
RESEARCH Open Access

Protein inter-domain linker prediction using
Random Forest and amino acid physiochemical
properties
Maad Shatnawi1*, Nazar Zaki1, Paul D Yoo2

From Asia Pacific Bioinformatics Network (APBioNet) Thirteenth International Conference on Bioinformatics
(InCoB2014)
Sydney, Australia. 31 July - 2 August 2014

Abstract

Background: Protein chains are generally long and consist of multiple domains. Domains are distinct structural units
of a protein that can evolve and function independently. The accurate prediction of protein domain linkers and
boundaries is often regarded as the initial step of protein tertiary structure and function predictions. Such information
not only enhances protein-targeted drug development but also reduces the experimental cost of protein analysis by
allowing researchers to work on a set of smaller and independent units. In this study, we propose a novel and
accurate domain-linker prediction approach based on protein primary structure information only. We utilize a nature-
inspired machine-learning model called Random Forest along with a novel domain-linker profile that contains
physiochemical and domain-linker information of amino acid sequences.

Results: The proposed approach was tested on two well-known benchmark protein datasets and achieved 68%
sensitivity and 99% precision, which is better than any existing protein domain-linker predictor. Without applying any
data balancing technique such as class weighting and data re-sampling, the proposed approach is able to accurately
classify inter-domain linkers from highly imbalanced datasets.

Conclusion: Our experimental results prove that the proposed approach is useful for domain-linker identification in
highly imbalanced single- and multi-domain proteins.

Introduction
A domain is a conserved part of a protein that can evolve,
function, and exist independently. Each domain forms a
three-dimensional (3D) structure and can be folded and
stabilized independently. Several domains could be joined
together in different combinations forming multi-domain
proteins, and perform specific biological task [1,2]. One
domain may exist in multiple proteins. A domain varies in
length ranging from 25 to 500 amino acids (AAs) [3].
Inter-domain linkers tie neighboring domains and support
inter-domain communications in multi-domain proteins.
They also provide sufficient flexibility to facilitate domain

motions and regulate the inter-domain geometry [4]. Pre-
dicting inter-domain linkers is of great importance in pre-
cise identification of structural domains within a protein
sequence. Many domain prediction approaches first detect
domain-linkers, and then predict the location of domain
regions accordingly. This domain knowledge is then used
to understand protein structures, functions, and evolution,
to perform multiple sequence alignment, and to predict
protein-protein interactions. In addition, downsizing pro-
teins into functional domains without losing useful biolo-
gical information leads to significant reduction in the
computational cost of protein analysis [5,6]. Therefore, the
development of accurate computational method for split-
ting proteins into structural domains is regarded as a criti-
cal step in protein tertiary structure prediction and
proteomics [7].
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A number of protein inter-domain linker prediction
methods have been developed and these methods can be
classified into (i) statistical-based, (ii) alignment/homol-
ogy-based and (iii) machine-learning (ML)-based meth-
ods. Dom-Cut [3] is one of the typical early day’s
statistical-based methods. Domcut predicts inter-domain
linker regions based on the differences in AA composi-
tions between domain and linker regions in a protein
sequence. DomCut considers a region or segment in a
sequence as a linker if it is in the range between 10 and
100 residues, connecting two adjacent domains, and not
containing membrane spanning regions. To represent the
preference for AA residues in linker regions, it defines
the linker index as the ratio of the frequency of AA resi-
due in domain regions to that in linker regions. A linker
preference profile is generated by plotting the averaged
linker index values along an AA sequence using a siding
window of size 15AAs. A linker is predicted if there was
a trough in the linker region and the averaged linker
index value at the minimum of the trough is lower than
the threshold value. At the threshold value of 0.09, the
sensitivity and selectivity of DomCut were 53.5% and
50.1%, respectively. Despite the fact that DomCut showed
glimpse of potential success, it was reported by Dong et
al. [8] that DomCut has low sensitivity and specificity
compared to other recent methods. However, integrating
more biological evidences with the linker index could
enhance the prediction and therefore, the idea of Dom-
Cut was later utilized by several researchers such as Zaki
et al. [9] and Pang et al. [10].
Shatnawi and Zaki [11] used AA compositional index

