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Abstract

with aligners were suggested.

Background: In modern paired-end sequencing protocols short DNA fragments lead to adapter-appended reads.
Current paired-end adapter removal approaches trim adapter by scanning the fragment of adapter on the 3’ end
of the reads, which are not competent in some applications.

Results: Here, we propose a fast and highly accurate adapter-trimming algorithm, PEAT, designed specifically for
paired-end sequencing. PEAT requires no a priori adaptor sequence, which is convenient for large-scale meta-
analyses. We assessed the performance of PEAT with many adapter trimmers in both simulated and real life paired-
end sequencing libraries. The importance of adapter trimming was exemplified by the influence of the
downstream analyses on RNA-seq, ChIP-seq and MNase-seq. Several useful guidelines of applying adapter trimmers

Conclusions: PEAT can be easily included in the routine paired-end sequencing pipeline. The executable binaries
and the standalone C++ source code package of PEAT are freely available online.

Background

The paired-end sequencing technology, modified from the
well-known single-end sequencing technology on next
generation sequencing (NGS) platforms, plays increasingly
important roles in genomics. By sequencing 5’ ends of two
strands of a DNA (or cDNA) fragment, it provides not just
nucleic contents but also positional information of the
fragment, therefore is a powerful resource to resolve the
assembly in repetitive regions or structural variants. In
addition, it is capable of obtaining interacting long-range
DNA fragments [1], conveying information on both
strands of the sequenced DNA, resolving exon junctions
[2], and many other applications [3].

A typical Illumina’s paired-end sequencing technology
is performed as follows: double strands of DNA frag-
ments are both ligated with adapters and barcodes (when
multiplexing), and then the 5" ends of the double strands
are attached to the flow cell surface followed by many

* Correspondence: jhhung@nctu.edu.tw

'Institute of Bioinformatics and Systems Biology, National Chiao Tung
University, Hsin-Chu, Taiwan

Full list of author information is available at the end of the article

bridge amplification cycles to generate clusters for better
nucleotide synthesis and fluorescence imaging. Both
strands of each DNA fragment can serve as sequencing
templates by regenerating the clusters, and consequently
paired-end reads are produced (Figure 1A). According to
the paired-end sequencing protocol of Illumina, users are
allowed to choose the size-selected length of the DNA
fragments (or inserts) from 200 to 500 base pairs (bp)
with the sequencing quantity up to 200 millions of reads.
Paired-end reads obtained are of a machine specific
sequencing length, such as 36x2, 75x2, or 100x2 bp.

For DNA fragments that are at least as long as the pre-
specified sequencing length (e.g., 100 bp), the sequencing
process initiated from the 5’ ends of both strands will be
constrained and terminated before sequencing the adap-
ters, so that only the ‘real’ DNA information is conveyed
by the resultant paired-end reads (Figure 1A). However,
in the case when the DNA fragments are shorter than
100 bp, the sequencer will ‘read through’ the real DNA
into the adapters (Figure 1B). As a result, the paired-end
reads generated will be appended with unwanted adapter
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Figure 1 lllustrations of paired-end sequencing. (A) illustrates two strands of a double strands of DNA are both sequenced in the direction
from 5' to 3" and ligated with paired-end adapters. In the situation that the double strands of DNA have a length longer than or equal to the
machine specific sequencing length, no adapter corresponding sequences will be appended in the obtained paired-end sequenced reads.

(B) illustrates the “read through” situation that the double strands of DNA have a length smaller than the machine specific sequencing length,

handling adapter-trimming operation.

so that parts of the adapter sequences are sequenced as well. (C) illustrates the error-prone strategy the existing adapter trimmers used for

sequences (namely, adapter contamination), and are
likely dropped in the step of reference mapping.

