresponding interaction neighbors for each sample are
heuristically integrated to present the final prediction
result.
Despite the many studies on either horizontal or vertical

data integration, no studies are available to consider both
multiple rank lists and networks simultaneously. In this
paper, we study whether we can improve the performance
of rank list aggregation by incorporating network informa-
tion. Our basic assumption is that genes that are close
together in networks have similar ranks in the list. There-
fore, we firstly tune each given rank list with network and
then aggregate the updated rank lists. “Combining Gene
expression with Interaction (CGI)” [1] and “GeneRank
(GR)” [25] are two widely recognized methods for inte-
grating network information with gene expression data.
We modify these methods so that they can be applicable
to rank lists. Endeavour [3] and RRA [2] are then used to
aggregate the rank lists leveraged by the network. We
study the effectiveness of incorporating networks in rank
list aggregation by comparing the performance of all the
combinations, CGI_Endeavour, CGI_RRA, GR_Endeavour,
and GR_RRA using three yeast gene expression data sets
and three protein interaction networks as well as the
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integrated network. We found that by incorporating net-
work information, the performance of rank list aggregation
is improved significantly in most cases. Among these
methods, CGI_RRA and CGI_Endeavour perform the best.
Focusing on CGI_RRA and CGI_Endeavour, we show

that the improvement really originates from the network
information by implementing the methods on network
with shuffled labels. By running the methods on net-
works with noisy interactions, we show the performance
of CGI_RRA and CGI_Endeavour decreases as the noise
level increases as expected, but is relatively robust to
noise when the noise level is as high as 40%. At last, we
show the applicability of our methods on predicting
pathway members.

Materials and methods
In this section, we present methods to integrate multiple
rank lists with network information for gene prioritiza-
tion. For each rank list, we first modify two methods,
Combining Gene expression and protein Interaction
(CGI) [1] and GeneRank (GR) [25], for improving the
gene rank by integrating the original rank list with the
protein interaction network. We then aggregate the
updated rank lists using Endeavour [3] and Robust Rank
Aggregation (RRA) [2].
Assuming that there are m rank lists of n genes, rj =

(r1,j, r2,j,...,rn,j)’, j = 1,..., m, where ri,j is the rank of the i-
th gene in the j-th list. First, each rank list is normalized
into rank ratio list, rai,j = ri,j/n, i = 1,..., n. Second, rank
ratio lists are transformed to score lists based on the
inverse of standard normal distribution function.

F(x) =
∫ x
−∞ e

−
s2

2 ds, zi,j = −F−1(rai,j).
(1)

If rai,j = 1, it is substituted by rai,j = 0.9999 so that the
value of zi,j is well defined. The value of zi,j ranges in
(-∞, +∞) and high value of zi,j corresponds to high rank.
This transformation makes the distribution of zi,j for
fixed j to be standard normal so that the integration
with the network is more stable.
In addition to a set of rank lists, we also assume that

there is a protein interaction network. Let H denote the
adjacency matrix of the input network where the nodes
indicate proteins and the edges indicate interactions. If
two nodes u and v are connected in the network, Hu,v = 1;
Otherwise, Hu,v = 0.

Update rank lists using CGI
Ma et al. [1] developed a method, CGI, to integrate
gene expression profiles with protein interaction net-
work for gene prioritization. The basic idea is that if a
gene and most of its neighbors are associated with a
phenotype of interest, the gene is more likely to be true

causal genes for the phenotype compared to another
gene with non-associated neighbor genes. Therefore, Ma
et al. [1] proposed to use the weighted average associa-
tion strength of the gene and its neighbors with the
phenotype to measure the likelihood that the gene is
related to the phenotype. Close neighbors are weighted
more heavily than distant neighbors. One key question
is how to define closeness between nodes in the net-
work. The authors showed that diffusion kernel defined
in [26] performed well compared to direct neighbors or
shortest distance on networks for gene prioritization.
In this study, we extend CGI so that it can be applied

