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Abstract

Background: Bioinformatics software quality assurance is essential in genomic medicine. Systematic verification
and validation of bioinformatics software is difficult because it is often not possible to obtain a realistic “gold
standard” for systematic evaluation. Here we apply a technique that originates from the software testing literature,
namely Metamorphic Testing (MT), to systematically test three widely used short-read sequence alignment
programs.

Results: MT alleviates the problems associated with the lack of gold standard by checking that the results from
multiple executions of a program satisfy a set of expected or desirable properties that can be derived from the
software specification or user expectations. We tested BWA, Bowtie and Bowtie2 using simulated data and one
HapMap dataset. It is interesting to observe that multiple executions of the same aligner using slightly modified
input FASTQ sequence file, such as after randomly re-ordering of the reads, may affect alignment results.
Furthermore, we found that the list of variant calls can be affected unless strict quality control is applied during
variant calling.

Conclusion: Thorough testing of bioinformatics software is important in delivering clinical genomic medicine. This
paper demonstrates a different framework to test a program that involves checking its properties, thus greatly
expanding the number and repertoire of test cases we can apply in practice.

Background
The advent of high-throughput Next Generation
Sequencing (NGS) technologies has greatly accelerated
the pace of disease gene discoveries and has revolutio-
nised the diagnosis and management of human genetic
diseases and cancer [1-5]. Being able to reconstruct the
genetic make-up of an individual and accurately predict
the effect of pathogenic genetic variants is essential for
genetic counselling and making informed decisions
regarding medical treatment. The age of personalised
genomic medicine is upon us. New bioinformatics tools
are being developed at a very rapid pace to analyse such

datasets and to cope with the constant generation of
new types of “omic” data [6].
Software quality assurance becomes especially critical if

bioinformatics tools are to be used in a translational medi-
cal setting, such as analysis and interpretation of Whole
Exome Sequencing (WES) or Whole Genome Sequencing
(WGS) data. We must ensure that only validated algo-
rithms are used, and that they are implemented correctly
in the analysis pipeline. More importantly, the computed
results must satisfy the general expectation of their
intended users. Recently it has been shown that the con-
cordance of multiple widely used variant-calling pipelines
is very low (across 15 exomes, as low as 57.4% for single
nucleotide variant calling, and 26.8% for indel calling) [7].
A similarly disturbing level of disagreement is also
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observed when using different variant annotation pro-
grams to annotate genetic variants even when the same
transcript definition is used [8]. Considering there is only
one ground truth, the high level of discrepancy is trou-
bling, and is telling us that even the most popular bioin-
formatics tools to date can generate results with a non-
negligible false positive or false negative rate. False posi-
tives and false negatives are both potentially a huge issue.
Although false positives can easily be distinguished from
true positives through external validation, such as Sanger
sequencing, it is almost impossible to systematically distin-
guish false negatives from the vast number of true
negatives.
Previous work on scientific software evaluation has

shown that numerical disagreement between programs
of scientific computation grows at around the rate of 1%
in average absolute difference per 4000 lines of imple-
mented code and that the nature of this disagreement is
non-random [9]. Most recent scientific studies, espe-
cially in the area of bioinformatics and computational
biology, deal with large and complex datasets and com-
plicated algorithms. This complexity has made the repli-
cation of published findings difficult to pursue. In
addition, not all users understand fully the intended
usage and limitations of a scientific program [10]. Errors
or limitations of the computer code utilised could go
undetected with possible negative effects on future
research [11]. Therefore, there has been an emerging
issue of scientific peer-review of computer code in order
to minimise errors or limitations that would prevent
other researchers from replicating published findings
[12]. Most importantly, there have been numerous pub-
lished papers that attempt to train scientists to adopt
best practices for scientific computing [13-17].
Software testing is defined as the process of actively

identifying potential faults in a computer program
[18,19]. This process can be used for two purposes: to
ensure the program is correctly implemented against the
specification (i.e., verification), and to ensure the correct
specification is used against the desired user require-
ment (i.e., validation). Many software testing strategies
have been developed, most of them are widely used in
industry with varying effectiveness [20].
Performing testing systematically and automatically on

bioinformatics programs is not as trivial as one would
have imagined. It is often difficult, if not impossible, to
define a gold standard mechanism to decide if the out-
put of the target program is correct, given any possible
input. This mechanism is referred to as an oracle in the
software testing field. If a test oracle exists, we can
apply a large number and variety of test cases to test a
program since the correctness of the output can be veri-
fied using the oracle. Without a tangible oracle, the