profile, which combines linker index and AA composi-
tion. They divided the protein sequence into chunks and
then applied a simulated annealing algorithm to predict
the optimal threshold value for each chunk. Linding et
al. [12] proposed another statistical-based method called
GlobPlot. GlobPlot allows users to plot the tendency
within protein sequences for exploring both potential
globular and disordered/flexible regions in proteins
based on their AA sequence, and to identify inter-
domain segments containing linear motifs.
A typical alignment/homology-based method which

requires the use of PSI-BLAST [13] to generate evolu-
tionary and homology information is DOMpro [14].
DOMpro was independently evaluated along with 12
other predictors in the Critical Assessment of Fully
Automated Structure Prediction 4 (CAFASP-4) [15,16]
and it was ranked among the top ab initio domain pre-
dictors. Other popular homology-based methods include
Scooby-Domain [17], and FIEFDom [18].
ML-based methods have gained lots of attentions in pro-

tein domain-linker prediction tasks. Recent approaches
employ machine learning techniques such as Artificial
Neural Networks (ANN) and variants of Support Vector

Machines (SVM). Sim et al. [19] introduced PRODO as an
ANN classifier that is trained using features obtained from
the position specific scoring matrix (PSSM) generated by
PSI-BLAST. The training dataset contained 522 contigu-
ous two-domain proteins was obtained from the structural
classification of proteins (SCOP) database, version 1.63
[20]. When tested on 48 newly added non-homologous
proteins in SCOP version 1.65 and on CASP5 targets,
PPRODO achieved 65.5% of prediction accuracy. ANN
models have also used in DomNet [2], DOMpro [14],
Shandy [21], and ThreaDom [22].
Ebina et al. [23] developed a protein linker predictor

called DROP which utilizes a SVM with a Radial Basis
Function (RBF) kernel. The classifier is trained using 25
optimal features. The optimal combination of features
was selected from a set of 3000 features using a Random
Forest (RF) algorithm. The selected features were related
to secondary structures and PSSM elements of hydro-
philic residues. The accuracy of DROP was evaluated by
two domain-linker datasets; DS-All [24,25], and CASP8
FM. DS-All contains 169 protein sequences, with a max-
imum sequence identity of 28.6%, and 201 linkers.
DROP showed a sensitivity and precision of 41.3% and
49.4%, respectively. Varients of SVM have also been
used in DomainDiscovery [26], Chatterjee et al. [27],
and DoBo [28]. The above-mentioned methods, in gen-
eral, have the following limitations:

• Although methods that use structural information
could achieve good prediction results, finding the
structural information by itself is another challenge.
In contrast, predicting the domain-linkers could lead
to infer the structural information.
• ML-based domain predictors have shown limited
capability in multi-domain proteins [2].
• Although homology-based methods can achieve
high prediction accuracy specially when close tem-
plates are retrieved, the accuracy often decreases
piercingly when the sequence identity of target and
template is low [22].
• Some methods discard any protein sequence with
non-contiguous domains. Therefore, domains that are
connected by small linkers may not be identifiable.
• Most ML-based methods are computationally
expensive. They require the high computational cost
to generate PSSM and/or predict secondary struc-
ture information for each protein.
• Some methods are evaluated based on the overall
prediction accuracy only. This may not effectively
reflect the issues of the unbalancing problem of pro-
tein domain-linker data.