to rank based data. CGI first needs to define a similarity
measure between two genes based on the protein inter-
action network. Many different similarity measures can
be defined including direct neighbors, shortest distance,
and diffusion kernels as reviewed recently in [27]. Pre-
vious studies have shown the superiority of diffusion
kernel similarity measure over direct neighbor and
shortest distance similarity measures. Therefore, we con-
centrate on the use of diffusion kernel in this study. The
diffusion kernel is defined as S = e-τL, where r is a tun-
ing parameter and L = D - H is the Laplacian matrix of
H, where D is a diagonal matrix with the diagonal ele-
ments containing the node degrees. The elements in
score matrix S is normalized as Ku,v = Su,v/

√
Su,uSv,v. The

diffusion kernel represents a global similarity between
nodes in a network, with higher values representing clo-
ser relationship. CGI corresponding to CGI3 in [1] is
defined as

Ri,j =
zi,j + λ

∑n
l=1,l�=i |zl,j|Kl,i

1 + λ
∑n

l=1,l�=i Kl,i
, i = 1, 2, · · · ,n, (2)

where l is a tuning parameter that controls the con-
tribution of the neighbor genes and zi,j is defined in
equation 1. The updated value of Ri,j indicates the
strength of association of gene i with the phenotype in
the j-th list. Large value of Ri,j corresponds to high rank.

Update rank lists using GR
GeneRank (GR) [25] is a widely used method for gene
prioritization by integrating gene expression profiles
with a network. GR is based on similar ideas as PageR-
ank originally designed for ranking web pages and was
extended to gene expression analysis in [25]. Let ci be
the absolute value of the correlation coefficient between
the i-th gene expression levels with the phenotype,
r(0)i = ci/

∑
ici, and r(0) = (r(0)1 , r(0)2 , · · · , r(0)n )′. The rank-

ing of the genes is based on the solution to

(I − dH D−1)X = (I − d)r(0).

Here we adapt the method for integrating gene ranks
with a network. For the above transformed z score, we
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further transform it following the procedures for GR.
For the i-th element in the j-th rank list, let
R(0)
i,j = zi,j/||zj||1, where ||zj||1 =

∑
i|zi,j|. For the j-th rank

list, let

R(k)
j = (1 − d)zj + dHD−1R(k−1)

j , k = 1, 2, · · · ,

where d is a tuning parameter, zj is a column vector

with the i-th element as zi,j and R(k)
j is a column vector

with the i-th element as R(k)
ij . If d is small, more weight is

assigned to the original score. While if d is large, more
weight is given to the neighboring genes and network

information will play a more important role. When R(k)
j

finally stabilized (i.e maxi|R(k)
ij − R(k−1)

ij | < 1 × 10−6) or

the number of iterations reaches a large number (1000 in

this paper), the iteration stops. The limit of R(k)
j as k

tends to infinity denoted as Rj satisfies the equation

(I − dHD−1)Rj = (1 − d)zj, j = 1, 2, · · · ,m.

We use the component values of Rj to rank the genes
with larger values ranked higher for the j-th list.

Aggregate rank lists using Endeavour
The component scores of Rj from CGI and GR can be
used to re-rank the genes. A new set of rank lists
rnewj , j = 1, · · · ,m, incorporating network information are
produced, which are then aggregated in the second step.
Let rnewi,j be the rank of the i-th gene in the j-th list. Stuart
et al. [8] proposed a rank list aggregation statistic calcu-
lated from all rank ratios using the joint cumulative dis-
tribution of a multidimensional order statistic. Assuming
rnew(i) = {rnewi,1 , · · · , rnewi,m } is ordered rank ratio vector for
gene i across m rank lists in ascending order. Let

Q(rnew(i) ) = m!
∫ rnewi,1

0

∫ rnewi,2

s1
· · ·

∫ rbewi,m

sm−1

dsm · · · ds2ds1 .

Aerts et al. [3] developed an efficient method to
calculate the statistic using the iteration

Vk =
∑k

l=1
(−1)l−1Vk−l

l!
rnewi,m−k+1,Q(rnew(i) ) = m!Vm, V0 = 1.