To recover the “real” DNA part from the reads, existing
algorithms rely on the correct alignment between adapter
sequences against the 3’ ends of reads. Such algorithms
were originally designed for dealing with adapter contami-
nation in single-end sequencing. They regard paired-end
reads as two sets of single-end reads, and the adapter trim-
ming is performed on each set independently. In practice,

these single-end oriented adapter trimmers, such as
FASTX [4], Cutadapt [5], ea-utils [6], TagCleaner [7], and
Trim_Galore [8] (a wrapper of cutadapter for paired-end
sequencing), do not give satisfactory results for paired-end
sequencing. It is largely because current modern sequen-
cers have a significantly higher sequencing error rate at the
3’ ends of reads (Figure 1C). In other words, identifying the
putative trimming positions by means of matching adapter
sequence against read segments with poor sequencing
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qualities is highly error-prone. Some trimmers, such as
AdapterRemoval [9], SeqPrep [10], and Trimmomatic [11],
further filter positions found by the adapter sequencing
scanning on each of the paired reads by examining the
reversed complementarity between the untrimmed por-
tions of the paired reads; however the accuracy still
depends on the adapter sequence scanning on the error
prone 3’ ends. GATK ReadAdaptorTrimmer [12] looks for
overlaps between forward and reverse reads in a pair to
achieve high accuracy; however, it was designed specifically
for streamlining with variant calling analysis pipeline in
GATK [13], its input and output has to be in SAM/BAM
format [14], which is cumbersome for other downstream
analysis. The comparison of the performance of some of
the trimmers has been investigated by several benchmark
studies [15-17].

Here, we propose a highly efficient and accurate adap-
ter-trimming algorithm and its implementation, PEAT
(Paired-End Adapter Trimmer), designed specifically for
paired-end sequencing. PEAT requires no adapter
sequence input, which is particularly convenient when
processing libraries using different adapters on a large
scale. PEAT directly scans for the reverse complementar-
ity between the good quality portions of the reads to
avoid the loss of sensitivity during the filtering adopted
by conventional approaches. We compared PEAT with
many adapter-trimming tools. PEAT performed relatively
well in simulated benchmarks and showed high scalabil-
ity when applied to large real datasets. We applied PEAT
to two public real datasets (101x2 paired-end sequencing
libraries with 150 millions of total sequencing reads),
multimillions of adapter-appended reads were success-
fully spotted, recovered, and mapped back to the refer-
ence. We further investigated the effects of PEAT to ten
more real publicly available datasets of different sequen-
cing applications such as ChIP-seq, MNase-seq, and
RNA-seq. Comparisons between datasets processed with
and without PEAT followed by the same typical down-
stream analyses revealed obvious pattern changes, which
may deflect the biological notions toward the data. We
suggest that more attentions need to be paid to adapter
contamination in analyzing paired-end reads in all
applications.

Results and discussion

An overview of the PEAT algorithm

In a typical Illumina paired-end sequencing protocol, a
pair of adapter-appended reads emerges whenever a
DNA fragment shorter than the pre-specified sequencing
length get sequenced (Figure 1B). For a pair of reads
sequenced from such a short fragment, the 5’ ends of the
reads, which correspond to the sequences of the real
DNA fragment, have to be the reverse complement to
each other (barcoding is ignored for simplification). The
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3’ ends, on the other hand, are corresponding to the
adapter sequences, and should be equally long due to the
fix pre-specified sequencing length.

Based on the aforementioned observations, we propose
a paired-end adapter-trimming (PEAT) algorithm with an
efficient two-stage string matching strategy to detect the
junctions between real DNA and adapters in paired-end
libraries (Figure 2). The algorithm identifies multiple pos-
sible trimming positions by probing the reverse comple-
mentarity of the 5’ end of the paired reads. To begin
with, the reverse complement of a short 5’ prefix (L
nucleotides in length) of one read of the pair is used as a
template to scan for mismatch-tolerant hits against
another read of the pair. This procedure is performed
twice by taking each read of a pair as the template itera-
tively and generates two possible sets of putative trim-
ming sites. The intersection of the two sets is then used
to check the reverse complementarity of the accordingly
determined real DNA sequences (based on the given
putative trimmed sites) of each read in a pair, and the
parts corresponding to the adapter sequences, are sub-
stantially the same (in the case that forward strand and
reverse strand adapters used in sequencing library pre-
paration are totally different, the latter step can be
skipped, see Methods). If none of the trimming position
passes the check, PEAT reports that the pair is not
appended with any adapter sequence.

By using 5’ ends instead of 3’ ends as both templates and
targets for scanning, PEAT is able to determine the adap-
ter trimming positions of the paired-end reads more accu-
rately. PEAT is therefore more resistant to adapter
contamination that is very short or having multiple adap-
ter copies. Optionally, PEAT can also take the parts corre-
sponding to error-prone adapter sequences as an auxiliary
criterion for reexamination when the forward- and
reverse-strand adapters share similar sequence (the E;3
parameter, see Methods). PEAT also incorporates an open
source single-end adapter trimming algorithm [18] to pro-
vide single-end adapter trimming functionality. PEAT sup-
ports multithreading for utilizing multiple computing
nodes with data parallelism. Detailed algorithms and
implementation can be found in Methods and the source
code.