In this study, we develop a compact and accurate
domain-linker prediction approach based solely on
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protein primary structure information. The novel profile
containing AA physiochemical properties and linker
indices is trained by a Random Forest (RF) classifier.
The linker index is deduced from the protein sequence
dataset of domain-linker segments. A sliding window of
variable length is used to extract the information on the
dependencies of each AA and its neighboring residues.
The proposed approach efficiently processes high-
dimensional multi-domain protein data with a much
more accurate predictive performance than existing
state-of-the-art approaches. In our approach, the well-
accepted pre-processing techniques causing computa-
tional complexity such as class weights or data re-sam-
pling are not used.

Method
The proposed approach consists of five consecutive
steps. First, we construct a multidomain benchmark
dataset for fair comparison to the existing developed
methods. Second, we build a novel profile that contains
useful structural and physiochemical information of pro-
tein sequences for the protein domain-linker prediction
tasks. Third, a nature inspired ML model using RF is
constructed. The ML model is trained by the profile
constructed in the second step. Fourth, we find the opti-
mal averaging window size that slides across the protein
AA sequence. Last, all of the above steps are integrated
and its performance is compared to other existing ML
models and domain-linker predictors on two benchmark
datasets.

Datasets
As mentioned, two protein sequence datasets are used
to evaluate the performance of our approach. The first
dataset is DS-All [24,25] which was used to evaluate
DROP [23]. All the sequences in DS-All were extracted
from the non-redundant Protein Data Bank (nr-PDB)
chain set and contains 182 protein sequences including

216 linker segments. By examining each sequence, we
found that the assignment of domains in DS-All dataset
is inconsistent with the ones in PDB. We thus relabeled
the domains and linkers of the protein sequences of this
dataset according to NCBI conserved domains database
and ended up with 140 sequences including 334
domains and 183 linker segments. The average numbers
of AA residues in linker and domain segments are 12.7
and 147.1 respectively. This means that about 95.5%
(334 ×147.1) of the total AA residues are located in
domain segments and only 4.5% (183 ×12.7) are in lin-
ker segments.
The sequences in the second set were extracted from the

Swiss-Prot database [29] and tested by Suyama and Ohara
[3] to evaluate the performance of DomCut. This dataset
contains 273 non-redundant protein sequences including
486 linkers and 794 domain segments. The average num-
bers of AA residues in linker and domain segments are
35.8 and 122.1 respectively. Therefore, about 85% (794 ×
122.1) of the total AA residues exist in domain segments
and only 15% (486 × 35.5) are in linker segments.

Feature extraction
To extract features from a protein sequence, a sliding
window technique is used. For each sequence in the
protein dataset, we slide an averaging window across the
sequence from the N-terminal to the C-terminal as
shown in Figure 1. A number of important features of a
protein, located within a sliding window, are extracted.
These features include the linker index [3], AA hydro-
phobicity, and other AA physiochemical properties such
as side-chain charge, side-chain polarity, aromaticity,
size, and electronic properties.
Linker index
Linker index was initially introduced by Suyama and
Ohara [3] as a representation of the preference for AA
residues in linker regions. Linker index is defined as the
ratio of the frequency of AA residue in linker regions to

Figure 1 Representation of proten sequence by AA features and sliding window. Each sequence in the dataset is replaced by its
corresponding properties. These property values are then averaged over a window that slides along the length of each protein sequence.
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that in domain regions. Linker index Si is computed
according to the following equation:

Si = −ln(
f linkeri

f domain
i

) (1)

where f linkeri and f domain
i are the frequency of AA resi-

due i in linker regions and domain regions, respectively.
Table 1 shows the frequency of each AA in both linker
and domain regions along with its linker index as calcu-
lated from DomCut dataset and reported by Suyama
and Ohara [3].
Hydrophobicity profile
Hydrophobic is a physical property of a substance to
repel water. Hydrophobicity is a major factor in protein
stability. The hydrophobic effect plays a key role in the
spontaneous folding of proteins. It can be defined as the
free energy required to transfer amino-acid side-chains
from cyclohexane to water [30]. Table 2 illustrates
hydrophobicity index in kilo-calories per mole for each
of the twenty AAs at a pH of 7. Several researchers
selected hydrophobicity as the main feature among
many other properties in protein structure prediction
[30-33], however, it has not been used in detecting
domain linkers.
In literature, various hydrophobicity scales have been

