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Abstract

Motivation: Given a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant,
animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values
by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear
regression models which require quantitative encodings for the genotypes: the three distinct genotype values,
corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated
algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the
markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the
effects of encodings to the quantitative genetic trait prediction problem.

Results: We first showed that different encodings lead to different prediction accuracies, in many test cases. We
then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in
the phenotypes and we allow each marker to have different encodings. We show in our experiments that this
encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful
for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is
the first paper that discusses the effects of encodings to the genetic trait prediction problem.

Background
Whole genome prediction of complex phenotypic traits
using high-density genotyping arrays has attracted a lot of
attention, as it is relevant to the fields of plant and animal
breeding and genetic epidemiology [1-8]. Given a set of
biallelic molecular markers, such as SNPs, with genotype
values encoded as {0, 1, 2} on a collection of plant, animal
or human samples, the goal is to predict the quantitative
trait values by simultaneously modeling all marker effects.
One of the earliest, though still very relevant, treatments

of genomic selection was given in [1]. In the article, the
authors present four approaches: least-squares estimation,
BayesA, BayesB, and rrBLUP (Ridge-Regression BLUP),
based on a linear model of the marker effects on the trait
being studied. The latter three methods are still competi-
tive with the state-of-art techniques, and have also

spawned a number of interesting variants. Specifically,
rrBLUP [1,9] has been used widely for trait prediction
where it builds a linear model by fitting all the genotypes,
and the coefficient computed for each marker can be con-
sidered as a measure of the importance of the marker. The
name rrBLUP stands for “ridge-regression” BLUP, where
BLUP stands for the standard “best linear unbiased predic-
tion” approach used in the field. rrBLUP can be viewed as
either ridge-regression with a specific shrinkage parameter,
or a particular mixed model equation with certain variance
components [10,11]. The rrBLUP method has the benefits
of the underlying hypothesis of normal distribution of the
trait value and the marker effects, which is well suited for
highly polygenic traits; rrBLUP is computationally efficient
and robust, which makes it one of the most commonly
used models in whole genome prediction. Other popular
predictive models are Elastic-Net, Lasso, Ridge Regression
[12,13], Bayes A, Bayes B [1], Bayes Cπ [14], and Bayesian
Lasso [15,16], as well as other machine learning methods.
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The genetic trait prediction problem is defined as fol-
lows. Given n training samples, each with m ≫ n genotype
values (we use “feature”, “marker”, “genotype”, “SNP”
interchangeably) and a trait value, and a set of n′ test sam-
ples each with the same set of genotype values but without
trait value, the task is to train a predictive model from the
training samples to predict the trait value, or phenotype of
each test sample based on their genotype values. Let Y be
the trait value of the training samples. The problem is
usually represented as the following linear regression
model:

Y = β0 +
m∑
i=1

βiXi + el (1)

where Xi is the i-th genotype value, m is the total
number of genotypes and bi is the regression coefficient
for the i-th genotype, el is the error term. We call this
model single marker model.
The above model assumes that only the single markers,

or main effects, play a role for the prediction. However, it
is known that the interactions of the genotypes may also
contribute to the genetic traits under certain conditions,
which is known as Epistasis [17]. The pairwise epistasis
between two genotypes Xi and Xj is often modeled as the
product of the two genotype values. Therefore, with the
traditional representation, the linear regression model
with pairwise epistasis effects is modified as the following:

Y = β0 +
m∑
i=1

βiXi +
m∑
i,j

αi,jXiXj + el (2)

where XiXj is the product of the genotype values of
the i-th and j-th genotype and it denotes the interaction
of the two genotypes, ai,j represents the coefficient for
the interaction. Thus in this epistasis model, the epista-
sis effects are considered as augmented genotypes
besides the original genotype matrix X. We call this
model epistasis model.
Genotypes for a marker can be either homozygous or

heterozygous. For Genome Wide Association Study
(GWAS), we only need to identify the association
between a marker and the case/control trait. Therefore,
we care more about whether genotypes are homozygous
or heterozygous and the frequency of the alleles. They
don’t necessarily need to be quantitative. They are usually
represented as a pair of alleles, for example “AA” and
“TT” for homozygous genotypes, “AT” for heterozygous
genotype.
On the other hand, for genetic trait prediction pro-

blem, in Equation 1 and 2, the genetic trait values Y are
quantitative. Thus the genotypes Xi need to be quantita-
tive as well. Researchers generally assign three distinct
encodings to the three possible genotype values. A few

common sets of encodings for genotypes are {0, 1, 2},
where 0 and 2 are for homozygous genotypes and 1 is
for heterozygous genotype, and {−1, 0, 1}, where -1 and
1 are for homozygous genotypes and 0 is for heterozy-
gous genotype.
As genotypes need to be encoded, different encod-

ings may lead to different prediction accuracies, espe-
cially for the epistasis model. This is because the
multiplications of different encodings are different. For
example, the multiplication of two heterozygous geno-
types for encoding {0, 1, 2} is 1 × 1 = 1, but for encod-
ing {−1, 0, 1} is 0 × 0 = 0. It ’s not clear which
encoding should we use nor which encoding will pro-
duce better results. Another unreasonable setting is dif-
ferent interactions of the genotypes may have the same
value. For example, the multiplication of two genotypes
0, 1 and 0, 2 are both 0. But there is no biological inter-
pretation why the two genotype interactions contribute
“identically” to the trait.
Based on the above observations, we developed a

novel data-driven encoding method where the encoding
of the genotypes depends on the data itself. The basic
idea is straitforward: For each genotype g of each mar-
ker i, we identify the set of trait values for the samples
whose genotype is g at marker i. Then we take the aver-
age of this set of traits and replace the genotype with
this average value. Thus all the genotypes can be deter-
mined by the data itself and the encoding allows each
marker to be encoded differently. We call this encoding
method pure data-driven encoding.
In the traditional encoding, heterozygous genotype is

the average value of the two homozygous genotypes,
thus from the encoding we could tell which one is het-
erozygous genotype, which ones are homozygous geno-
types. One problem of the pure data-driven encoding is
that we can not distinguish between the homozygous
genotype and heterozygous genotype any more, as their
encodings completely depend on the data. So we pro-
pose a second version of the encoding, where we com-
pute the new encoding for the two homozygous
genotypes the same as in the pure data-driven encoding
method, but we compute the new encoding for the het-
erozygous genotype as the mean of the whole data set.
We call this encoding method hybrid data-driven encod-
ing. More details will be given in the methods section.

Related work
Lots of techniques have been applied to the genetic trait
prediction problem defined in Equation 1. Consider the
typical situation for linear regression, where we have the
training set y ∈ R

l , x ∈ R
l×n , in a standard linear regres-

sion, we wish to find parameters b0, b such that the sum

of square residuals,
∑l

i=1

(
yi − β0 − x�

i β
)2 , is minimized.
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The lasso approach [12,13] uses an additional l1 penalty
which aims to achieve a sparse solution. This idea has
even been extended to group lasso where variable are
included or excluded in groups [18,19]. Alternatively Ridge
regression (or Tikhonov regularization)[20] uses an l2 pen-
alty which is ideal for the case when many predictors have
non-zero coefficients. Elastic-net uses both an l1 and l2
penalty with a trade off parameter between the two [21].
Consequently lasso and ridge regression can be seen as
special cases of Elastic-net. See [22] and references therein.
The Elastic-net problem can be stated as

min
(β0,β)∈Rn+1

[
1
2l

l∑
i=1

(
yi − β0 − x�

i , ·β
)2

+ λPα(β)

]
,

where

Pα(β) = (1 − α)
1
2

||β||2l2 + α||β||l1 .

