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Abstract

Background: During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental
fates; one population is removed by cell death, while the other persistent subset undergoes morphological
remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in
transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the
regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new
tools for high throughput image analysis.

Results: We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in
metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations,
we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image
processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first
module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and
temporal reference points, which are used to compare different datasets. The second module performs segmentation
and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as
muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle
phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced
by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy
compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged
muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic
phenotypes of individual muscles throughout metamorphosis.

Conclusions: We designed a new tool to visualize and quantify morphological changes of muscles in time-lapse
images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes
involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and
Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in
muscle size regulation.

Background
Muscle wasting occurs in ageing, immobility and disease.
In order to discover pharmacological cures for human

muscle wasting disorders like cachexia and sarcopenia the
regulation of skeletal muscle mass has been studied exten-
sively [1]. Muscle mass is regulated by balancing protein
synthesis and degradation [2] which can either occur via
ubiquitin mediated proteolysis or autophagy [3]. Protein
synthesis and cell growth are promoted by a pathway con-
sisting of the insulin-like growth factor IGF1, the kinase
Akt and the mammalian target of rapamycin (mTOR). Akt
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represses the atrophy promoting transcription factor
FoxO, while mTOR stimulates protein translation and
inhibits autophagy [4]. In contrast, muscle atrophy is acti-
vated through the Myostatin and Smad3 signalling path-
way, which activates ubiquitin dependent proteolysis via
the FoxO [5]. Most of our knowledge about muscle size
control and atrophy is derived from C2C12 myoblast cell
culture and mouse transgenic models [6]. However, not
many studies have used in vivo imaging, which depends
on the ability to non-invasively observe muscle fibers in
their natural environment combined with genetics as an
experimental tool.
Drosophila melanogaster, henceforth referred to as Dro-

sophila, displays a holometabolous life cycle. Metamor-
phosis transforms larval into adult body structures in
approximately 4-5 days and involves cell death, remodel-
ling and proliferation [7]. Head eversion (HE) occurs 12
hours after puparium formation (APF) and constitutes the
prepupal to pupal transition (PPT) that gives rise to the
three major body parts (head, thorax, abdomen) of adult
flies. In this study, we focus on two types of larval abdom-
inal muscles; dorsal external oblique muscles (DEOMs)
which undergo histolysis prior to HE and the dorsal inter-
nal oblique muscles (DIOMs) which are remodelled into
adult muscles [8,9]. The change in morphology and posi-
tion of persistent DIOMs after HE is accompanied by an
atrophy-like decrease of muscle fiber diameter and an
increase of diameter prior to eclosion. Thanks to the
transparency of Drosophila pupa and the availability of
genetic tools like the UAS-GAL4 expression system [10],
fluorescent reporters and reagents for RNA interference
(RNAi) [11,12], it is possible to perform targeted gene per-
turbation and reporter gene expression. In a previous
study, we introduced a custom pipeline to visualize and
quantify 3D time-series images [9]. In a case study, we
showed that a truncated GFP tagged version of nuclear
EAST protein inhibited the histolysis of muscle fibers. Our
current goal is to scale up this experimental approach to a
larger number of genetic perturbations by taking advan-
tage of publicly available transgenic lines. Although the
previous segmentation tool could produce promising
results using 3D images as inputs, it could not handle lar-
ger number of datasets.
To build a pipeline consisting of image processing, seg-

mentation, relational database management and statistical
analysis, and minimize the amount of manual data proces-
sing, we decided to develop a custom software tool. In
recent years, many excellent non-commercial software
packages for generic image analysis were developed,
including ImageJ [13], Fiji [14], CellProfiler [15], BioIma-
geXD [16], Icy [17] and Endrov [18]. Since these tools
could not efficiently perform all required tasks, we
designed the novel Fly Muscle Analysis in Java (FMAj)

tool which is based on ImageJ. This tool processes 2D pro-
jection instead of 3D stacks for high throughput analysis of
time-series images. The FMAj tool consists of three mod-
ules for image processing and annotation, segmentation
and quantitative phenotypic analysis. An important feature
of this tool is the incorporation of a relational database,
MySQL, to store the segmented regions of interest (ROIs)
along with extracted features. We demonstrated the image
analysis capability of FMAj by phenotypic characterization
of targeted gene silencing by RNAi of Tor and Atg9.

