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Abstract

Background: In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated
degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-
proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the
attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites
become available, it becomes possible to develop prediction models that can be scaled to big data. However, no
development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an
approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities.

Results: In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from
dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set
contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the
difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a
recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov
model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs.
A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and
accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to
the training data of the predictive model, was used to demonstrate that the proposed method could provide a
promising accuracy (76.13%) and outperform other ubiquitination site prediction tool.

Conclusion: A case study demonstrated the effectiveness of the characterized substrate motifs for identifying
ubiquitination sites. The proposed method presents a practical means of preliminary analysis and greatly
diminishes the total number of potential targets required for further experimental confirmation. This method may
help unravel their mechanisms and roles in E3 recognition and ubiquitin-mediated protein degradation.

Introduction

Protein ubiquitination is an essential post-translational
modification (PTM) involving the conjugation of an ubiqui-
tin or poly-ubiquitin chains at specific substrate sites [1,2].
In addition to transcriptional regulation, development,
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apoptosis, and cell proliferation [3], the ubiquitination
system is responsible for the selective degradation of several
short-lived proteins in eukaryotic cells [4,5]. The ubiquitin-
mediated protein degradation is a sequential process invol-
ving a group of enzymes known as E1 (activating enzyme),
E2 (conjugating enzyme) and E3 (ubiquitin ligase) [5]. As
depicted in Figure 1, the ubiquitin-proteasome pathway is a
complex and multi-step reaction process. Firstly, ubiquiti-
nation is initiated by the attachment of the C-terminal
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Figure 1 The reaction process of protein ubiquitination.
A

residue of a ubiquitin to a cysteine sulphydryl group in
enzyme E1. The ubiquitin is subsequently transferred to E2,
which can be conjugated with various E3 enzymes. The
ubiquitin ligase E3 recognizes a specific protein substrate
and catalyzes the attachment of ubiquitin to the target pro-
tein, usually at a lysine (K) residue containing site [5].
Finally, the substrate is sent to the 26S proteasome for
degradation. An additional enzyme E4 is responsible for
stabilizing and extending the poly-ubiquitin chain [6].

The important role of protein ubiquitination plays in
cells has led to an increasing interest in computational
identification of ubiquitination sites (Ubi-sites) [7-13].
However, most tools were developed on the basis of
small-scale protein data. With the advancement in pro-
teomics technology, it has become necessary to construct
new models scalable and practical for big proteome data.
Recently, two new approaches had been introduced for
identifying Ubi-sites from large-scale proteome data
[14,15]. The UbiProber integrated key position and
amino acid redisude features specifically designed for
large-scale to predict both general and species-specific
Ubi-sites [14]. The analysis of UbiProber also showed
that: 1) ubiquitination patterns are conserved across dif-
ferent species; 2) some key positions and key amino acid

residues are essential for improving the prediction per-
formance; 3) the physicochemical properties of residues
in the flanking sequences surrounding a Ubi-site are
important in the ubiquitination process. For Ubi-site
identification in humans, hCKSAAP_UbSite [15] has
utilized amino acid patterns and properties to improve
the prediction performance. The area under the receiver
operating characteristic (ROC) curve (AUC) was
0.770 and 0.757 for the training and testing data set,
respectively.

Although UbiProber and hCKSAAP_UbSite had demon-
strated both accuracy and stability, there was room for
improvements on the performance. In addition, there was
still a lack of Ubi-site identification tools for large-scale
data. Consequently, we were motivated to develop a new
method to predict Ubi-sites based on their substrate site
specificities. The five-fold cross-validation was adopted to
evaluate the performance of the predictive models. When
applied on the training data set, the model generated an
accuracy of 60.17% and MCC of 0.202. On the testing data
set, the model obtained an accuracy of 61.30% and MCC
of 0.225. In addition, the maximal dependence decomposi-
tion (MDD) was employed to improve the predictive per-
formance. The average performance of the model with
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the integration of MDD was better than that without
MDD, reaching an overall 67.93% in accuracy and an
MCQC value of 0.363. Furthermore, the independent testing
also revealed that the combined MDD-models yielded the
highest performance. The sensitivity, specificity, accuracy
and MCC were 87.76%, 70.02%, 76.13%, and 0.549, respec-
tively. Thus, this would be an important and promising
approach for researchers who are interested in identifying
ubiquitination sites, especially for large-scale proteome
data.