(3)

Thus when a = 1 corresponds to lasso and a = 0 cor-
responds to ridge.
Elastic-Net (with non-zero a) can be easily extended

for genome wide associate studies by use of the non-
zero b parameters selected when training the data. That
is, the l1 penalty achieves a sparse solution, and in turn
signals which variables contribute most when training
on the data.
rrBLUP (Ridge regression BLUP) [1,9] is one of the

most popular methods for genetic trait prediction.
rrBLUP simply is ridge regression with a specific choice
of l in (3). Specifically, Meuwissen et al. [23] assumes
that the b coefficients are iid from a normal distribution

such that bi ~ N (0, sb). Then the choice of λ = σ 2
e /σ

2
β

where σ 2
e is the residual error. In this case, the ridge

regression penalized estimator is equivalent to best lin-
ear unbiased predictor (BLUP) [24].
Support vector machines (SVMs) are a tool in statistics

and machine learning for the task of supervised learning
[25-29] used for either classification or regression. Here
we are interested in the latter case. Following [30], given
a training set (xi, yi), i = 1,...l, where xi ∈ R

n , the goal of
ε-SV regression is to find a function f(x) that is at most ε
deviation from the training data yi over the training data
xi, while remaining as flat as possible in the feature space.
Training an SVM requires solving

min
w,b,ξ

1
2
w�w + C

l∑
i=1

ξi

subject to yi(w�φ(xi) + b) ≥ 1 − ξi − ε,
ξi ≥ 0.

(4)

The data vectors xi are mapped to another space via the
function j, and SVM attempts to fit the data in this higher
dimensional space. Thus, the choice of j, referred to as

the kernel, has a large impact. Four kernels are usually
used:

Linear : u�v,
Polynomial : (γu�v + r)d, γ > 0,

Radial : exp(−γ ||u − v||2), γ > 0,
Sigmoid : tanh(γu�v + r).

Support vector regression involves solving Equation 4
given training data. The vector w, the choice of the kernel,
and the choice of kernel parameters, used previously to
solve Equation 4 gives a model capable of predicting
future data.
The above work all aim to solve single marker genetic

trait prediction. There are also lots of existing work on
epistasis models for GWAS. As exhaustive search of all
possible epistasis interactions is infeasible even for a
small number of markers, greedy strategies [31-36] have
been applied to detect epistasis effects where a subset of
high-marginal effect markers, which are markers that
contribute to the trait themselves, are first selected. Then
the test is conducted either between all the markers in
this subset or between the markers in this subset and the
remaining markers. These strategies, however, miss all
the possible epistasis between the low-marginal effect
markers, which are shown to exist [17]. Xiang et al. [37]
proposed an optimal algorithm to efficiently detect epis-
tasis without conducting an extensive search. A data
structure is created to effectively prune interactions that
are potentially insignificant. These work focus on GWAS
and they do not require a quantitative encoding. As a
result, none of the existing work investigated the effects
of encoding for genetic trait prediction, where quantita-
tive encoding is a must. As multiplication is one of the
most popular epistasis models, in this work, we consider
only the multiplication model for epistasis.