Methods
Microscopy
All Drosophila strains were kept at 25oC. MHC-tau-GFP
[19] was used to label muscle cytoplasm and UAS-His-
tone 2Av-mKO [20] to label nuclei. Mef2-GAL4 was
used as a muscle specific driver [12]. The females from
reporter line were crossed with males from UAS-shRNA
(small hairpin) transgenic lines obtained from the
Transgenic RNAi Project (TRiP) collection [21]. The
genotype of the reporter line was MHC-tau-GFP/FM7-
GFP; Mef2-GAL4, UAS-histone-mKO/TM6B Tb. The
progeny of MHC-tau-GFP/+; Mef2-GAL4, UAS-histone-
mKO/UAS-GeneX-RNAi genotype, i.e. non-Tubby pupae
expressing both live reporters, were used to examine the
muscles. In this study, we used RNAi lines of the follow-
ing genes: Chromator (Control, Bloomington Stock id:
B-36084), Atg9 (B-34901) and Tor (B-35578).
Sample preparation and microscopy were performed as

previously described [9]. Samples were collected at the
white pupal stage, washed with water to remove the fly
food from their surface and inspected under a fluorescent
stereomicroscope (Olympus MVX10, Olympus, Tokyo,
Japan) to select prepupae expressing both reporter genes.
Up to 30 prepupae were placed on an uncoated 32 mm
diameter glass bottom dish (MatTek, Ashland, Massachu-
setts), with the dorsal side directed towards the bottom of
the dish. The prepupae were mounted in CyGEL (Biosta-
tus Ltd, Leicester, UK) to restrict their movement during
imaging. A wet tissue was kept around the specimens to
maintain humidity levels during imaging.
We used the line scanning Zeiss LSM 5 Live microscope

with a motorized stage to perform multi-location live ima-
ging of Drosophila pupae. For each sample, we collected
images at multiple focal planes and multiple time points.
The Zen 2008 software was used to configure the settings
of the confocal microscope. We acquired the images with
the following settings; 10 × magnification (EC Plan-Neo-
fluar 10×/0.30 M27), pin hole size of 16.6 μm and frame
speed of 2 FPS. The images were collected at a frame size
of 1024 × 1024 pixels; with optical slices ranging from 30
to 40. The physical size of pixel was 1.25 µm and the dis-
tance between focal planes 11.08 µm. Because single dish
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can accommodate multiple samples, the acquisition soft-
ware was configured to collect images at multiple loca-
tions. We used a data logger device to record temperature
and humidity during imaging. Image stacks were acquired
at 30 minute intervals. The confocal images (8 bit) were
stored in LSM format (Carl Zeiss) with one LSM file per
time point and sample. The LSM files of each sample were
concatenated and stored as ICS files using custom soft-
ware [22]. Subsequently, 3D stacks of ICS files were con-
verted to maximum intensity projections (MIP) and saved
as multi-page TIFF files. Pages in multi-page TIFF files
represented time points and served as the inputs of the
FMAj tool.

Image processing using FMAj
Image analysis workflow of the FMAj tool
Figure 1 illustrates the image processing pipeline of
FMAj. After starting the application, the user establishes
a database connection and selects the root folder of the
microscopic images. Once the database is online, the
tool automatically downloads the experimental informa-
tion, such as gene names, stock ids, muscle type, devel-
opmental stages and the imaging protocol from the
MySQL database. Initially, metadata about image acqui-
sition are extracted from raw image files, while biologi-
cal details are entered into the database by an expert
user. Input images of FMAj are time-series MIPs in
RGB format containing two colour channels; with green
representing the cytoplasm and red the nuclei of muscle
fibers (Figure 2). The tool provides options to view both
channels together or separately. The FMAj tool consists
of three modules which perform three sequential tasks.
The first module captures experimental metadata which
are either derived from the images or via manual anno-
tation by the user. An important user input is the defi-
nition of the onset of head eversion, which serves as the
main reference point (time point = 0 hours) for compar-
ing datasets. The second module performs segmentation
of muscle cells and nuclei in a semi-automated fashion.
Features of detected ROIs are either calculated (e.g.
shape) or annotated by the expert user (e.g. cell nomen-
clature). The third module performs comparative phe-
notypic analysis, such as comparing the cell morphology
between control and genetically perturbed cells.