Materials and method

Data collection and pre-processing

Figure 2 presents the system flow of this work, consist-
ing of data collection and pre-processing, detection of
substrate site specificities, model learning and cross-
validation, as well as independent testing. In this work,
the training data were mainly collected from dbPTM
[16-18], which integrated published literatures and pub-
lic resources including UniProtKB/Swiss-Prot [19]
and UbiProt [20]. As provided in Table 1 totally 6259
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experimentally validated ubiquitinated proteins were
obtained and used as the training data set. To construct
the positive data (Ubi-sites), the window size of 2n + 1
was used to extract fragments containing # upstream
and n downstream flanking residues around the central
Lysine (K) residue with the annotation of ubiquitination
sites. The negative data (non-Ubi-sites) were con-
structed by extracting only fragments with the central
lysine residue ‘K’ that has not been verified as ubiquiti-
nated. According to previous works [14] on the perfor-
mance evaluation of various window lengths, the
window size of 13 (n = 6) performed best in the predic-
tion of ubiquitination sites. As a result, the training data
set contained 23949 positive and 228441 negative data.
To prevent overestimation on the predictive perfor-
mance, it is necessary to remove homologous fragments
from the training data. Following previous studies, the
homologous fragments were removed using CD-HIT [21]
by repeating these three steps: 1) forming a cluster with a
representative fragment having the longest length; 2)
Comparing this fragment with the remaining fragments;

-
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Table 1 Data statistics of collected ubiquitination sites
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Resource (data set) Number of ubiquitinated

Number of ubiquitinated Number of non-ubiquitinated

proteins lysines lysines
dbPTM (Training set) 6259 23949 228441
mUbiSiDa (Independent testing 35494 110695 1217977

set)

3) removing the target fragment if its similarity with the
representative fragment is higher than the given thresh-
old, a user-selected value refers to the pairwise sequence
identity between two fragments Table 2 shows the results
of removing the homologous fragments using CD-HIT
based on some values of sequence identity. Moreover,
because this study was based on fragments and Ubi-sites,
so it is possible that some negative data are identical with
some positive data in the training data set, potentially
resulting in over-fitting. Therefore, CD-HIT was applied
again (by running cd-hit-2d across positive and negative
data with 100% sequence identity in the CD-HIT suite)
to solve this problem. After having filtered out homolo-
gous fragments with 40% sequence identity, the training
data set contained 2658 positive and 5532 negative data.
In addition, to examine the position-specific amino acid
composition for the positive training data, WebLogo [22]
was applied to generate the graphical sequence logo for
the relative frequency of the corresponding amino acid at
each position around ubiquitination sites.

Detection of substrate site specificities

With the recent advancements in proteomics technology,
more and more experimental data on ubiquitin conjuga-
tion sites become available, giving us new opportunities
to work on large-scale data. However, the complexity of
large-scale data also presents to be a challenge. Although
several prediction tools have demonstrated stability and
effectiveness, the performance was still required signifi-
cant improvement. In this work, Maximal Dependence
Decomposition (MDD) [23] was applied to detect the
substrate site specificities of protein ubiquitination. In

Table 2 Data statistics after using CD-HIT
Testing data set

Sequence identity Training data set

(6259) (35494)
Positive Negative Positive Negative
100% (original) 23949 228441 110695 1217977
90% 21621 196808 38739 325640
80% 21165 179691 36647 284713
70% 20709 165560 35165 255134
60% 18588 115296 29810 162044
50% 10216 34428 14210 41700
40% 2658 5532 3267 6214

our previous works [24-30], we used the MDD approach
on amino acid sequences instead of nucleotides, and suc-
cessfully identified conserved motif and improved
the prediction performance. MDD adopts a chi-square
2(A, A;) test to iteratively assess the dependence of
amino acid occurrence between two positions A; and A,
that surround the Ubi-sites. In this study, MDD was
applied to sub-divide the positive training data (2658
Ubi-sites fragments) to ten subgroups containing signif-
icant substrate motifs. The negative data for each
MDD-clustered subgroups were randomly selected from
the negative training (5532 non-Ubi-fragments) with a
ratio approximately equal to 1:2.08 (same as the ratio of
positive training to negative training—5532:2658). As
illustrated in Figure S1 (in Additional File 1), these sub-
groups were used to generate profile hidden Markov
models (profile HMMs) for the identification of protein
ubiquitination sites with their corresponding substrate
motifs.