thoroughly examined for protein sequence classification
and prediction tasks. David [34] concluded that the
Rose scale was superior to all others when used for pro-
tein structure prediction. The Rose scale in Table 3 is

correlated to the average area of buried AAs in globular
proteins. However, Korenberg et al. [32] pointed out
several key drawbacks with Rose scale. Since it is not a
one-to-one mapping, different amino-acid sequences
can have identical hydrophobicity profiles; the scale cov-
ers a narrow range of values while causing some AAs to
be weighted more heavily than others. To overcome this
problems, the SARAH1 scale for AA was introduced
[32]. SARAH1 assigns each AA a unique five-bit signed
code, where exactly two bits are non-zero. SARAH1
ranks 20 possible AAs according to the Rose hydropho-
bicity scale. Each AA is assigned a five-bit code in des-
cending order of the binary value of the corresponding
code as illustrated in Table 4 where the right-half is the
negative mirror image of the left-half. The 10 most
hydrophobic residues are positive, and the 10 least
hydrophobic residues are negative. In this work, we
experimentally tested the three above mentioned AA
hydrophobicity scales. SARAH1 scale showed a slightly
better prediction accuracy. Thus, we used SARAH1 in
the construction of our AA feature set.

Table 1 Amino acid composition and linker index.

Amino acid Linker (%) Domain (%) Linker index

P 7.95 4.93 -0.478

S 8.32 6.97 -0.177

T 6.68 5.67 -0.163

E 7.53 6.62 -0.128

K 6.30 5.64 -0.112

Q 4.35 4.04 -0.073

A 7.03 6.64 -0.058

V 7.33 6.96 -0.052

R 5.39 5.39 0.000

D 5.39 5.47 0.016

N 4.29 4.41 0.027

I 4.86 5.16 0.060

L 7.62 8.75 0.138

H 2.13 2.59 0.195

F 2.92 3.71 0.240

M 1.47 1.94 0.275

Y 2.49 3.44 0.322

G 5.46 7.60 0.331

C 1.62 2.53 0.447

W 0.89 1.56 0.564

Table 2 Hydrophobicity index (kcal/mol) of amino acids
in a distribution from non-polar to polar at pH = 7.

Amino
acid

Hydrophobicity
index

Amino
acid

Hydrophobicity
index

I 4.92 Y -0.14

L 4.92 T -2.57

V 4.04 S -3.40

P 4.04 H -4.66

F 2.98 Q -5.54

M 2.35 K 5.55

W 2.33 N -6.64

A 1.81 E -6.81

C 1.28 D -8.72

G 0.94 R -14.92

Table 3 Rose hydrophobicity scale.

Amino
acid

Hydrophobicity
index

Amino
acid

Hydrophobicity
index

A 0.74 L 0.85

R 0.64 K 0.52

N 0.63 M 0.85

D 0.62 F 0.88

C 0.91 P 0.64

Q 0.62 S 0.66

E 0.62 T 0.70

G 0.72 W 0.85

H 0.78 Y 0.76

I 0.88 V 0.86

The scale is correlated to the average area of buried AAs in globular proteins.
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Physiochemical properties
In addition to hydrophobicity, we considered a few phy-
siochemical properties of AAs as features including elec-
tric charge, polarity, aromaticity, size, and electronic
property. AAs are categorized according to each physio-
chemical property as in Table 5 [35-37]. Each physio-
chemical property of an AA is based on its side-chain
propensity and has its own characteristics. Physiochem-
ical properties play important roles in recognizing the
behavior of AAs and their interactions with other AAs.
These interactions have significant impact on the forma-
tion, folding, and stabilization of protein 3D structures.
For example, polar and charged AAs are able to form
hydrogen bonds, and thus, they cover the molecules sur-
faces and are in contact with solvents. Positively and

negatively charged AAs form salt bridges. Polar AAs are
hydrophilic, whereas non-polar amino acids are hydro-
phobic, which are used to twist protein into useful
shapes [38,39].