Methods
Genotype usually has three values, one for the homozy-
gous major allele, one for the homozygous miner allele
and one for the heterozygous allele. In the traditional
encoding {0, 1, 2}, 1 is the value for the heterozygous
genotype, 0 and 2 are for the homozygous genotype,
one on major allele, one on miner allele. All the markers
are encoded the same way. In this work, we propose two
data-driven encoding strategies. The first encoding strat-
egy is called pure data-driven encoding. The new encod-
ing for genotype of value 0 at marker i is computed as E
(i, 0) = Ave(trait(i, 0)), where E(i, 0) is the new encoding
for genotype of value 0 at maker i, trait(i, 0) is the set of
traits for the samples whose genotypes are 0 at marker i,
Ave() is the function to compute the average value. Thus
we also have E(i, 1) = Ave(trait(i, 1)), E(i, 2) = Ave(trait
(i, 2)).
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The first encoding strategy is pure data-driven. It
doesn’t distinguish homozygous genotypes with heterozy-
gous genotypes. Thus we developed the second encoding
strategy hybrid data-driven encoding, where we still have
E(i, 0) = Ave(trait(i, 0)) and E(i, 2) = Ave(trait(i, 2)) for
the two homozygous genotypes 0, 2. However, for the
heterozygous genotype 1, we have E(i, 1) = Ave(trait(i, {0,
1, 2})), where trait(i, {0, 1, 2}) indicates the trait values
for all the samples. The intuition of this encoding strat-
egy is from the traditional encoding that the encoded
value of the heterozygous genotype should be the average
of the values for homozygous genotypes. However, we
would also like to take the trait values into consideration
so that the encoding of the heterozygous genotype not
only depends on the encoding of the homozygous geno-
types, but also the corresponding trait values. As we will
show later in the experiments, the pure data-driven
encoding is in general worse than the traditional encod-
ing, and the hybrid data-driven encoding is in general
better than the traditional encoding.
The data-driven encoding strategies can be naturally

extended to pairwise epistasis effects or even higher
dimensional epistasis effects. As the hybrid data-driven
encoding has better performance, the extension is based
on the hybrid data-driven encoding method. As shown in
Figure 1, for pairwise epistasis effects, given the tradi-
tional encoding {0, 1, 2}, we have 9 possible combinations
for markers i and j, organized in the 3 × 3 grid matrix.
Assuming 0 is the traditional encoding for homozygous
genotype with major allele, 2 is the traditional encoding
for homozygous genotype with miner allele, 1 is tradi-
tional encoding for heterozygous genotype, then the cell
(0, 0) (from now on, for simplicity, we ignore the marker
indices i, j for the cell) is the traditional encoding for a
pair of homozygous genotypes, both with major allele,
the cell (2, 2) is the traditional encoding for a pair of
homozygous genotypes, both with miner allele, the cell
(1, 2) is the traditional encoding for a pair of heterozy-
gous genotype and homozygous genotype with miner
allele. The meaning of the other cells can be inferred
similarly.
Our goal is to encode each cell using the data-driven

approach. We first compute the data-driven encoding
for the four corner cells (0, 0), (0, 2), (2, 0), (2, 2) as the
average of their corresponding trait values, as shown in
Figure 1. For example, E(i, j, 0, 0) = Ave(trait(i, j, 0, 0)),
where trait(i, j, 0, 0) is the set of traits for the samples
whose traditional genotypes at marker i, j are 0 and 0,
respectively. Then for the cells (1, 0), (0, 1), (2, 1), (1, 2),
we compute their data-driven encoding by extending
the encoding strategy for single markers. For example, E
(i, j, 1, 0) = Ave(trait(i, j, {0, 1, 2}, 0)), where trait(i, j, {0,
1, 2}, 0) is the set of traits for the samples whose tradi-
tional genotype at marker i is 0 or 1 or 2, and at marker

j is 0, respectively. The intuition is that we consider the
encoding for the three cells (0, 0), (1, 0), (2, 0) for the
marker pair i, j as fixing the genotypes for marker j as 0.
Then the problem is converted to computing the encod-
ing for a single marker i, whose genotype can be either
0, or 1, or 2. Similar encoding strategies are also applied
on the cells [(0, 2), (1, 2), (2, 2)], [(0, 0), (0, 1), (0, 2)],
[(2, 0), (2, 1), (2, 2)] to compute the encodings for cells
(1, 2), (0, 1), (2, 1), respectively.
Finally for the cell in the center (1, 1), we compute its

data-driven encoding as the average of all the traits,
namely E(i, j, 1, 1) = Ave(trait(i, j, {0, 1, 2}, {0, 1, 2})).
This is again a strait-forward extension of the encoding
strategy for single markers.
The same data-driven encoding algorithm can be