Model construction and cross-validation

A public software, HMMER [31], was adopted to gener-
ate profile HMMs from the fragment sequences of each
MDD-clustered subgroup. An HMM can detect distant
relationships between amino acids surrounding the ubi-
quitination sites. In general, profile HMM learns a pre-
dictive model from positive dataset of a class; thus, in
this study, only ubiquitinated data (positive training set)
was utilized to build a predictive model. For each model
of the MDD-clustered subgroups, a threshold parameter
is selected as a cut-off value in identifying potential
positive data from a query sequence. To search the hits
of a HMM, HMMER returns both a bit score and an
expectation value (E-value). A search result with an
HMMER bit score greater than the threshold parameter
is taken as a positive prediction. Prior to the construc-
tion of a final model, the predictive performance of the
models with varying parameters are evaluated by per-
forming k-fold cross validation. In doing k-fold cross
validation, the training data is divided into k groups by
splitting each dataset into approximately equal sized
subgroups. The advantage of k-fold cross-validation is
that all original data are regarded as both training set
and test set, and each data is used for testing exactly
once [32]. In this study, k is set to five. The models are
initially evaluated using five-fold cross-validation and
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are gauged by measuring their predictive performance.
The following measurements were employed to assess
the performance of the predictive model: Sensitivity

r TN i TN
Specificity (SPE) = N + FP' Specificity (SPE) = N + FP’
TP + TN

and Accuracy = , where TP, TN,

TP + FN + TN + FP
FP and FN represent the numbers of True Positives,

True Negatives, False Positives and False Negatives,
respectively. Mathews Correlation Coefficient (MCC)

. . TP x TN — FP x EN
Mathews Correlation Coefficient (MCC) = (TP + EP)(TP + EN)(TN + FP)(TN + FN),

was also used to access the quality of the predicted result
to the observed data. Finally, the models with best pre-
dictive performance were further evaluated using the
independent testing data.

Independent testing

Due to the over-fitting problem of the training data set,
the predictive performance of the trained models may be
overestimated. Therefore, we constructed an independent
testing data set to evaluate for the real case. Recently,
Chen et al. [33] released a comprehensive database,
named mUDbiSiDa, for protein ubiquitination sites in
mammals. The data set downloaded from mUbiSiDa
included 35494 proteins was selected as the independent
testing data. The positive and negative data were gener-
ated using the same approach as applied to the training
data, resulting in 110695 positive and 1217977 negative
data. To avoid data redundancy, the homologous frag-
ments were removed using CD-HIT with the sequence
identity at 40%. Next, fragments in the negative data that
were identical to the positive were filtered out to prevent
over-fitting. As a result, the final independent testing
data consisted of 3267 positive and 6214 negative data
(Table 2). This testing data set was also used on other
prediction tools to compare with our models in terms of
performance.

Results and discussion

Amino acid composition of ubiquitination sites

The amino acid composition (AAC) could be used to
determin the the frequencies of twenty amino acids sur-
rounding the ubiquitination sites in a specified window
length. Comparison of the AAC between Ubi-sites and
those of non-Ubi-sites provides significant information
for the identification of protein ubiquitination sites. As
shown in Figure 3A, prominent amino acid residues
included Ala (A), Gln (Q), Leu (L), Ser (S), and Val (V),
while Cys (C) and Trp (W) were two of the least signifi-
cant amino acid residues. Additionally, the position-spe-
cific amino acid composition surrounding ubiquitination
sites (at position 0) could be graphically visualized in a
frequency plot of sequence logo [22,23], such that the
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abundance of amino acids around the substrate sites
could be easily observed. As presented in Figure 3B,
Sequence logo indicated that lysine (K) residue is the
most conserved amino acid residues surrounding the
Ubi-sites. It also showed that the most common and
prominent amino acid residues included Leu (L), Glu
(E), Asp (D), Ala (A), Gln (Q), Ser (S), and Val (V). It
has been reported that the composition of flanking
amino acids could contribute to the identification of the
potential protein modification sites. Thus, in this work,
the abundant amino acids could be subsequently used
to evaluate their ability to distinguish Ubi-sites from
non-Ubi-sites by five-fold cross-validation.