Protein sequence representation
Each sequence in the dataset is replaced by its corre-
sponding properties; linker index, hydrophobicity,
charge, polarity, aromaticity, size, and electronic prop-
erty. These values are then averaged over a window that
slides along the length of each protein sequence. To cal-
culate the average feature values Xw

J along a protein
sequence S, using a sliding window of size w, we apply
the following formula:

Xw
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑j+((w−1)/2)
i=1 xsi

j + ((w − 1)/2
; 1 ≤ j ≤ (w − 1)/2

∑j+((w−1)/2)
i=j−((w−1)/2) xsi

j + ((w − 1)/2
; (w − 1)/2 < j ≤ L − ((w − 1)/2)

∑L
i=j xsi

L − j + 1 + ((w − 1)/2)
; L − ((w − 1)/2) < j ≤ L

(2)

where L is the length of the protein sequence and xsi
is the feature vector for the AA residue si which is
located at position i in the protein sequence S. Figure 1
depicts the protein sequence representation by the
amino acid features and the sliding window.

Random Forest model
Random Forest (RF) [40] is an ensemble learner that con-
structs a multitude of decision trees with randomly
selected features during training time and outputs the
class that is the mode of the classes output by individual
trees. Each decision tree grows as follows: for a training
set of N cases and M variables, sample n cases with repla-
cement from the original data to grow the tree. A number
m << M is specified such that at each node m variables
are selected randomly to best split the nodes. Each tree
grows as large as possible. The error of RF depends on the
strength of each individual tree and the correlation
between them [41]. RF algorithm is depicted in Figure 2.
We set the number of selected features at each node for
building the trees, m, to (log2(number of attributes) + 1) as
recommended by [40]. We examined several values for the
number of generated decision trees, Ntrees, in the range of
10 and 500 and found that the prediction accuracy
increases as Ntrees increases. However, the improvement in
prediction when Ntrees exceeds 200 is not considerable
when compared with the increase in computational time
and memory. Therefore, we set Ntrees to 200 in all the con-
ducted experiments.
Due to its averaging strategy, RF classifier is robust to

outliers and noise, avoids overfitting, is relatively fast,
simple, easily parallelized, and performs well in many
classification problems [40,42]. RF shows a significant

Table 4 SARAH1 hydrophobicity scale.

Amino
acid

Hydrophobicity
index

Amino
acid

Hydrophobicity
index

C 1,1,0,0,0 G 0,0,0,-1,-1

F 1,0,1,0,0 T 0,0,-1,0,-1

I 1,0,0,1,0 S 0,0,-1,-1,0

V 1,0,0,0,1 R 0,-1,0,0,-1

L 0,1,1,0,0 P 0,-1,0,-1,0

W 0,1,0,1,0 N 0,-1,-1,0,0

M 0,1,0,0,1 D -1,0,0,0,-1

H 0,0,1,1,0 Q -1,0,0,-1,0

Y 0,0,1,0,1 E -1,0,-1,0,0

A 0,0,0,1,1 K -1,-1,0,0,0

Each AA is assigned a five-bit code in descending order of the binary value of
the corresponding code where the right-half is the negative mirror image of
the left-half. The 10 most hydrophobic residues are positive, and the 10 least
hydrophobic residues are negative.

Table 5 Amino acid classification according to their
physiochemical properties.