This iteration method is used in our paper to calculate
Q(rnew(i) ), which are then used to rank genes with smal-

ler values of Q(rnew(i) ) ranked higher.

Aggregate rank lists using RRA
Kolde et al. [2] proposed another rank aggregation
method that assumes the null distribution of all the
rank ratios as uniform on the unit interval. The same
rank ratio vector rnew(i) = {rnewi,1 , · · · , rnewi,m } for the i-th gene

is taken as input. For the j-th rank, let βj,m(rnew(i) ) denote

the probability of r̂j ≤ rnewi,j under the null distribution

and βj,m(rnew(i) ) =
∑m

l=j
Cl
m(r

new
i,j )l(1 − rnewi,j )m−l Since some

rank lists may contain large variation from the true
rank, Kolde et al. [2] proposed to use the minimum
value of βj,m(rnew(i) ) over j = 1, 2,...,m, that is,
ρ(rnew(i) ) = min{βj,m(rnew(i) ), j = 1, · · · ,m} to rank the
genes.
The values of Q(rnew(i) ) and ρ(rnew(i) ) are then used to

aggregate the updated rank lists using Endeavour and
RRA, respectively. Combining the two network incor-
poration procedures and two rank aggregation proce-
dures together, we have four methods: CGI_Endeavour,
CGI_RRA, GR_Endeavour, and GRI_RRA. We are inter-
ested in knowing which combinations of network rank
list updating methods (CGI or GR) and rank list aggre-
gation methods (Endeavour or RRA) yield the most bio-
logically meaningful rank.

Set the parameters for CGI and GR
The tuning parameters (τ,l) for CGI and d for GR need
to be set before implementing the methods. To do so,
we need a set of genes, referred as training genes,
known to be associated with a trait of interest. A good
ranking method should put the training genes on the
top. Therefore, for fixed parameters in CGI or GR, we
use Wilcox rank sum statistic to test the hypothesis that
the training genes are ranked higher. The ranks of these
training genes are compared to that of the other genes
and a p-value is obtained. Lower p-value corresponds to
better performance of a rank aggregation method.
Therefore, we choose the parameters that yield the low-
est p-value.

Data: gene expression profiles and protein interactions
Three gene expression data sets are used in this study:
yeast compendium knockout (Compendium) [28], cell
cycle (Cycle) [29,30] and stress response (Stress) [31].
The Compendium data consists of yeast gene expression
profiles across 300 conditions. The cell cycle data
includes expression profiles of yeast genes at 17 time
points across five cell cycles. The stress response data
contains expression profiles across 173 diverse environ-
mental conditions such as temperature shocks, amino
acid starvation and nitrogen source depletion.
To study the effects of different networks, three yeast

protein interaction networks from BioGRID [32], DIP
[33] and MIPS [34] are used. The BioGRID (3.2.101 ver-
sion) network contains 6,226 proteins and 220,823 inter-
actions. The DIP [33] network (20130707 version)
consists of 4,767 proteins and 22,162 interactions. The
MIPS [34] network (18052006 version) includes 4,554
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proteins and 12,526 interactions. It can be seen that the
BioGRID network contains many more genes and inter-
actions than either DIP or MIPS. In addition, we also
form an integrated network by combing all the interac-
tions from the three networks which contains 6,567 pro-
teins and 229,773 interactions.

Evaluation criteria for the different rank aggregation
methods
We study the effectiveness of integrating networks with
rank lists using C-GLEndeavour, CGI_RRA, GR_Endea-
vour, and GR_RRA based on yeast gene expression and
protein interactions and compare their performance with
the corresponding Endeavour and RRA without integrat-
ing network information. In addition, we also study the
performance of first integrating the rank lists by either
Endeavour or RRA and then integrating the resulting list
with the network by CGI or GR. These methods are
denoted as Endeavour_CGI, Endeavour_GR, RRA_CGI,
and RRA_GR, respectively. We conceive a study of genes
having the same gene ontology (GO) as a set of transcrip-
tion factors (TF) having the same GO term. For a GO
term, we first collect all the TFs having the term and take
all the genes having the same GO term as the TFs as the
golden positive set. Genes with highly correlated expres-
sion profiles with the TF are more likely to have the
same GO function as the TF. Therefore, we rank the
genes according to their co-expression level with the TF
with high absolute correlation ranked high on the list.
For each TF with a given GO term, a rank list is obtained
and thus, a set of rank lists is obtained for each GO term.
A total of 269 TFs from [35] are used in this study.
Given the gene expression, protein-protein interaction