Substrate motifs of ubiquitination sites

In the detection of substrate motifs of ubiquitination
sites, maximal dependence decomposition (MDD) is
executed multiple times with varying values in order to
obtain the most optimal minimum cluster size. Setting
the minimum cluster size to 80 for positive training
data yielded nine clusters containing significant motifs
as shown in Table 3. The flanking amino acids (-6 ~
+6) of the non-redundant ubiquitination sites, which are
centered on position 0, are graphically visualized as an
entropy plot of sequence logo. This investigation indi-
cates that the ubiquitinated sequences in each subgroup
clustered using MDD give a conserved motif represent-
ing its substrate site specificity. As given in Table 3
most of the MDD clusters contain the conserved motifs
of Phenylalanine (F), Tyrosine (Y) and Trytophan (W)
residues. For example, MDD cluster 1 gives a conserved
motif of Phenylalanine (F), Tyrosine (Y) and Trytophan
(W) residues at position +1. Similarly, MDD cluster 2
was comprised of a conserved motif of Phenylalanine
(F), Tyrosine (Y) and Trytophan (W) residues at posi-
tion -1. In general, almost all clusters containing con-
served Phenylalanine (F), Tyrosine (Y) and Trytophan
(W) at specific positions. This suggests that, for ubiqui-
tination, the substrate site specificities may depend on
the conserved position of Phenylalanine (F), Tyrosine
(Y) and Trytophan (W) residues.

Cross-validation performance

A profile HMM was trained will all positive training
data to examine the effectiveness of AAC in identifying
Ubi-sites. As shown in Table 4 the single HMM yielded
61.60% sensitivity, 57.20% specificity, 58.26% accuracy,
and a MCC value of 0.175, based on five-fold cross-vali-
dation evaluation. With an attempt to enhance the prac-
ticability and stability of our model on large-scale data,
the MDD approach was applied for the improvement of
prediction performance. For instance, MDD cluster 1,
which contains a conserved motif of Phenylalanine (F),
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Tyrosine (Y) and Trytophan (W) residues at position +1,
obtained 77.55% sensitivity, 70.59% specificity, 72.85%
accuracy, and a MCC value of 0.453. Similarly, MDD
cluster 2 also yielded a significant improvement with a
sensitivity of 94.32%, a specificity of 85.56%, an accuracy
of 88.43%, and a MCC value of 0.764. In general, almost
all clusters containing conserved Phenylalanine (F), Tyr-
osine (Y) and Trytophan (W) at specific positions, could
yield better prediction performance. In contrast, other
clusters without clearly conserved motifs containing
Phenylalanine (F), Tyrosine (Y) and Trytophan (W)

residues generally showed lower sensitivity and accuracy
(£70%). The results of five-fold cross-validation indicate
that most of the MDD-models outperformed single
HMM. The average performance of MDD-clustered
HMMs was 67.93% in accuracy, with an MCC value of
0.363. After applying MDD, the improvement on accu-
racy and MCC was 9.67% (from 58.26% to 67.93%) and
0.188 (from 0.175 to 0.363), respectively. This investiga-
tion demonstrated the effectiveness of the MDD-identi-
fied substrate motifs in the prediction of protein
ubiquitination sites. Then, the independent testing data
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Table 3 MDD-identified substate motifs for 2658 Ubi-sites (positive training data)
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were subsequently employed to evaluate the effective-
ness of the MDD-clustered HMMs against the non-
MDD model (single HMM).