Module 1: Annotation of time-series images
When the user opens a multi-page TIFF image stack in
FMAj, the tool retrieves image metadata like width, height,
physical pixel size and bit depth. The user can view the
image acquisition settings extracted from LSM metadata
like magnification, laser wavelength and pinhole size. The
user can also upload temperature and humidity readings
collected using a temperature logger device from a spread-
sheet to the database. The assay details like fluorophore,

genotype (transgenes), stock id and sample location are
manually entered by the user.
To facilitate the objective comparison of image sets of dif-

ferent samples, we established a robust spatial and temporal
reference system. Spatial registration is achieved by interac-
tively drawing a left-right symmetry axis along the midline
and rotating the time-lapse image stack so that the anterior
to posterior axis of the pupa is oriented horizontally from
left to right. In addition, the user draws a second line that
demarcates the boundary between thorax and abdomen.
These reference lines assist in the visual comparison of dif-
ferent samples. The onset of head eversion occurs approxi-
mately 12 hours after puparium formation and was used
for the temporal alignment of different samples, thus
enabling the comparison of equivalent frames in different
time-lapse datasets [9].

Module 2: Segmentation of muscle cells
The goal of image segmentation is to quantify the mor-
phological changes of persistent abdominal muscles
throughout metamorphosis. In the early pupal stages right
after head eversion, muscles are difficult, if not impossible,
to segment using automated methods due to large
amounts of debris created by the histolysis of obsolete
muscles. Therefore, we decided against an automatic
approach for muscle detection. Instead, we applied a
semi-automated active level set method [23] for segmenta-
tion of muscle cells. In the first step, the user draws one
or more polygons around muscles of interest in one or
more frames. In the second step, the polygons serve as
initial level sets for the subsequent curve evolution, which
is performed by an ImageJ level set plugin [24]. The con-
tour evolution is controlled by an edge-based constraint
that applies grey value and curvature penalties to prevent
the leakage of contours into low contrast regions. For
muscle cell segmentation, contour evolution is restricted
to the inside of manually drawn polygons. If the output of
the level-set method is not satisfactory, the user can delete
the ROI and manually redraw its boundary using ImageJ
editing functions.
For each segmented muscle in a particular frame, the

user assigns a unique description based on 4 criteria; (1)
the cell type (e.g. DEOM or DIOM), (2) the body part (e.g.
thorax or abdomen), (3) the segment (e.g. abdominal seg-
ment 3) and (4) the lateral position (left or right hemi-seg-
ment). To improve productivity, lateral positions can be
inferred from the midline, while tracking of overlapping
ROIs provides the options to automatically propagate
annotations to other subsequent frames. Correspondences
between cells in adjacent time points are established using
a nearest neighbour search on the basis of minimum dis-
tance between centroids. To avoid incorrect tracking, a
maximum distance D between centroids of adjacent
frames is used as a constraint. We estimate D based on
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the maximum movement of muscle cells observed in 30
minute intervals. Highlighting different cell types with dif-
ferent contour colours helps to identify annotation errors
that can be manually corrected by the user.

Nuclear segmentation
Muscle cells are multinucleated. Since the images were
recorded at a relatively low resolution using a 10×
objective, we often had difficulties identifying individual