network and known associations between genes and GO
terms, we evaluate whether the network tuned rank
aggregation methods (CGI_Endeavour, CGI_RRA,
GR_Endeavour and GR_RRA) perform better than the
original aggregation methods (Endeavour and GR). We
adopt a large scale 10-fold cross-validation for the com-
parison. More specifically, we randomly divide the
known genes of a GO term into 10 subsets with roughly
equal number of genes. Therefore, each subset contains
about 10% of known genes having the GO term. In each
run, we assume that one subset of genes is already
known and use them as training set to select the para-
meters for CGI and GR. The remaining 9 subsets of
genes are used as validation set and ranked against the
other genes based on the selected parameters. Repeating
this procedure for each subset, we obtain 10 rank lists
and 10 p-values by comparing the ranks of the validation
set of genes with the remaining genes using Wilcox rank
sum test for each GO term. We repeat this process 10
times to obtain a total of 100 rank lists and p-values for
the combination of each GO term and each method.

Lower p-values indicate better performance of an ranking
method.
We also study the effect of incompleteness, false posi-

tive and false negative interactions in networks on the
performance of the integration methods by permuting
some of the interactions in the network.

Results
We mainly present our results with the combination of the
Compendium gene expression data and BioGRID interac-
tion data in the main text. The results based on other
expression and protein interaction data are presented in
the Additional Files. We download the TFs for each GO
term and the known associations between protein and GO
terms from GO slim in the Saccharomyces Genome Data-
base [36]. We retain the GO terms with at least 30 known
genes and 5 TFs so that appropriate statistical analysis can
be carried out. The GO terms with more than 40 TFs are
filtered out to control the computation time. We only
keep the GO terms indicating significant result (p-value <
1 × 10-4) with the original rank aggregation method by
either Endeavour or RRA. As a result, a total of 18 GO
terms are retained.

Comparison of network tuned rank aggregation methods
with the original rank aggregation methods of
Endeavour and RRA
We first compare the performance of Endeavour and GR
using gene expression data only. We then compare the per-
formance of CGI_Endeavour, CGI_RRA, GR_Endeavour,
and GR_RRA, together with Endeavour and RRA, using the
evaluation procedures described in subsection 2.7.
Figure 1 shows the relative performance of Endeavour

and RRA based on the three different expression data
sets. Each point corresponds to - log10(p - value) of a GO
term from one of 10 rounds of 10-fold cross validation
experiments. It can be seen that Endeavour outperforms
RRA in most situations across all three expression data
sets as the value of - log10(p - value) from Endeavour is
generally larger than that from RRA.
Figure 2 shows the average - log10(p - value) together

with the standard errors of the four integrative
approaches, CGI_Endeavour, CGI_RRA, GR_Endeavour
and GR_RRA, by incorporating network information
with CGI and GR based on the combination of the com-
pendium expression data and the BioGRID protein inter-
actions. For comparison, the results for Endeavour and
RRA are also shown. We have the following observations.
First, except for GO term 7 (invasive growth in response
to glucose limitation), the average - log(p - value) based
on both C-GLEndeavour and GR_Endeavour are higher
than that for Endeavour, indicating the usefulness of
incorporating network information for rank aggregation.
Second, the improvement of CGI_Endeavour over
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Figure 1 Comparison of the performance of Endeavour and RRA based on the Compendium, Stress and Cell Cycle expression data
sets. The x-axis indicates - log10(p-value) from Endeavour and the y-axis is - log10(p-value) from RRA. The - log10(p-value) from Endeavour is
generally larger than that from RRA indicating slightly better performance of Endeavour over RRA based on these data sets.