Performance comparison

We evaluated the performance of PEAT, as well as other
paired-end adapter trimmers, including AdapterRemoval,
ea-utils, GATK ReadAdaptorTrimmer, SeqPrep, Trimmo-
matic, and Trim_Galore with six benchmark simulations
and two real life datasets. The parameters of running these
tools can be found in Supplementary Methods (Additional
file 2). The benchmark simulations included datasets of
three levels of quality: low-error-rate, middle-error-rate,
and high-error-rate datasets, namely LED, MED and HED
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Figure 2 lllustration of the algorithm that PEAT applies to handle paired-end adapter trimming operation. The algorithm first conducts
reverse-complemented string matching between the front parts of the paired-end sequenced reads of length L, which is pre-specified as a

whether the accordingly determined front parts, i.e. the parts corresponding to the DNA fragments, are mutually reverse-complemented, and the
rear parts, i.e. the parts corresponding to the adapter sequences, are substantially the same (optional). See Methods for details.

reads. The algorithm next verifies the trimming positions by identifying

respectively, each of which had a million mock paired-end
reads randomly sampled from a reference mouse genome
(mm?9) and half of the paired-end reads were selectively
appended with the typical Illumina adapter sequences.
Since typical Illumina libraries use the similar forward-
and reverse-strand adapters, we also generated three com-
panion dLED, dMED and dHED of which the prefix ‘d’
indicated that the reads were generated with the distinct
forward- and reverse-strand adapters. In addition, we gen-
erated MED-o/dMED-o in which each paired-end read
shared a 50-bp overlap (designated by the suffix -o) to

demonstrate that our algorithm would not be fooled by
extra reverse complementarity within reads. Mutations
were introduced into reads according to a set of given
sequencing quality scores (Figure 1, Additional file 1). The
quality scores were sampled from a real dataset. Please see
Methods for more details.

We ran PEAT and other trimmers on a Linux virtual
machine and measure the execution time for trimming
1M of simulated reads of each of the eight datasets. All in
all, with a linear-time algorithm (running time is propor-
tional to the number of total bases, see Methods)
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effectively implemented with a lower-level computer lan-
guage (i.e, C++), PEAT clearly achieved higher efficiency
(FIG. S2, Additional file 1).

To evaluate the trimming performance, we calculated
the sensitivity, specificity, accuracy, and Matthews corre-
lation coefficient (MCC) [19] of all trimmers (FIG. S3,
Additional file 1). Since some trimmers trim bases with
low quality at 3’ end and throw away reads that are too
short after trimming by default, we used the options pro-
vided by the tools to make them behave similarly to the
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scenarios (see Supplementary Methods, Additional file 2).
PEAT topped at two general metrics (accuracy and
MCC) in most of the datasets. In general, the accuracy
deteriorated when different adapters were used. Adapter-
Removal seemed intolerant of different adapters in the
paired-end libraries. Overlapping reads did not make
apparent difference to the performance of all trimmers.
We further investigated the ratio of trimmed reads over
untrimmed reads (expected ratio: 1; Figure 3A and
S4-6A, Additional file 1) and the length distribution of
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Figure 3 Middle-error-rate (MED) datasets. (A) shows the ratio of the read count of the untrimmed reads over that of the trimmed reads by
all tested trimmers applied to the simulated MED/dMED datasets. (B, C) illustrates the length distributions of the trimmed reads processed by
each of the tested adapter trimmers applied to simulated MED (B) and dMED (C) datasets. The distributions are depicted with the ratio of the
amount of reads trimmed at certain length, ranging from 1 to 100 bp, over the total amount of trimmed reads. The ratios are magnified by

5 times with the range from 1 to 50 to visualize the presence of short fragments after trimming.
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trimmed reads (Figure 3BC and S4-6BC, Additional
file 1) obtained in eight datasets. The length distribution
shows that some trimmers tended to trim a few bases at
the 3’ end (e.g., ea-utils and Trim_Galore), and some
resulted in short fragments with a small chance (e.g.,
Trimmomatic and GATK ReadAdaptorTrimmer). Over-
all, the results of GATK ReadAdaptorTrimmer, PEAT,
and SeqPrep showed only marginal differences to the
gold standards.