Figure 1 Workflow of the image analysis pipeline. Image processing upstream of FMAj consists of three steps. 3D time-lapse image data
acquired by laser scanning confocal microscopy (a) are concatenated using the TLM-Converter custom software (step 2). Another custom
software, called TLM-2D-Explorer (step 3), generates MIPs of 3D stacks, each of which represents a time point. The workflow in FMAj consists of 5
major steps. Note in the text, steps 4 and 5 are referred to as module 1, 6 and 7 as module 2 and 8 as module 3. (step 4) The user interactively
annotates the anatomical reference points like anterior-posterior axis, left-right axis and the temporal reference points, such as the time of head
eversion (b). The annotation details and metadata collected from the microscopic images are stored in the database. (step 5) To facilitate visual
comparison of different time-lapse datasets, the anterior-posterior axis is rotated to be shown from left to right in the horizontal orientation.
(step 6) Manual and semi-automated segmentation methods based on level-set help to define the contours of muscle fibers recorded in the
green channel. In an optional step, nuclei recorded in the red channel can be segmented using an automated method. (c) Magnification of the
segmented muscle indicated by an arrowhead in (b) and its nuclei. The ROIs corresponding to muscle fibers and their nuclei are stored in the
database. (step 7) Shape and size features are calculated from the boundaries of the ROIs and stored into the database. ROIs are manually
assigned muscle types for subsequent tracking and time-series analysis. (step 8) Tracks of ROIs along with their feature values are retrieved from
the database to perform a statistical analysis of muscle phenotypes.

Kuleesha et al. BMC Bioinformatics 2014, 15(Suppl 16):S6
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S6

Page 4 of 11



nuclei. Hence, instead of identifying the centroids of all
nuclei, we modified our goal to detect the regions (or
clusters of nuclei) within muscle fiber. Nuclear regions
are detected by applying Otsu adaptive thresholding to
ROIs of muscles [25]. The boundaries of nuclei can
be viewed as contours within muscle ROIs in FMAj
(Figures 1c, 2a).

Feature extraction from regions of interest
The difference in muscle shape and size between mutants
can be quantified by comparing various morphological fea-
tures extracted from muscle cell contours. The collection
of features available in FMAj are average diameter, area,
length, circularity, elongation, orientation, extent, round-
ness, aspect ratio and solidity [26]. Average diameter is cal-
culated by measuring the width of muscle cell at multiple
points along its skeleton [27], which is equivalent to the
medial axis of the muscle cell. Average diameter, area and
length relate to size, while elongation, extent, roundness
and solidity describe the shape of muscle cells. The accu-
racy of segmentation and feature measurements in FMAj
was validated using the Fiji image analysis package. After

manually segmenting 10 ROIs using the segmentation edi-
tor plugin, we determined the average diameter by manu-
ally measuring the width at 5 locations perpendicular to
the medial axis. Length and area were calculated using Fiji,
elongation using the regionprops function in MATLAB.
The median deviations of 4 features between FMAj and
external tools ranged from -4% to +2% (Figure 3).

Module 3: Quantitative phenotypic analysis
Data browsing
FMAj allows the user to view images, annotations and
processed data. To detect interesting phenotypes, spa-
tially and temporally aligned datasets can be viewed side
by side. Annotations such as boundaries can be pro-
jected on top of images.

Statistical analysis
To compare muscle phenotypes of different RNAi geno-
types, we segmented muscles in abdominal segments 3-5
of 10 pupae per genotype at 5 hour intervals. With one
muscle per hemi-segment, our statistical analysis com-
prised 10-20 muscles per genotype and time point. To

Figure 2 Screenshot of the FMAj user interface. (a) In the left panel, the user can browse through the time-lapse images. Various annotations
can be projected onto the images, including anterior-to-posterior and left-to-right body axes, scale bar, time point and contours of segmented
ROIs. (b) The top right panel shows image metadata and contains controls for manual annotations. (c) The bottom right panel contains the
control elements for manual and semi-automatic segmentation. Annotations like muscle type can be added to selected ROIs. (d) The bottom
panel controls view options like color channel display.
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compare the morphology of different genotypes at equiva-
lent times in development, we performed the non-para-
metric Mann-Whitney U test in FMAj with help of the
Java Statistical Classes (JSC) library [28]. Significance
values (p) were determined using a non-parametric test
because of low number of samples per population (10-20)
and unknown distributions. The Mann-Whitney U test
statistics can be viewed in graphical form using the pheno-
type comparison tool. For ease of visualization, p-values
are plotted in a -1*log10(p-value) scale.

Graphical visualization of time-series data
FMAj uses the JFreeChart [29] library to generate charts,
such as line plots, to visualize and compare the dynamics
of cellular features. The user interface allows users to
select the genotypes, muscle types and shape features.
When comparing different populations, mean or median
values along with their error margins (standard deviations,
25-75% percentiles) can be plotted. Significance values can
be displayed underneath the charts of cellular features.
Environmental parameters like temperature and humidity
can also be plotted.