further extended to higher dimensional epistasis effects.
In this work, we only focused on the application of the
data-driven encoding algorithm on single marker and
pairwise epistasis effects.
As we will show later in the experiments in Section,

the data-driven encoding not only is able to improve the
performance for the epistasis model, but also for the
single marker model. Next we investigate the reason
that the data-driven encoding is able to improve the
performance of the prediction in general. For the tradi-
tional encoding, the same genotype of different markers
are encoded with the same value. However, from
GWAS, we know that different SNPs have different
associations to the trait. Thus the markers contribute
differently to the trait. Therefore, constraining the same
genotype of different markers with the same value may
not be appropriate to obtain the best contrast factors, or
the coefficients of the markers for the regression. Our
encoding method, on the contrary, allows the same gen-
otype of different markers to have different values. And
the higher the association between the marker and the
trait is, the more close the new encoding values to the
trait value. The regression based on the new encodings
thus can more effectively identify the contributions of
the markers, leading to better accuracy. This also
explains why the data-driven encoding works better for
olygogenic traits, which depend on relatively few num-
ber of markers. For these olygogenic traits, a few mar-
kers are significantly associated with them. The data-
driven encodings of these markers are close to the value
of the traits and they can be more easily identified in
the regression. Thus the prediction can be improved.
On the contrary, for polygenic traits, which depend on a
large number of markers, all these markers have similar
associations. Thus the new encoding values are similar
to each other. So the data-driven encoding is not able to
improve the prediction performance much. In our future
work, we would like to propose a theoretical analysis for
the performance of the data-driven encoding.
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Results
As rrBLUP is one of the most commonly used methods
for genetic trait prediction, in our experiments, we eval-
uate the prediction accuracy of rrBLUP for different
encodings.

Effects of different encodings
We first illustrate that different encodings lead to differ-
ent prediction performances for epistasis model defined
in Formula 2, thus a data-driven encoding has the bene-
fit that we do not need to worry about the selection of
the encodings. We use the Maize data set [7], which
consists of two maize diversity panels with 300 Flint and

300 Dent lines developed for the European CornFed
program. The two panels, Flint and Dent, were geno-
typed using a 50 k SNP array, which after removing
SNPs with high rate of missing markers and high aver-
age heterozygosity, yielded 29,094 and 30,027 SNPs
respectively. Both of them contain 261 samples. In this
experiment, we use only Dent data set. For a pair of
SNPs, we consider the following four combinations of
encodings (SNP1, SNP2) as (E1 = {0, 1, 2}, {0, 1, 2}),
(E2 = {0, 1, 2}, {2, 1, 0}), (E3 = {2, 1, 0}, {0, 1, 2}), (E4 =
{2, 1, 0}, {2, 1, 0}).
We test all pairwise epistasis effects under the four

combinations of encodings and rank the epistasis effects

Figure 1 The data-driven encoding for pairwise epistasis of markers i, j.
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according to their mutual information to the trait. Then
we measure the correlation of the ranks among these
four combinations. Spearman’s rank correlation is a
popular method to compare two ranks. However, it
requires that the two ranks have the same set of ele-
ments. While in our case, the ranks reported by differ-
ent encodings overlap but may contain different SNP
pairs. So we adopted an average accuracy correlation
method [38]. The results for Dent trait Tass are shown
in Table 1. We can see that the ranks from different
encoding strategies have very low correlations, indicat-
ing that different encodings lead to completely different
epistasis effects.
Next we compare the performance of rrBLUP for the

two encodings {0, 1, 2} and {−1, 0, 1} and we apply
rrBLUP on all the three traits of Dent under each
encoding, respectively. We applied the epistasis model
in Formula 2 and show the average results of 10-fold
cross validation in Table 2. The performance is mea-
sured as the square of the person’s correlation, or r2.
The larger the r2, the better the regression is and the
better the prediction is. As we can see, the two encod-
ings lead to very different accuracies and {0, 1, 2} is a
better encoding on the Dent data set.