We next applied PEAT and other trimmers to real life
paired-end datasets (101x2) retrieved from GEO
(GSM929772 and GSM929773, see Methods). In the com-
parison of trimming time with other tools, PEAT operated
faster than AdapterRemoval, ea-utils, Trim_Galore, GATK
ReadAdaptorTrimmer, SeqPrep and Trimmomatic by
remarkable speedups of 20X, 2.4X, 2.7X, 9X, 13X, 7X
respectively (see Table 1; no parallelism was applied in all
the tests.). The result consists with that in the benchmark
simulations, suggesting that PEAT is more efficient and
also more scalable than most of the existing trimmers.

PEAT identified 7.71M (5.04%) and 10.59M (5.05%)
adapter-appended reads from GSM929772 and
GSM929773 respectively (Table 1). The identified adapter-
appended reads were further aligned back to the mm9
reference with end-to-end alignment by Bowtie2 [20].
5.99M and 8.79M reads were concordantly aligned one or
more times to the genome, indicating that PEAT success-
fully had 77.68% and 83.03% of the identified adapter-
appended reads of the two datasets properly processed
and recovered. Since there was no gold standard, we sim-
ply took the number of reverse-complemented trimmed
pairs to approximate true positives, and denoted it as aTP.
PEAT gave the highest aTP among all tools. Comparing
the insert length distribution of the original datasets to
that processed by PEAT (FIG. S7 and S8, Additional
file 1), we conclude that PEAT successfully recovered a
significant amount of inserts shorter than 101bp without
losing reads information conveyed in the original datasets.
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For our tests, the results suggest that although some
other trimmers also take advantage the reverse-
complementarity to identify adapter contamination in
different ways and also showed comparably performance,
their algorithms do not scale very well and took much
more time to complete the task. In addition, GATK
ReadAdaptorTrimmer required extra 20+ hours of time
just to transform between the formats for the two real
life datasets (GSM929772 and GSM929772) in the tests.
It could be a burden for users that do not intent to use
the GATK framework.

Applications in RNA-seq, ChIP-seq, and MNase-seq

In practice, the importance of adapter trimming is not
fully recognized. It is not rare to assume that after size-
selection—a common procedure to eliminate unwanted
short fragments such as degradation products or rRNAs—
DNA fragments having length shorter or greater than the
size-selected length by a margin take only a very tiny part
of the sequencing library. According to this assumption,
DNA fragments with lengths outside the peak (either
shorter or longer) are extremely rare, which makes some
believe the lost of information carried by these minority
is tolerable. We applied PEAT to two real life RNA-seq
datasets GSM929772 and GSM929773 and provided evi-
dence that this assumption might need to be adjusted
(see FIG. S9, Additional file 1 and Supplementary Meth-
ods, Additional file 2).

We further collected publicly available paired-
end sequencing datasets for three typical NGS applications
from GEO: RNA-seq (GSM929772-3, GSM1000574_1,
GSM1000574_3), ChIP-seq (GSM862560_r1, GSM-
862561_rl1, GSM862562_r1, GSM862563_r1) and MNase-
seq (GSE58101_1-3), and we tested the influence on the
downstream analyses when a competent adapter trimmer
(i.e., PEAT) is included in the data processing. We used the
local alignment option (-local) in Bowtie2 to relieve the
problem of the non-mappability of the adapter-appended

Table 1 Performance comparison of tested trimmers applied to two real life datasets

PEAT AR’ EA” TG GATK" SeqPrep ™"
GSM929772 (sequence depth: 152.8M)
Time 1h 40m 36h 35m 3h 59m 4h 31m 14h 51m 22h 49m 12h 07m
# Trimmed 7,705,821 2,568,156 5,444,126 15,023,863 6,843,371 5,795,255 15,298,851
# Mappable 5,985,640 2,107,352 4,735,584 11,160,564 5,562,822 5,031,866 11,158,090
aTP 7,088,576 2,507,720 5,426,673 4,682,889 6,444,882 5,789,997 3,032,621
GSM929773 (sequence depth: 209.7M)
Time 1h32m 33h 30m 3h 40m 3h 54m 13h 55m 20h 07m 10h 51m
# Trimmed 10,587,748 3,243,421 8,659,761 17,427,938 10,191,334 9,070,298 22,184,570
# Mappable 8,791,108 2,708,858 7,604,812 13,991,491 8,755,726 7,981,609 17,451,029
arp 10,317,323 3,177,176 8,535,723 7,535,502 10,063,241 9,062,206 5,046,115