Database management
To improve data handling efficiency, we created a rela-
tional database using MySQL and connected it to FMAj.
Figure 4a shows the general dataflow between FMAj and
the database. MySQL is an open source database which
ensures data integrity and is very efficient in querying
large amount of data [30]. The dependencies and relation-
ships between the entities of our experimental data were
modelled in the relational database tables (Figure 4b).

The database is organized into two groups of tables; one
for experimental and biological metadata and another one
for segmentation outputs. Data collected in module 1 is
stored in experimental and biological metadata tables. It
contains two types of data. First, experimental parameters
like genotypes and imaging protocols are entered directly
into the database by the user. Second, image acquisition
parameters like laser wavelength, magnification and image
properties like stack name, image size, bit size, physical
size of pixel are extracted from LSM image files recorded
by the microscopy system. Results produced by the seg-
mentation module 2 are stored in ROI tables. These tables
store ROIs corresponding to muscle cells and nuclei as
blobs. They also store the features extracted from muscle
cell boundaries. The image stacks are not stored in the
database because of their large sizes. Instead, their file
names and locations on the hard disk relative to a user-
defined root folder are stored in the MySQL table StackI-
mageInfoMaster. In order to make sure there is no redun-
dancy of data, each stack can be identified by its name and
a unique set of three parameters: stock id, date of acquisi-
tion and location of sample in the glass bottom dish. Mod-
ule 3 of FMAj retrieves information from the database for
image browsing or graphical comparison of different sam-
ples based on specific criteria of query.

Results
Autophagy, which is negatively regulated by Tor signalling,
sequesters cytoplasmic proteins and organelles for lysoso-
mal degradation [31]. In Drosophila metamorphosis,
autophagy is believed to control the cell death of larval tis-
sues like salivary gland, midgut and fat bodies [32]. In

Figure 3 Validation of segmentation and feature measurement in FMAj. The boxplots show the percentage deviations of feature values
between FMAj and Fiji following segmentation and feature calculation of 10 muscles using the respective tools.
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order to test FMAj in quantifying developmental changes
in muscle morphology and explore the genetic control of
muscle remodelling, we selected three UAS-shRNA (small
hairpin RNA) RNA interference constructs crossed to
reporter genes for in vivo time-lapse microscopy and
image analysis. The constructs corresponding to Tor, Atg9
and Chromator (Chro) were chosen based on 3 different
phenotypes observed in late pupae by stereomicroscopy.
Tor RNAi produced smaller, while Atg9 resulted in
enlarged muscles (Figure 5). Chro served as control since
the muscles were indistinguishable from unperturbed
muscles. We acquired 10 time-lapse datasets over 5 days
per genotype, each of which contained 240 time points
recorded at 30 minute intervals from the prepupal until
the pharate adult stage. To monitor developmental
changes of DIOMs, we segmented muscle fibers at

5 hours intervals (Figure 5a-c) and determined their areas
(not shown) and average diameters (Figure 5d). In mam-
malian models, cross sectional area or diameter is the
main feature to quantify muscle atrophy. In the control
animal (Figure 5a), diameter decreased approximately
3-fold from 90 to 30 µm in the first 50 hours AHE. Con-
sistent with its role in promoting growth, Tor silencing
(Figure 5c) resulted in smaller muscles throughout meta-
morphosis, suggesting enhanced atrophy. In contrast, inhi-
bition of the autophagy factor Atg9 did not lead to altered
diameter compared to control until 30 hours AHE. An
enlargement of the muscle became only apparent in the
later stages. Although removal of many larval tissues is
believed to be mediated by autophagic cell death, the loss
of Atg9 did not cause delay of DEOM histolysis, as
was observed in the case of EAST overexpression [9].