Simulated data
We next compare the predictive performance of rrBLUP
based on the traditional encoding {0, 1, 2} and the two ver-
sions of data-driven encodings we proposed. We simulate
both polygenic traits and oligogenic traits. We randomly
generate the genotype matrix X of size 100 × 500, namely
100 samples each with 500 genotypes. The trait is gener-

ated according to the formula Y =
∑m

i=1
βiXi + el . The

coefficient of the markers bi and the residual error el are
also randomly generated. We set the coefficients of the
first s genotypes, namely b1, b2,...,bs, as non-zero and of
the remaining genotypes as 0. We vary the value of s as 5,
10, 20, 50, 100, with small s for oligogenic traits and large
s for polygenic traits. Out of 100 samples, 90 are training
samples and 10 are test sample. We randomly simulate 10
data sets and for each data set we conduct 10-fold cross
validation. We compute the average prediction perfor-
mance and show the results in Table 4.

We can see that when s is small, for example, s = 5, 10,
20, the traits are oligogenic and the performance of the
hybrid encoding is better than that of the traditional
encoding. However, when s is big, for example, s = 50,
100, 200, the traits are polygenic, the performance of the
hybrid encoding is worse than that of the traditional
encoding. We also observe that the pure data-driven
encoding works poorly for all cases, indicating that it is
important to also take into consideration the relationship
of homozygous and heterozygous genotypes.

Real data
Next we apply the new encoding strategy to four different
data sets. As the pure data-driven encoding shows poor
performance, we evaluate only the hybrid data-driven
encoding. We compare the performance of rrBLUP on
both the traditional encoding and the hybrid data-driven
encoding and show the average r2 of 10-fold cross
validation.
The first data set is the Maize data set [7] which was

used to evaluate the effects of different encodings in
Section. As we can see in Table 3, for all six traits, the
data-driven encoding achieves better performance than
the traditional encoding does.
The second data set is the Asian rice, Oryza sativa,

data set [39]. This data set was based on 44,100 SNP
variants from 413 accessions of O. sativa, taken from 82
countries containing 34 phenotypes. We selected two
phenotypes, one is polygenic (Protein.content), one is
oligogenic (Pericarp.color). The data sets have 36,901
markers and 413 samples. We again vary the number of
selected features as 500, 1000. As shown in Table 3, for
the oligogenic trait (Pericarp.color), the performance of
the data-driven encoding is significantly better than that
of the traditional encoding. On the contrary, for the
polygenic trait (Protein.content), the two encodings
achieve similar performance. This is consistent with our
simulation, namely the data-driven encoding works bet-
ter for oligogenic traits.
The third data set is Pig data set, which is a collection

data on male and female pigs born since 2000 and was
taken from [5] and consists of 3,534 animals from a sin-
gle PIC nucleus pig line yielding 52,842 SNPs with five
measured traits (phenotypes). Only traits 2 and 4 were
selected for study here. As described in [5], genotypes

Table 1 The correlation between top MI (Mutual
Information) ranks by different encoding

Genotype Encoding E1 E2 E3 E4

E1 1 0.003 0.001 0.001

E2 0.001 1 0.001 0.004

E3 0.001 0.001 1 0.001

E4 0.003 0.003 - 1

Table 2 The r2 of predicted trait value under encoding
sets {0, 1, 2} and {−1, 0, 1} for the epistasis model in
Formula 2 on the Dent data set