“Abbreviations: AR(AdapterRemovel); EA(ea-utils); TG(Trim_Galore); GATK (GATK ReadAdaptorTrimmer); TM(Trimmomatic)
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reads, which is a generally acceptable approach for the pur-
pose [21] (see Supplementary Methods, Additional file 2).
To eliminate possible miscalculation of insert length, we
further excluded the multi-mapping reads and found signif-
icant changes in the length distribution (Unique mapping

-
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reads only: Figure 4 and S10, Additional file 1; with multi-
mapping reads: FIG. S11 and S12, Additional file 1).

In ChIP-seq datasets, we found that, without applying
PEAT, unique mapping reads were reduced for about
40% (Figure 4A and S10A, Additional file 1), but after
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closer examination, the reduction were largely due to the
use of local alignment, which led to fewer unique align-
ment. We didn’t observe significant influence to the power
of the downstream peak calling with adapter trimming
(FIG. S13, Additional file 1. KS-test p-value: 0.051, 0.08,
0.068, and 0.052 for GSM862560_r1, GSM862561_r1,
GSM862562_rl, GSM862563_r1 respectively); however,
we would still suggest one should perform adapter trim-
ming with Bowtie end-to-end alignment, since loosing
40% of unique mapping reads might be too costly just for
getting rid of adapter contamination. In RNA-seq datasets,
contrary to that in ChIP-seq and MNase-seq datasets (see
below), about 10% more unique mapping reads were
found without PEAT. We can see an additional surge of
the blue curve (without PEAT) around 100-200 bp in
Figure 4B and S10B, Additional file 1. We examined some
of these alignments and found they were likely caused by
the truncated junction reads (see FIG. S14, Additional
file 1 for a typical case); therefore likely all the junction
reads were reported shorter. However, using Bowtie2 with
the end-to-end alignment option threw away all these
junction reads. The best practice here should be using
PEAT followed by a splice junction mapper like TopHat
[22]. The short (<100 bp) and long (>100 bp) inserts
found with PEAT were annotated to different populations
(see Supplementary Methods, Additional file 2). Short
inserts were enriched in snoRNAs and they were not
found in the results without PEAT. In MNase-seq data-
sets, more than 30% of unique mapping reads were missed
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without PEAT (Figure 4C and 10C, Additional file 1). The
absence of the short inserts affected the downstream
V-plot analysis. The CTCF occupation profiles were less
visible without adapter trimming, which may lead to
wrong estimation of the size of the binding motifs (see
Methods, Figure 5 and FIG. S15, Additional file 1). Along
with these observations, we strongly suggest that a compe-
tent adapter trimming is crucial for the correct interpreta-
tion of the paired-end sequencing data.

Conclusions
We herein propose the first paired-end specific adapter
trimming algorithm and its implementation, namely
PEAT. PEAT acknowledges the characteristics of current
paired-end sequencing and takes advantage of the self
reverse-complementarity nature of adapter-appended
read pairs. It exploits a two-step process to search for
reverse complement portions and accommodate high
sequencing errors at the 3’ ends. PEAT is written in C++
for more sophisticate control over memory and also
equipped with multithreading for multiprocessor sys-
tems. Besides, with its reverse complementarity examin-
ing algorithm for 5’ end, PEAT is able to operate without
any adapter sequence input. This feature makes PEAT
more suitable than other tools to handle large-scale
sequencing data processes, in which different adapter
sequences were used during library preparation.

Our simulation showed that single-end oriented trim-
mers that utilize post-processing to handle paired-end
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Figure 5 The V-plots of the selected MNase-seq datasets. The anchors were CTCF binding sites. The plot in the left panel was processed
with PEAT and Bowtie2 end-to-end alignment option; the plot in the right panel was processed with Bowtie2 local alignment option.
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reads might be inappropriate. PEAT was able to deter-
mine the adapter trimming position of the paired-end
sequenced reads with impressively high accuracy and
efficacy. For the tests on real life datasets without gold
standards, we used aTP to estimate the performance of
trimmers and showed that PEAT was among the best
choices. In addition, typical downstream analyses of
ChIP-seq, RNA-seq, and MNase-seq were carried out
and the results underlined the importance of a compe-
tent adapter trimmer.