Independent testing performance

As mentioned previously, to assess the practicability of
the trained models, an independent testing data set was
constructed from mUbiSiDa. After data pre-processing,

the independent testing data set comprised 3267 positive
and 6214 negative data. The performance of the model
when tested on the independent testing data set was
shown in Table 5. The single HMM trained with all
positive training data gives 63.54% sensitivity, 60.12%
specificity, 61.30% accuracy, and 0.225 MCC value for
independent testing data. The independent testing result
for each MDD group was also given in Table 5. The
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Table 4 Performance evaluation by five-fold cross-validation for all data and 10 MDD-clustered subgroups

Data set SEN SPE ACC Mcc
All data 62.60% 59.00% 60.17% 0.202
MDD cluster 1 77.55% 70.59% 72.85% 0453
MDD cluster 2 94.32% 85.56% 88.43% 0.764
MDD cluster 3 84.82% 70.53% 7517% 0519
MDD cluster 4 60.80% 58.24% 59.07% 0.178
MDD cluster 5 66.90% 60.68% 62.70% 0.258
MDD cluster 6 72.52% 68.13% 69.55% 0.382
MDD cluster 7 70.49% 62.60% 65.16% 0310
MDD cluster 8 62.31% 54.90% 57.30% 0.161
MDD cluster 9 70.67% 58.97% 62.77% 0278
MDD cluster 10 70.30% 64.44% 66.34% 0326
10 MDD clusters (average) 73.07% 65.46% 67.93% 0.3629

combination of ten MDD models (MDD-clustered
HMMs) achieved the highest performance with 87.76%
sensitivity, 70.02% specificity, 76.13% accuracy, and the
MCC value of 0.549. Additionally, our proposed model
was also compared with an existing prediction tool, Ubi-
Prober [14], using the same independent testing data
set. It has integrated key position and amino acid redis-
ude features specifically designed for large-scale to pre-
dict both general and species-specific Ubi-sites. Figure 4
provides the comparison of ROC curve between our
proposed method and UbiProber and indicates that our
method achieved a slightly higher AUC (62.43%) than
UbiProber (62.06%).

A case study of ubiquitination site prediction on Ubi-
quitin-60S ribosomal protein L40-1 (RPL40A) of Arabi-
dopsis thaliana is given in Figure 5. The RPL40A has
five experimentally validated Ubi-sites located at posi-
tions 11, 29, 33, 48 and 63 [19,34]. The function(s) of
this protein provided by UniProt http://www.uniprot.
org/uniprot/RL40A_ARATH showed that Ubiquitin

exists either covalently attached to another protein, or
free (unanchored). When covalently bound, it is conju-
gated to target proteins via an isopeptide bond either as
a monomer (monoubiquitin), a polymer linked via dif-
ferent Lys residues of the ubiquitin (polyubiquitin
chains) or a linear polymer linked via the initiator Met
of the ubiquitin (linear polyubiquitin chains). Polyubi-
quitin chains, when attached to a target protein, have
different functions depending on the Lys residue of the
ubiquitin that is linked: Lys-11-linked is involved in
ERAD (endoplasmic reticulum-associated degradation)
and in cell-cycle regulation; Lys-29-linked is involved in
lysosomal degradation; Lys-33-linked is involved in
kinase modification; Lys-48-linked is involved in protein
degradation via the proteasome; Lys-63-linked is
involved in endocytosis, and DNA-damage responses.
As shown in Figure 5, the proposed model predicted
five ubiquitination sites in the query sequence with posi-
tions 27, 29, 33, 48 and 63. The position 27 is a false
positive prediction and the accuracy reaches 80%.

Table 5 Independent testing performance for single HMM and MDD-clustered HMMs

Models SEN SPE ACC MCC

Single HMM (all data) 63.54% 60.12% 61.30% 0.225
MDD-Model 1 70.16% 66.61% 67.83% 0.351
MDD-Model 2 87.70% 7047% 7641% 0.553
MDD-Model 3 74.78% 67.70% 70.14% 0405
MDD-Model 4 63.27% 57.35% 59.39% 0.196
MDD-Model 5 52.74% 62.13% 58.90% 0.143
MDD-Model 6 77.50% 70.12% 72.66% 0454
MDD-Model 7 71.66% 60.22% 64.16% 0.303
MDD-Model 8 65.17% 60.57% 62.16% 0.245
MDD-Model 9 68.07% 59.14% 62.22% 0.259
MDD-Model 10 70.65% 67.14% 68.35% 0.360
MDD-clustered HMMs 87.76% 70.02% 76.13% 0.549



http://www.uniprot.org/uniprot/RL40A_ARATH
http://www.uniprot.org/uniprot/RL40A_ARATH

Nguyen et al. BMC Bioinformatics 2015, 16(Suppl 1):S1
http://www.biomedcentral.com/qc/1471-2105/16/51/S1

Page 9 of 11

1 T T T T
Our method '
UbiProber

0.9

O
a1

o
o

o
(a)

o
n

o
P

True positive rate

Q
w

o
(N}

0.1

0.4

.