Peoperty Value Amino acids

Charge Positive H, K, R

Negative D, E

Neutral A, C, F, G, I, L, M, N, P, Q, S, T, V, W, Y

Polatity Polar C, D, E, H, K, N, Q, R, S, T, Y

Non-polar A, F, G, I, L, M, P, V, W

Aromaticity Aliphatic I, L, V

Aromatic F, H, W, Y

Neutral A, C, D, E, G, K, M, N, P, Q, R, S, T

Size Small A, G, P, S

Medium D, N, T

Large C, E, F, H, I, K, L, M, Q, R, V, W, Y,

Electronic Strong donor A, D, E, P

Weak donor I, L, V

Neutral C, G, H, S, W

Weak acceptor F, M, Q, T, Y

Strong acceptor K, N, R
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performance improvement over the single tree classifiers
such as CART and C4.5. RF model interprets the impor-
tance of the features using measures such as decrease
mean accuracy or Gini importance [43]. RF benefit from
the randomization of decision tress as they have low-bias
and high variance. RF has few parameters to tune and
less dependent on tuning parameters [44,45].
Ensemble methods including RF, bagging, and boosting

have been increasingly applied to bioinformatics. When
compared to bagging and boosting ensemble methods, RF
has a unique advantage of using multiple feature subsets
which is well suited for high-dimensional data as demon-
strated by several bioinformatics studies [46]. Lee et al.
[47] compared the ensemble of bagging, boosting and RF
using the same experimental settings and found that RF is
the most successful one. The experimental results through
ten microarray datasets in [48] reported that RF is able to
preserve predictive accuracy while yielding smaller gene
sets compared to diagonal linear discriminant analysis,
kNN, SVM, shrunken centroids (SC), and kNN with fea-
ture selection. Other advantages of RF such as robustness

to noise, lack of dependence upon tuning parameters, and
the computation speed have been verified by [44] in classi-
fying SELDI-TOF proteomic data. Wu et al. [49] com-
pared the ensemble methods of bagging, boosting, and RF
to individual classifiers of LDA, quadratic discriminant
analysis, kNN, and SVM for MALDI-TOF (matrix assisted
laser desorption/ionization with time-of-flight) data classi-
fication and reported that among all methods RF gives the
lowest error rate with the smallest variance. RF also has
better generalization ability than Ababoost ensembles [50].
Recently, RF has been successfully employed to a wide

range of bioinformatics problems including protein-pro-
tein binding sites [51], protein-protein interaction [52,53],
protein disordered regions [54], transmembrane helix [39],
residue-residue contact and helix-helix interaction [41],
and solvent accessible surface area of TM helix residues in
membrane proteins [55].

Evaluation measures
The most commonly used evaluation metrics in
domain-linker prediction tasks are accuracy, recall,

Figure 2 Random Forest algorithm.
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precision, and F-measure. Accuracy (Ac) is defined as
the proportion of correctly predicted linkers and
domains to all of the structure-derived linkers and
domains listed in the dataset. Sensitivity, or recall (R),
is defined as the proportion of correctly predicted lin-
kers to all of the structure-derived linkers listed in the
dataset. Precision (P) is defined as the proportion of
correctly predicted linkers to all of the predicted lin-
kers. The F-measure (F1) is an evaluation metric that
combines precision and recall into a single value. It is
defined as the harmonic mean of precision and recall
[56,57]. These four evaluation metrics can be formu-
lated as:

Ac =
TP + TN

TP + TN + FN + FP
(3)

R =
TP

TP + FN
(4)

P =
TP

TP + FP
(5)

F1 =
2PR
P + R

(6)

where TP (true positive) is the number of AAs within
the known linker segment predicted as linkers, TN (true
negative) is the number of AAs within the known
domain segment predicted as domains, FN (false nega-
tive) is the number of AA within the known linker seg-
ments predicted as domains, and FP (false positive) is
the number of AA within the known domain segment
predicted as linkers.
Recall and precision are useful measures in domain-

linker prediction problem. Recall and precision are
class-independent measures so that they can handle
unbalanced data situation, where data points are not
equally distributed among classes such as domain-linker

data. F1-score is also used as a unified measure to com-
pare two approaches when one approach has higher
recall and lower precision than the other.