Figure 4 Schematic diagram of the dataflow between FMAj and the relational database. (a) FMAj generates two types of image
descriptors that are stored in the database. First, metadata of the time-series images contain biological parameters of the live samples (e.g.
genotype and fluorescent marker) and details about the imaging experiment (e.g. objective, laser excitation wavelength, pixel size). Second,
descriptors of segmented muscle ROIs contain polygons, shape features, annotations provided by the user (e.g. cell type) and tracks, i.e.
assignments between ROIs in subsequent frames. In the data flow diagram, forward arrows indicate storage of data while backward arrows
indicate retrieval of data. Raw and processed images are stored on the local hard disk. Their file locations and metadata are stored inside the
MySQL database. (b) Simplified version of the entity relationship diagram of our database. Each block represents a table and each line indicates a
relationship between tables. The notations at the end of lines define the type of relationship, such as one (1) to one (1) or one to many (M). For
example, the muscle cell details table has a One to One relationship with muscle cell type. Table names in orange store experimental and
biological metadata, while those in green store results from image segmentation like the annotation or calculated features of muscle ROIs.
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The different temporal profiles in muscle remodelling were
also seen when comparing populations of muscles from
10 animals per genotype (Figure 6). For each time point,
we determined the median diameter of 10-20 muscles. To
visualize the range of features, FMAj can display the 25%
and 75% percentiles around the median value. Statistical
differences between control and the two knockdowns were
calculated using the Mann-Whitney U test and plotted
beneath the line charts showing muscle diameters. In the

case of Atg9 RNAi (Figure 6a) versus control, we observed
two phases of remodelling. In the early phase up to
30 hours AHE, when muscle diameters appear similar, the
p-values remained above a threshold of 0.01. At 30 hours
AHE and later the median diameters diverged, with Atg9
silencing resulting in a suppression of atrophy compared
to controls. This divergence was reflected by lower
p-values. The time-series plot comparing population
medians of controls with Tor RNAi (Figure 6b) revealed a

Figure 5 Genetic perturbations of autophagy and the Tor pathway affect developmental atrophy of persistent muscles. Short hairpin
RNAs (UAS-shRNA) and the nuclear UAS-histone-mKO (red) reporter were co-expressed in muscles using the Mef2-Gal4 driver. Another fluorescent
reporter MHC-tau-GFP (green) was used to label muscle cell bodies. (a) In a control pupa, persistent muscles in the 3rd abdominal segments
undergo atrophy upon head eversion which is defined as time point zero hours. (b) Silencing of Atg9 by RNAi inhibits atrophy, resulting in
enlarged muscle fibers compared to control. (c) Silencing of Tor enhances atrophy, leading to thinner fibers. (d) The effects of gene
perturbations on muscle fiber diameter can be compared in time-series plots.
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prolonged atrophy phase from 0 to 45 hours AHE in Tor
mutants compared to 0-30 hours AHE in controls. As the
diameters were discernibly different throughout metamor-
phosis the p-values remained below the 0.01 threshold.
Besides an increase in cell size, Atg9 RNAi also caused a
change in shape of muscle cells. From the mid-pupa stage
onwards (30 h AHE), we observed that the muscle cells
were thicker in central than terminal regions, (Figure 5b)
indicating that autophagy is not only attenuated but also
unevenly distributed along the longitudinal axis of fibers.
In comparison, control muscles were thinner with even
diameter (Figure 5a; 70 and 90 hours AHE). To quantify
the attenuation of muscle thinning, we calculated elonga-
tion, which is defined as the ratio between the difference

in length of major and minor axis and length of major
axis. In early pupa (0-25 hours AHE) of control and Atg9
RNAi genotypes, elongation showed a steady increase as
muscles underwent thinning along their longitudinal axis
(Figure 7, top panel). From midpupal stage onwards, the
curves of median elongation values continued increasing
in controls, while decreasing in Atg9, indicating a suppres-
sion of atrophy. This divergence was reflected by a
decrease in significance values (Figure 7, bottom panel)
determined by the Mann-Whitney U test.