Figure 2 The average - log10(p - value) together with standard errors of six rank aggregation methods: Endeavour, CGI_Endeavour,
GR_Endeavour, RRA, CGI_RRA, and GR_RRA based on the Compendium expression data and BioGRID interactions. The x-axis shows the
selected 18 GO function terms and the y-axis indicates - log10(p - value) of the different methods. Higher value corresponds to better performance.
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Endeavour is much higher than that for GR_Endeavour
indicating that CGI makes more effective use of network
than GR integrating rank lists with the network. Third,
the relative performance of RRA, CGI_RRA, and
GR_RRA are similar to that among Endeavour, CGI_En-
deavour, and GR_Endeavour. Fourth, the performances
of CGI_Endeavour and CGI_RRA are similar across the
18 GO categories under study.
Figures S1-S8 in the Additional File show the corre-

sponding results with other combinations of gene expres-
sion data and protein interaction networks. The relative
performance of the six rank aggregation methods are
the same as presented above. However, it is noted that the
average - log(p - value) based on the DIP and MIPS pro-
tein interaction data sets are generally smaller than that
based on the BioGRID network. The results are most
likely due to the relative sparse yeast networks in DIP and
MIPS compared to BioGRID. Thus, for the purpose of
rank aggregation, we recommend the use of the BioGRID
interaction data set.
We will mainly focus on CGI_Endeavour and

CGI_RRA in the rest of this paper. The average selected
parameters for CGI_Endeavour and CGI_RRA are pre-
sented in Tables 1 and 2 in Additional File. We will use
the same parameters in the following analysis.

The effect of the number of the training genes on the
performance of rank aggregation methods
In our studies, we determine the parameters using training
genes so that they are most likely to be ranked on the top.
It is expected that the improvement of our methods using
networks over the ones without networks increases with
the number of training genes. We use the log-ratio of the
p-value from the method without using the network over
the p-value from the method integrating the network to
evaluate the improvement of our integrative method and
denote this quantity as “log-p-fold”. The higher this value
is, the more effective of using the network information

becomes. Positive value of log-p-fold indicates improve-
ment of integrating networks. Therefore, for a given
method of combining express data and network, we calcu-
late the Spearman correlation between the log-p-fold
values and the number of training genes across the 18 GO
terms for each of the 10 rounds of 10-fold cross validation
experiments. The mean and standard deviation of these
Spearman correlations are calculated. The results for
all combinations of integration method, expression data
and network are given in Table 1. All the correlations are
positive indicating that the improvement of using net-
works increases with the number of training genes
for CGI_Endeavour and CGI_RRA. All mean p-values cal-
culated based on the alternative hypothesis that the corre-
lation is positive indicates that the correlations are all
significantly higher than zero.
From the above analysis, we see that the standard

deviations calculated across 10 rounds of the 10-fold
cross validation experiments are small. Considering the
huge time consuming burden for implementing 10
rounds of 10-fold experiments, we present the following
results with only one fixed classification of training gene
set and validation gene set.

The contribution of network to the network tuned rank
aggregation methods
We study if the observed improvement of rank aggrega-
tion methods incorporating networks was due to the
added biological information in the protein interaction
network. Following the procedures implemented in [20],
we randomly permute gene names in the network, and use
the rank lists together with the permuted network for
incorporating network information and aggregating the
updated rank lists. The randomized networks preserve the
topology of the original network, but dissociate any corre-
lation between the network and the rank lists. Figure 3
shows the relationship between the - log10(p - value) using
the randomized network based on BioGRID and the

Table 1 The improvement by incorporating network using CGI_Endeavour and CGI_RRA is significantly correlated with
the number of training genes

CGI_Endeavour CGI_RRA

Expression Network correlation p-value correlation p-value

Compendium BioGRID
DIP
MIPS

0.6614(0.0943)
0.722(0.0796)
0.4212(0.1339)