Results
To find the optimal averaging window size, we tested
odd window sizes in the range of 7 to 45 residues at
randomly selected 50 protein sequences from DS-All
dataset [23] and another randomly selected 50 protein
sequences from DomCut dataset [3], and then compared
the prediction performance at these windows in terms
of recall, precision, and F1-score. Figure 3 depicts the
performance measures at different sliding windows
when applied to the 50 protein sequences of DS-All
dataset. Figure 4 shows these prediction measures at dif-
ferent sliding windows when applied to the 50 protein
sequences from DomCut dataset. As seen in these two
figures, the window size of 41 showed the highest recall,
precision and F-measure on both datasets. We thus set
the averaging window size to 41 to obtain the final
experimental results.
We set the number of selected features at each node for

building the trees, m, to (log2(number of attributes) + 1) as
recommended by [40]. We examined several values for the
number of generated decision trees, Ntrees, in the range of
10 and 500 and found that the prediction accuracy
increases as Ntrees increases as shown in Figure 5. How-
ever, the improvement in prediction when Ntrees exceeds
200 is not considerable when compared with the increase
in computational time and memory. Therefore, we set
Ntrees to 200 in all the conducted experiments. This also
agrees with recent empirical studies [58,59] which
reported that ensembles of size less or equal to 100 are
too small for approximating the infinite ensemble
prediction.
On the DS-All dataset, with 10-fold cross validation,

we achieved the average prediction recall of 0.68, preci-
sion of 0.99, and F-measure of 0.80. The comparisons of
our approach with existing domain-linker predictors
approaches [23] on DS-All dataset are summarized in

Figure 3 Averaging window optimization. Recall, precision, and F1-score at different window sizes with fifty protein sequences from DS-All
dataset.
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Figure 6. Clearly, the proposed approach outperformed
the existing domain-linker predictors in terms of recall,
precision, and F-measure. To prove the usefulness of our
approach, it was again tested on DomCut/Swiss-Prot pro-
tein sequence dataset. Our approach again outperformed
Shatnawi and Zaki’s predictor [11] as well as DomCut [3]
with average recall of 0.65, a precision of 0.98, and an F-
measure of 0.78 as shown in Table 6. Figure. 7 shows the
predicted domain-linkers by the proposed approach on
FAS-associated death domain protein, FADD Human,
(PDB Accession number Q13158) which has 208 residues

with two domains and one domain-linker located in the
interval between 83 and 96 residues.

Discussion
The experimental results showed that the proposed
approach is useful for the domain-linker identification of
highly imbalanced single-domain and multi-domain pro-
teins. There are several advantages of the proposed
approach. First, the better predictive performance of the
proposed approach was achieved on the imbalance
domain-linkers without applying any class weights or data

Figure 4 Averaging window optimization. Recall, precision, and F1-score at different window sizes with fifty protein sequences from DomCut
dataset.

Figure 5 Number of generated trees optimization. Recall, precision, and F-measure at different number of generated trees performed on DS-
All dataset.

Figure 6 Performance comparison. Recall, precision, and F-measure of six currently available domain boundary/linker predictors compared to
our approach performed on DS-All dataset.
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re-sampling techniques. In other words, the proposed
approach it is not biased towards the majority class like
most other models. To compare RF performance to SVM
and ANN, we trained SVM and ANN classifiers with the
same protein data and found that both classifiers classified
the whole protein sequences as domains. This can be
explained by the fact that the training of such methods is
based on optimizing the model parameters to maximize
the classification accuracy (by minimizing the error rate)
which is not a successful strategy in case of highly imbal-
anced data. Second, physiochemical properties that are
used in this approach play important roles in forming the
behavior of AAs and their interactions with other AAs
and these interactions have significant impact on the for-
mation, folding, and stabilization of protein 3D structures.
Therefore, these properties are important features to dis-
tinguish structural domains from linkers. Third, AA fea-
tures that are used in this approach can be extracted with
a low computational cost when compared to extracting
other features such as PSSM and protein secondary struc-
ture that are used in most of the current approaches. Gen-
erating PSSM and predicting secondary structure features
are computationally expensive and time consuming.
Moreover, protein secondary structures are normally pre-
dicted by computational methods, and therefore, domain-
linker prediction is influenced by secondary structure pre-
diction accuracy as the incorrectly predicted secondary
structures may lead to model misclassification.
On the other hand, one of the limitations of our