PEAT currently is unable to handle barcode sequences
in 5" ends, which will be improved in the future develop-
ment. PEAT does not take into account of quality scores
and indels. It is possible for PEAT to adopt a probabilistic
model for scanning hits, although it is unpredictable if
the model would help for better sensitivity or specificity,
but it would likely reduce the speed. For sequencing plat-
forms that introduce indels into reads (such as the 454
sequencers), PEAT doesn’t perform well, but in the algo-
rithmic aspect, it is not difficult to allow a fix number of
gaps when scanning for hits without lose of efficacy. In
addition, SOLiD reads in color space can be converted
into nucleotide before processing by PEAT. We will sup-
port gapped alignment and color space alignment in the
near future. The executable binaries and the standalone
C++ source code package of PEAT are available at:
[http://jhhung.github.io/PEAT].

Methods

The rationale behind PEAT is to find the mutually reverse-
complement portion between two paired reads. A naive
implementation for an exhaustively search of all possible
trimming sites of one read pair takes quadratic time. PEAT
employs a two-stage algorithm to find the proper trimming
positions in linear time without loss of specificity and sen-
sitivity (Figure 1). The implementation details for the two
stages of string matching are disclosed in the following
paragraphs (see FIG. S16, Additional file 1).

First stage of string matching

In the first stage of string matching, PEAT starts with an
initial string matching length L, which can be set accord-
ing to the minimum size of DNA fragments of interest. In
current implementation, L is set as 30 by default. Let R;
and R, denote the two reads of a pair. The first L charac-
ters of R; and R,, denoted by T; and T respectively, are
selected. T is then reverse complemented and matched
against R, with a pre-defined mismatch-tolerance level
(see below). All possible occurrences of reverse-comple-
mented T in R, (denoted by G;) signifies potential trim-
ming sites where the 5’ portion corresponding to the real
DNA. PEAT performs the same matching procedure in
the second round by aligning reverse-complemented 7,
against R;, and obtaining another group of potential
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trimming sites G,. PEAT then performs set intersection
on G; and G, to further extract highly reliable trimming
sites (denoted by I) that are reported twice. If I is empty,
PEAT reports R; and R, non-adapter-appended and works
on the next read pair. If only one element is in I, PEAT
simply reports it as the trimming site, and skips to the
next read pair. While the intersection [ has at least two
elements, PEAT proceeds to the second stage of string
matching (see below). The total required comparison in
matching step is 2*L*N, where N is the length of a read.
Since L is a small constant, the time complexity is there-
fore O(N).

Second stage of string matching

The biggest element (J;) in I is taken, and the real DNA
portions as well as adapter portions of R; and R, are
retrieve according to I;. PEAT further examines the
validity of the current trimming position (I;) by deter-
mining whether the two real DNA portions are reverse-
complement to their counterparts by an error tolerant
string matching. PEAT also performs an optional opera-
tion to test if the two resultant adapter parts are similar
in sequence (this operation is turned on by default, and
can be turned off by setting E3=1, see below) for libraries
that use distinct 3’ and 5" adapters). The validation of I
has O(N) time complexity. If the aforementioned criteria
are met, PEAT accordingly regards the trimming position
as valid, reports I, and proceeds to the next read pair,
otherwise PEAT removes [} from [, and repeats the sec-
ond stage of string matching until the intersection group
I becomes empty. Since G; and G, are constructed by
scanning from the 5’ end, they are sorted instinctually, /
can be obtained in O(]{|). The size of I is small due to the
small odds of having false positives (the sequencing
errors more likely lead to false negatives than false posi-
tive), the cost can be amortized and the total time com-
plexity of this stage is O(N).

Error tolerant string matching

PEAT achieves error tolerance by setting a threshold on
the ratio of perfect matches between two strings. The
threshold corresponding to the first stage of string
matching (T; v.s R, and T5 v.s. R;) is denoted by Ej,
which indicates that the maximum mismatches allowed
is L*E;. L and E; should be carefully chosen for ade-
quate error tolerance. There are two additional thresh-
olds in the second stage: the ratios for the reverse
complementarity check (E;) of the DNA parts and that
for the equality check (E3) of the adapter parts of R,
and R,. To ease the burden picking parameters, we fully
test the combination of all E in different setups, and
suggest to set L=30, E;=0.4, E;=0.6, and E3=0.4. All
three thresholds can be adjusted by users for better per-
formance regarding different library preparations. Users
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can set thresholds to one to turn off the corresponding
steps.