0.0041(0.0065)
0.0015(0.0040)
0.0668(0.0830)

0.6581(0.0920)
0.7485(0.0855)
0.5232(0.0995)

0.0041(0.0072)
0.0013(0.0046)
0.0217(0.0271)

Stress BioGRID
DIP
MIPS

0.6313(0.0865)
0.6636(0.13300)
0.4620(0.1000)

0.0060(0.0119)
0.0084(0.0212)
0.0387(0.0397)

0.6387(0.0874)
0.7060(0.1333)
0.3961(0.1160)

0.0055(0.0114)
0.0062(0.0162)
0.0725(0.0739)

Cycle BioGRID
DIP
MIPS

0.7776(0.0894)
0.6497(0.1376)
0.5997(0.0823)

0.0007(0.0019)
0.0104(0.0248)
0.0082(0.0131)

0.6585(0.1071)
0.5645(0.1482)
0.5414(0.0890)

0.0063(0.0151)
0.0227(0.0342)
0.0170(0.0233)

The table shows the average Spearman correlation between log-p-fold and the number of training genes together with the standard deviation (3rd and 5th
columns) and the mean p-value and its standard deviation (4th and 6th columns) using all combinations of gene expression and interaction data sets.

Elements in the parenthesis are standard deviation.
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Compendium expression data using CGI_Endeavour and
CGI_RRA and that without using the network. It can be
seen that the - log10(p - value) using the randomized net-
work is smaller than that without the network, indicating
that the randomized network can decrease the perfor-
mance if the network is random as expected. The results
also show that the observed improved performance using
true networks is due to the contributions of the molecular
network. We also carry out the same analysis using other
gene expression and protein interaction data sets and the
results are given in Additional File (Figures S9-S16).

The effects of false interactions in PPI on the
performance of network tuned rank aggregation methods
It is well known that most current available PPI networks
are incomplete and consist of many false interactions.

We investigate how false interactions in PPI networks
affect the performance of network tuned rank aggrega-
tion methods. Therefore, we study CGI_Endeavour and
CGI_RRA based on networks with different levels of false
interactions. As in [1], we randomly select a% of the
edges and replaced them with randomly selected protein
pairs with no interactions in the original data set. Then
we implement CGI_Endeavour and CGI_RRA based on
the new network and input rank lists. We perform this
procedure for noisy level of 20% and 40% of the total
edges for each network. Figure 4 shows the log-p-fold for
different GO terms based on CGI_Endeavour and
CGI_RRA using the noisy network generated from Bio-
GRID and the compendium expression data. For most of
GO function terms, the performance of CGI_Endeavour
and CGI_RRA decreases as the noise level increases as
expected. Even at 40% noise level, their performance is
still better than not using the networks. The results
based on other combinations of noisy networks and
expression data sets are presented in the Additional File
as Figures S17-S24.

Performance of CGI_Endeavour, GFLEndeavour, CGI_RRA
and GR_RRA using the integrated network
The performances of our integration methods based on
the BioGRID network are better than that based on the
DIP and the MIPS networks. We wonder if the integrated

Table 2 Computational time of implementing
CGI_Endeavour, CGI_RRA, GR_Endeavour and GR_RRA
with the Compendium expression data and the BioGRID
interaction network for the GO term of ATPase activity

Method Time

CGI_Endeavour 1:11:31

CGI_RRA 43:14

GR_Endeavour 6:54:33

GR_RRA 6:53:07

Figure 3 The effects of randomized gene labels on the performance of CGI_Endeavour and CGI_RRA based on the Compendium
expression and the BioGRID network. The x-axis is - log10(p - value) from the original method. The y-axis is - log10(p - value) from the
methods incorporating network information.
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network by combining all the interactions from these
three networks can further improve the performance of
our integration approaches. Therefore, we merge the
three networks together and run our methods based on
the integrated network. Figure 5 shows the performance
of a) CGI_Endeavour, b) GR_Endeavour, c) CGI_RRA
and d) GR_RRA based on the integrated, BioGRID, DIP
and MIPS networks and the Compendium expression
data. We can see that the performances of the integration
method based on the integrated network are better than
that using any individual network.