Discussion
The ability of fluorescent markers to visualize a specific
biological process without affecting the global physiology

Figure 6 Graphical comparisons of median diameter between different genotypes and their statistical significance. The line charts (top
panels in a and b) compare median muscle diameters of populations of muscles expressing different RNAi constructs. The data were collected
over a period of 120 hours from 10 pupae per genotype. For each population, statistics were derived from 10 muscle cells. The red and green
lines show the median diameter, while the adjacent shaded regions indicate 25th and 75th percentiles. The horizontal dotted lines in the
significance graphs (bottom panels) represent the p-value 0.01. Due to the negative log scale, measurements of significant difference are shown
above the line. (a) Silencing of Atg9 caused decreased muscle atrophy compared to controls from 30 hours AHE onwards. Prior to 30 hours AHE,
no significant difference were observed between the two genotypes. (b) Silencing of Tor lead to an enhancement of developmental atrophy.
The graph shows that the thinning of muscle fibers proceeds for a longer period (45 as opposed to 30 hours AHE) than in control.
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of cell has made it an ideal tool for studying gene func-
tions. We have used in vivo time-lapse imaging to study
the effects of gene perturbation on developmental muscle
atrophy in Drosophila metamorphosis. We developed the
FMAj software tool for the quantitative characterization
of muscle phenotypes in time-series images. To effec-
tively perform comparative phenotypic profiling of mus-
cle development, we integrated image processing,
segmentation, structured storage by MySQL and statisti-
cal analysis. The integration of multiple tasks enhances
productivity as the alternative export of ROI data and the
manual processing in a spreadsheet program would be
much more time-consuming. A major motivation of this
study was to visualize and quantify alterations in muscle
fiber size and shape in response to genetic perturbations.
Relative to controls, silencing of Tor resulted in enhanced
developmental atrophy and smaller muscles, while silen-
cing of Atg9 led to an inhibition of atrophy and enlarged
muscles. These results on gene function are new in the
context of Drosophila metamorphosis, yet in the wider
context of cell size regulation, they are not unexpected
since signalling pathways involving IGF1, Akt and mTOR
are well-known to promote protein synthesis and the
growth of many cell types, including muscles in mam-
mals [33] and Drosophila [34]. We show that our system
can help to fill some knowledge gaps and propose new
hypotheses that can be further tested experimentally.
Although it is well-established that autophagy plays an
important part in protein degradation during muscle
atrophy [4,35], there is little, if any, evidence that Atg9, a
transmembrane protein involved in autophagosome for-
mation [36,37] participates in the control of muscle size.

Furthermore, the case of Atg9 demonstrates how time-
series analysis can uncover a transient phenotype that
may have been missed by traditional end-point assays.
Besides enlarged muscle fibers in late pupae, we could
show that muscle size only starts to deviate from controls
20 hours AHE, indicating that Atg9 function may not be
required for atrophy in this early phase of metamorpho-
sis. The temporal profile of Tor RNAi, besides the
obvious muscle size reduction, showed that atrophy pro-
gressed for a longer period in persistent muscle, suggest-
ing that Tor may act to inhibit atrophy around 30 hours
AHE. Expanding our approach of combining in vivo ima-
ging with quantitative analysis to a genome-wide scale
has the potential to uncover new players of Drosophila
muscle remodelling, some of which may also turn out to
be novel factors in mammalian muscle size control. In
summary, our model can fill knowledge gaps and propose
new hypotheses in the arena of muscle wasting research.
Since FMAj takes advantage of the ImageJ library, it

will be easier to enhance its functionalities by incorpor-
ating additional image processing and computer vision
algorithms. A drawback of the current FMAj version is
that ROI detection is performed in a manual fashion.
To enhance throughput, we plan to propagate initial
contours to subsequent time points. Moreover, we plan
to use a multivariate shape feature analysis to study the
developmental changes of muscle morphology.

List of abbreviations used
FMAj: fly muscle analysis in java; DEOM: dorsal external oblique muscle;
DIOM: dorsal internal oblique muscle; GFP: Green Fluorescent Protein; MIP:
Maximum intensity projection; mKO: monomeric Kusabira Orange; MHC:

Figure 7 Shape parameters derived from segmented muscles can help quantify differences in atrophy patterns. The top chart compares
the changes in the shape feature elongation between Atg9 and control RNAi expressing muscles. The ROIs used for the analysis were the same
as in Figure 6a. In the first 25 hours AHE, both genotypes showed similar increases of elongation coinciding with muscle atrophy. In the next 70
hours, median elongation was significantly smaller in Atg9 compared to control muscles in almost all measurements, suggesting an inhibition of
atrophy.
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