approach is that RF may break the correlation between
AAs. Each instance in the training data is a the average
feature values for a certain AA residue in the protein.
The preference of each AA to exist in domain or lin-
ker strongly depends on its neighbor AAs. Therefore,
there is a strong correlation between these AA
instances and when RF algorithm randomly selects a

number of instances for each decision tree, the
sequence-order knowledge may be lost.
To find which features contribute most to the predic-

tion, we perform a feature selection procedure as follows.
First, we measure the Information Gain (IG) of each fea-
ture and order the features according to their IG. Then,
we remove the features one by one starting with the one
that has least IG and find its effect on the prediction and
present the results in Table 7. It is found that AA linker
index and hydrophobicity contribute more while AA
polarity and electric charge contributes less than other
features.
Although various ML-based domain prediction

approaches have been developed, they have shown a
limited capability in multi-domain protein prediction.
Capturing long-term AA dependencies and developing a
more suitable representation of protein sequence pro-
files that includes evolutionary information may lead to
better model performance. Existing approaches showed
a limited capability in exploiting long-range interactions
that exist among amino acids and participate in the for-
mation of protein secondary structure. Residues can be
adjacent in 3D space while located far apart in the AA
sequence. [2,60]. Regarding protein sequence profile
representation, the proposed input profiles in most
domain-linker predictors still provides insufficient struc-
tural information to reach the maximum accuracy.
One reason behind the limited capability of multi-

domain protein predictors is the disagreement of domain
assignment within different protein databases. The agree-
ment between domain databases covers about 80% of sin-
gle domain proteins and about 66% of multi-domain
proteins only [61]. This disagreement is due to the variance
in the experimental methods used in domain assignment.
The most predominant techniques used to experimentally
determine protein 3D structures are X-ray crystallography
and nuclear magnetic resonance spectroscopy (NMR).
However, their conformational results of domain assign-
ment vary in about 20% so that upper limit accuracy for
such domain-linker prediction task could be about 80%.

Conclusions
To the best of our knowledge, it is clearly novel that the
use of well-optimized RF classifier along with a profile

Table 6 Recall, precision, and F-measure using Swiss-
Prot/DomCut dataset.

Approach Recall Precision F1

Our Approach 0.71 0.98 0.82

Shatnawi and Zaki [11] 0.56 0.84 0.67

DomCut [3] 0.54 0.50 0.52

Figure 7 FADD Human-protein. The protein chain contains 208 residues and has two domains and a linker in the interval (83-96).
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that contains domain-linker and physiochemical prop-
erty information for protein domain linker identification
problem. The profile also uses a sliding window of vari-
able length to extract the information on the dependen-
cies of each AA and its neighbors. The utility of the
proposed approach is proved on two well-known bench-
mark datasets by achieving a recall of 68%, precision of
99%, and F1-score of 80%. The proposed approach suc-
cessfully eliminates some of the data pre-processing
steps such as class weights or data re-sampling techni-
ques, and proves that the model can handle imbalanced
data and is not biased towards the majority class. This
work can be extended by examining longer averaging
window sizes in order to capture long-range AA depen-
dency information. The averaging window formula can
also be improved to a weighted average so that the clo-
ser AA neighbors to the central residue can take higher
weights than farther ones.
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