An alternative strategy of firstly aggregating rank lists
and then integrating network
In the above studies, we first integrate each individual
rank list with the network and then aggregate the
updated rank lists. A natural alternative approach is to
first aggregate rank lists and then update the integrated
rank list with the network. Corresponding to our four
methods, we name the four methods following the alter-
native approach as Endeavour_CGI, Endeavour_GR,
RRA_CGI and RRA_GR. Based on the BioGRID network
and the Compendium expression data, we compare the
performance of these four methods with the approaches
studied above. Figure 6 shows the relative performances
of the Endeavour based methods (upper panel) and the
RRA based methods (lower panel), respectively. It shows

that CGI_Endeavour and CGI_RRA are the best perfor-
mers in each class, respectively. While CGI_Endeavour
and CGI_RRA perform similarly across all the 18 GO
categories.

Computational time
The computational time depends on the number of indi-
vidual rank lists to be integrated. We compare the com-
putational time of CGI_Endeavour, GR_Endeavour,
CGI_RRA and GR_RRA for a specific GO function:
ATPase activity, based on the BioGRID network and the
Compendium expression data. There are 5 known tran-
scription factors for this function indicating 5 individual
rank lists to be aggregated. Table 2 shows the time spent
by these four methods using a computer of CPU speed of
2.3 GHz and 16 Gb memory. CGI_Endeavour and
CGI_RRA are more time efficient than GR_Endeavour
and GR_RRA. RRA related methods are more time effi-
cient than Endeavour related methods, consistent with
the conclusion in [2]. We do not include the diffusion
kernel matrix computation time in the time of CGI
related method. Because once we have got the diffusion
kernel matrix from the network, we can use it repeatedly
for network integration of different rank lists. Whereas
GeneRank need to be rerun each time for each network
integration. Therefore, CGI related methods are more
time efficient.

Figure 4 The effect of noise in PPI network on the performance of CG_Eendeavour and CGI_RRA based on the Compendium
expression and the BioGRID network. The x-axis shows the selected 18 GO function terms and the y-axis indicates - log10(p - value) from the
different methods. Higher value corresponds to better performance.
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Figure 5 Comparison of the performance of the integration methods based on the integrated and the individual networks. The four
sub-figures (from top to bottom) indicate the performance of CGI_Endeavour, GR_Endeavour, CGI_RRA & GR_RRA based on the integrated,
BioGRID, DIP and MIPS interaction networks and the Compendium gene expression data.

Figure 6 Comparison of the performance of CGI_Endeavour, GR_Endeavour, CGI_RRA and GR_RRA with the corresponding methods
first integrating the rank lists followed with network update. The BioGRID network and the Compendium gene expression data are used.
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Case studies: identification of pathway genes from knock-
out experiments
Kolde et al. [2] validated their RRA method by predicting
the pathway members with knock-out data. Genes with
large absolute differential expression levels before and
after a TF is knocked out are ranked high. Rank lists of
genes whose expression level were most affected by
knockout of a TF are directly extracted from [37].
For a specific GO function term (interchangeable with

pathway in their paper), Kolde et al. [2] identified the
known TFs and collected the corresponding rank lists.
They showed that the integrated rank list resulted from
RRA is better than any single rank list corresponding to a
TF. We validate our method by comparing the results
from direct aggregation using RRA or Endeavour and
aggregation after incorporating the BioGRD network
information using 10% of the genes having the same GO
term as training set. We select the same 18 GO terms as
above. Figure 7 shows - log10(p - value) for the Endeavour,
CGI_Endeavour, RRA, and CGI_RRA based on BioGRID.
It can be seen that CGI_Endeavour and CGI_RRA per-
form much better than Endeavour and RRA, respectively.
The results using MIPS and DIP interaction networks are
given in Additional File (Figures S25-S26).