Simulation dataset generation

The system flow of the simulation dataset generation is
illustrated in FIG. S17, Additional file 1. For generating
adapter-appended read pairs, the length of each read
was predetermined (101 nt), while the length of the
adapter sequence (denoted as A) to be appended was
sampled from a Gaussian distribution, N(¢=20, 0=5).
Next, a reference genome, mm9, was used as a reference
for generating a pair of adapter-appended reads. One
randomly selected local sequence, with the length of the
insert (i.e., 101-A), of the reference genome was
obtained, and further reverse complemented to serve as
its pairing counterpart. The well-conceived Illumina
adapter sequences, 5-AGATCGGAAGAGCGGTTCAG-
CAGGAATGCCGAGACCGATCTCGTATGCCGTCT
TCTGCTTG (forward strand) and 5-AGATCGGAA-
GAGCGTCGTGTAGGGAAAGAGTGTAGATCTCG
GTGGTCGCCGTATCATT (reverse strand), were
cropped and appended to the previously generated pair
of reverse complemented sequence of reads to reach the
predefined length. In the dHED, dMED, and dLED data-
sets, the adapter sequences used were 5-CTAGAGT-
CAGTCCGGTTAATCCGGATCAGTCGTAGGAATC-
CAAAAGGTCCGTACGTACCTT (forward strand) and
5-ATGGGCCCCTTTTAGTCAGTCAGTGGTTGGC
CCTTTAAAATTTTCTCTTGAAGTCCCC (reverse
strand). For adapter-free reads, on the other hand, two
local sequences were randomly retrieved from the gen-
ome. In all cases, regions that have undetermined
nucleotide were avoided. Each read was associated with
quality scores based on the FastQ files acquired form a
real dataset (GSM929772).

The encoded quality values were parsed and converted
back to its numerical scales, each of which indicated the
error probability of the corresponding nucleotide. In the
generation of the MED, the error probabilities corre-
sponding to each nucleotides were directly employed for
mutation application, during the generation of the LED
and HED, the error probabilities were scaled down or up
by 10°° times respectively. Mutations were introduced to
each position according to the error probability. After
that, reads generated were output in FastQ format with a
sequentially generated read index number as the identi-
fier and the corresponding quality values. In addition, we
kept track of the identifiers together with its correspond-
ing actual trimming sites, numbers of mutations in both
DNA and adapter portions for the follow-up evaluation.
Consequently, three sets of one millions of simulated
paired-end sequencing reads (half adapter-appended),
each of which was constructed from a reference genome
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segment, were selectively appended with a randomly
determined length of adapter sequences, and randomly
applied sequencing errors were introduced.

Real life datasets

The RNA-seq datasets GSM929772, GSM929773,
GSM1000574_1, GSM1000574_3 are all RNA-Seq
libraries taken from Illumina Genome Analyzer pro-
vided by UCSC ENCODE data coordinating center.
According to the documentation, polyA-selected RNAs
were fragmented and converted into cDNA, and paired-
end 2x101 bp reads were obtained from each end of
a cDNA fragment. Paired-end libraries were further
size-selected around 200 bp. The ChIP-seq datasets
GSM862560_r1, GSMS862561_rl1, GSM862562_rl,
GSM862563_r1 in was provided by GEO. The datasets
were designed to determine the DNA binding sites of
CTCF in mouse brain and contained paired 2x76 bp
reads. Three MNase-seq datasets from GSE58101,
which were called GSE58101_1, GSE58101_2 and
GSE58101_3 in this paper.

Downstream analyses

V plot analysis

The anchor CTCF binding sites were collected from
Chen et al. [23]. We selected the top 1000 most signifi-
cant peaks called by MACS 1.4 [24] with default setting
from MNase-seq datasets and refined their borders by
extending 20bp both up- and down-stream of the peak
summits, which are the points with highest read coverage
within peaks. We then generated V plots based on
Henikoff et al. [25]. Transcriptome annotation: The
annotations were gathered from the mouse genie infor-
matics (MGI) [26]. Peak calling. The alignment results of
ChIP-seq and corresponding input datasets were pro-
cessed by MACS 1.4 with default setting.
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