Dataset {0, 1, 2} {−1, 0, 1}

Dent 1 Tass 0.59 0.457

Dent 2 DMC 0.562 0.481

Dent 3 DM Yield 0.321 0.211
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were sequenced from the Illumina PorcineSNP60 chip
and full pedigree information is available, which we did
not use in this study. In the original study, trait 2 was
rescaled by a weighted mean of corrected progeny phe-
notypes. Whereas trait 4 was corrected for environmen-
tal factors such as year of birth and location. Genotypes
were filtered for minor allele frequency less than 0.001
and with missing genotypes less than 10%. The original
study used AlphaImpute to impute any missing data
[14]. As we can see in Table 3, for both traits, the data-
driven encoding achieves better performance.
The fourth data set is QTLMAS data set, which was

taken from the QTL-MAS Workshop, which was held on
May 17-18, 2010 in Poznan Poland [1]. The data set con-
sists of 3,226 individuals over five generations (F0-F4)
with 20 founders, five male and 15 females. There were
two phenotype traits, the first a quantitative trait and the
second a binary trait. Only the first four generations
(2,326 individuals) have phenotype records. The genome
is approximately 500 million bp with five chromosomes,
each 100 million bp. In total, each individual was geno-
types for 10,031 biallelic SNPs. We can see in Table 3,
data-driven encoding achieves better performance for
Trait 1 and worse performance for Trait 2.

For genetic prediction, an improvement of 5% is con-
sidered as significant. As shown in Table 3, in general the
data-driven encoding is able to improve the prediction
performance and in many cases the improvement is sig-
nificant. Thus even for single marker model, the data-
driven encoding is superior to the traditional encoding.
We also applied the data-driven encoding strategy on

the epistasis model shown in Formula 2. We computed
all pairs of epistasis effects and selected the top 2,000
pairs, using their relevance, measured by mutual informa-
tion, to the trait. We then include these top 2,000 pairs of
epistasis effects in Formula 2. We conducted the experi-
ments only on the Maize data set as it is the only data set
that is small enough for an extensive search.
As we can see in Table 5, the performance of epistasis

is better for most of the traits when using the data-dri-
ven encoding. For the two traits where the traditional
encoding is better, the performance of the data-driven
encoding is only slightly worse than that of the original
encoding.

Conclusions
In this work, we showed that the genetic trait prediction
problem heavily depends on the encoding of genotypes,

Table 3 Performance of rrBLUP (average r2) on the traits of four real data sets under the traditional encoding vs. the
hybrid data-driven encoding

Data Set Traditional Encoding Hybrid Data-driven Encoding Improvement

Rice: Pericarp.color 0.433 0.504 16.4%

Rice: Protein.content 0.176 0.177 0.6%

Pig: Trait 2 0.237 0.239 0.8%

Pig: Trait 4 0.203 0.218 7.4%

QTLMAS: Trait 1 0.358 0.361 0.8%

QTLMAS: Trait 2 0.187 0.18 -3.7%

Maize: Flint 1 TASS 0.47 0.492 4.7%

Maize: Flint 2 DMC 0.301 0.308 2.3%

Maize: Flint 3 DM_Yield 0.057 0.068 19.3%

Maize: Dent 1 Tass 0.59 0.616 4.4%

Maize: Dent 2 DMC 0.562 0.58 3.2%

Maize: Dent 3 DM_Yield 0.321 0.349 8.7%

Table 4 Performance (average r2 over 10 randomly simulated data sets) of rrBLUP for different genotype encodings
and different number of contributing genotypes s

s Traditional Encoding Pure Data-driven Encoding Hybrid Data-driven Encoding

5 0.1095 0.0239 0.1334

10 0.0569 0.0512 0.0761

20 0.1841 0.1334 0.1882

50 0.1656 0.0151 0.1108

100 0.2494 0.1420 0.2147

200 0.2661 0.1267 0.2073
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especially when epistasis effects are considered. We devel-
oped a data-driven encoding method which is simple but
effective with the benefits that we don’t need to choose
between different encodings. Out experiments show that
the data-driven encoding is able to improve the prediction
accuracy for both single marker model and epistasis
model, especially for olygogenic traits. To our knowledge,
this is the first work that discusses the effects of encodings
for genetic trait prediction problem. In our future work,
we would like to theoretically analyze the effects of the
data-driven encoding for the genetic trait prediction
problem.
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