Discussion and conclusion
Gene prioritization continues to play important roles in
the identification of genes responsible for complex traits,

finding targets of gene regulators such as TFs, microRNAs
or long non-coding RNAs, and construction of gene regu-
lation networks. Many methods have been developed to
integrate multiple rank lists from similar types of studies
such as gene expression profiles or one gene expression
study with a network. However, integrating multiple rank
lists with one or more networks for gene prioritization is
understudied. Here we propose to first update each rank
list with a network using similar ideas as in CGI or GR
and then integrate the updated gene rank lists using
Endeavour or RRA. Using three yeast gene expression data
sets and three protein interaction networks, we study the
effectiveness of the approaches for integrating multiple
lists with networks. We show that integrating multiple
rank lists with a PPI network can indeed improve the per-
formance of rank list aggregation over corresponding
methods without using network information. As expected,
the extent of improvement depends on the network used.
It is shown that among the three yeast interaction net-
works studied in this paper, the BioGRID network
achieves the largest improvement compared to DIP and
MIPS, most likely due to the large size of the BioGRID
network. It is also shown that the combination of CGI
with Endeavour or RRA generally outperforms GR com-
bined with Endeavour or RRA. On the other hand, the
performance of CGI_Endeavour is similar to CGI_RRA.
The conclusions hold for all the three gene expression
data sets studied indicating the generality of these results.

Figure 7 Comparison of the performance of Endeavour, CGI_Endeavour, RRA and CGI_RRA on predicting pathway members based on
TF knockout data from [37]and the BioGRID interactions. The x-axis shows the selected 18 GO function terms and the y-axis indicates -
log10(p - value) from the different methods. Higher value corresponds to better performance.
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We then show that the improvement of CGI_Endeavour
or CGI_RRA incorporating network information over
Endeavour or RRA, respectively, is indeed due to the
incorporation of network. If the gene labels are rando-
mized while keeping the network structure unchanged, it
is shown that the performance of CGI_Endeavour or
CGI_RRA would be worse than Endeavour or RRA,
respectively. Finally, we show that the performance of
CGI_Endeavour or CGI_RRA is relatively stable with
many false positive and false negative interactions.
Our methods are validated based on rank lists obtained

according to the gene co-expression level with the TF for
a given GO term. Actually, these methods are applicable
to rank lists acquired from other methods.
Our study has several limitations. First, we use yeast

gene expression and protein interaction data for our
study because the interaction data is relatively rich com-
pared to other organisms such as human. It is not clear
whether the conclusions derived from this study are valid
to many other organisms such as human where our
knowledge of the interaction network is much less than
for yeast. On the other hand, more and more interaction
data will be generated for different organisms and we
expect that our results will be applicable as more interac-
tion data become available. Second, the PPI networks
including BioGRID, DIP and MIPS we study in this paper
are static and do not indicate where and when the inter-
actions occur. In reality, protein interactions are dynamic
depending on particular cellular locations, tissues, and
environment. For certain protein properties, if the condi-
tions or tissues for the properties to show up are known,
we may restrict to such networks under these conditions
instead of the whole static network. Third, we determine
the parameters in CGI or GR based on a set of known
genes associated with a trait of interest. It is not clear
how to best set the parameters when training genes are
not available. Finally, we only consider one network in
this study. Multiple networks are usually available and it
is not clear whether one should first derive one compre-
hensive network and then use the approaches developed
here or alternatively, design new approaches to simulta-
neously integrate multiple networks. These are problems
for further studies.
In conclusion, integrating multiple rank lists together

with network information using CGLEndeavor or
CGI_RRA can be effectively used for gene prioritization.
The extent of improvement over corresponding
approaches without using network information depends
on the completeness and accuracy of the network. Even
for relative sparse networks containing a significant frac-
tion of false positives, CGI_Endeavour and CGI_RRA still
outperform their corresponding counterparts, Endeavour
and RRA, respectively.

Additional material

Additional file 1: Supplementary.pdf includes all the supplementary
figures and tables.
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