False positive rate

Figure 4 The comparison of ROC curve between our proposed method and UbiProber.

05 0B

Interactions between E3 ligases and ubiquitinated
proteins

As mentioned previously, the ubiquitin-mediated protein
degradation is a sequential process involving in 3 major
kinds of enzymes: activating enzyme E1, conjugating
enzyme E2 and ubiquitin ligase E3. In the ubiquitin-pro-
teasome pathway, E3 ligases play very important roles
by recognizing a specific protein substrate and catalyz-
ing the attachment of ubiquitin to the target protein,
usually at a lysine (K) residue containing site. Therefore,
a full understanding about the interactions between E3
ligases and ubiquitination substrate proteins has been
being an emerging study in the investigation of protein
ubiquitination regulatory network. In order to provide a
further investigation for the interactions between E3
ligases and ubiquitinated proteins, we have collected E3
ligases and their protein-protein interactions in human
and mouse. The experimentally verified E3 ligases were

collected from four resources, as shown in Table S1 (in
Additional File 1). After the removal of data redun-
dancy, the non-redundant data of E3 ligases contained
501 entries in human and 232 entries in mouse. The
ubiquitination substrate (Ubi-substrate) proteins were
extracted from Ubi-substrate training and independent
testing data sets which were used for training and test-
ing predictor in identification of ubiquitination sites
mentioned previously. As a result, 32260 Ubi-substrate
proteins on Human and 5195 Ubi-substrate proteins on
Mouse were obtained. In addition, basing on protein-
protein interaction, the relationships between E3 ligases
and Ubi-substrate proteins were investigated. Through
the investigation of protein-protein interactions, Table
S2 (in Additional File 1) shows that the 501 human and
232 mouse E3 ligases interact with 3938 human and 604
mouse ubiquitinated proteins along with 17397 human
and 2949 mouse ubiquitination site, respectively.
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Case Study 1

UniprotKB/SwissProt ID: B9DHAG
UniprotkB/SwissProt AC: RL40A_ARATH

Protein Name:

+ Recommended name: Ubiquitin-60S nbosomal protein L40-1
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Gene Name: RPL40A
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Result
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Figure 5 A case study of the ubiquitination site prediction on Ubiquitin-60S ribosomal protein L40-1 (RPL40A) of Arabidopsis thaliana.

Conclusion

The recent rapid accumulation of proteomics data has
given us the opportunity to mine large amounts of pro-
tein data, extract important information about ubiquiti-
nation, and build models to identify ubiquitination sites.
However, the performance of existing Ubi-site identifi-
cation tools still appear to be hampered when dealing
with large data sets as our experimentation has sug-
gested. Thus, it is necessary to develop an effective
approach to improve the efficiency of prediction. Pre-
viously, we have demonstrated the ability of MDD to
enhance the performance of predictive models by clus-
tering a large set of aligned signal sequences into sub-
groups [23,35-37]. In this work, we applied the similar
strategy combined with profile hidden Markov models
in a prediction model for Ubi-site identification and
obtained an overall improvement in all performance
measures. Additionally, evaluation of our model with an
independent testing data set showed the strength of our
approach in comparison to an existing prediction tool.
To further enhance the performance of our model for

practical applications on large-scale data, we applied
MDD to sub-divide the positive training data into sub-
groups with statistically significant information. There-
fore, this work has demonstrated that the MDD-
clustered HMMs could provide promising predictive
ability in identifying ubiquitination sites from large-scale
proteome data.

Additional material

Additional File 1: Supplementary Tables and Figures. Contains
additional Tables and Figures showing further results in this study.
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