choice of test cases is greatly limited to those special
test cases where the expected outputs are known or there
exists a way to easily verify the correctness of the testing
results. The problem is that the bioinformatics tools used
in genomic medicine applications often lack an oracle,
which greatly limits our ability to perform testing systema-
tically and automatically. Currently most software develo-
pers test their programs using a small number of
simulated test cases, or compare their programs with
other existing programs that are expected to give the same
results [21,22]. Both approaches are effectively an attempt
to approximate a gold standard for testing. Nonetheless,
there are clear shortcomings to both approaches. Simula-
tion data may not truly reflect the characteristics of real
data, and it is unclear what the best way is to determine
ground truth if multiple programs give different results. In
this manuscript, we demonstrate how we can systemati-
cally generate and check the correctness of many test
cases without the need of a gold standard. Our strategy
relies on a software testing technique called Metamorphic
Testing (MT) [23-26]. This approach alleviates the oracle
problem by using some problem domain-specific proper-
ties, namely metamorphic relations (MRs), to verify the
testing outputs. The central idea is that although it is
impossible to directly test the correctness of any given test
case, it is easy to verify the relationships of the output gen-
erated by multiple executions of a program. In other
words, MT tests for properties that users expect of a cor-
rect program.
We have previously utilised MT to test a range of

bioinformatics and machine learning programs [27-29].
Our work represented a significant step towards soft-
ware reliability in bioinformatics. In this work we aim to
extend our contribution in this field by applying MT to
three commonly used NGS short-read alignment pro-
grams that have been used widely by the international
academic community: BWA [30], Bowtie [31] and Bow-
tie2 [32]. Our goal is not to present another comparison
of short read alignment programs – this has been pre-
viously studied extensively [33,34]. This paper is a case
study on how we can adapt a state-of-the-art software
testing technique (Metamorphic Testing) to systemati-
cally test several user expectations, which is useful for
verifying and validating several widely used bioinfor-
matics programs. We develop a fully automated software
testing tool that can be used to systematically assess the
expected behaviour of these programs. We also investi-
gated the potential effect on variant calling if the align-
ment algorithms fail to satisfy some of the user
expectations. This work serves as a case study for demon-
strating the application of an intuitive testing framework
for systematic verification and validation of bioinformatics
software.
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Methods
Metamorphic testing
The design of our MT tool is shown in Figure 1. Short
sequence reads (in FASTQ format) are aligned to the
hg19 reference genome using three different sequence
alignment tools: BWA (v0.7.5a) [30], Bowtie (v1.0) [31]
and Bowtie2 (v2.1) [32]. The original “source” input,
which can be based on simulated or real data, is modified
by one or multiple MRs. Here we propose nine MRs
based on expected properties of the software (i.e., what a
regular user expects from this program). After the appli-
cation of each MR on the input to generate a modified
“follow-up” input, the program is executed again, and the
output is tested against the expected relationship
between the output of the source and follow-up input, as
specified in the MRs. In other words, a MR serves two
purposes: (1) generation of additional test cases by modi-
fying the source input, and (2) checking the relationship
between the outputs produced by the execution of the
“source” and “follow-up” test cases. It should be noted
that in general many follow-up test cases can be derived
from a single source test case input based on one MR. In
this study, we restrict our analysis to one source and one
follow-up test case for each run of MT. The expected
results vary according to each MR but can indicate
whether failure is detected. Failures can imply various
possibilities ranging from a deviation of the design of the
software and user expectation (i.e., validation) to errors
in the software implementation (i.e., verification).
The MT tool is implemented as a Unix shell script. The

source code and documentation of the script is available at
https://sourceforge.net/projects/mr-test/. Manipulation of
the resulting output BAM files is performed with samtools
(v0.1.19) [35].
Metamorphic relations
We designed the following set of MRs that aim to cap-
ture the expected behaviour of every short-read align-
ment software. It should be noted that the MRs were
not designed based on the algorithm or implementation
of a specific sequence aligner, but based on user expec-
tations of the intended behaviour of a good sequence
aligner. The description here is for a paired-end sequen-
cing dataset, but it can be easily applied to single-end

datasets too. We denote the reads of the two ends as
Read1 and Read2.
MR1: Random permutation of reads. The reads in

the FASTQ files are reshuffled. The permutation is the
same for Read1 and Read2 reads. We expect the output
mapping to be the same as the original output.
MR2: Reverse complement of reads. Both Read1 and

Read2 are reverse complemented and their corresponding
quality values are reversed to match the nucleotide bases.
Their order in the algorithm input is reversed. We expect
the output mapping to be the same.
MR3: Addition of reads. The input reads in the

FASTQ files (both in Read1 and Read2 files) are dupli-
cated. We expect the output of all original reads to map to
the same locations with the additional reads mapping to
the same locations as their duplicates.
MR4: Removal of reads. Half of the reads in the input

FASTQ files (both in Read1 and Read2 files) are removed.
We expect the output mapping of the non-removed reads
to remain at the same locations. The resulting sequencing
coverage should be half of the original mapping.
MR5: Extension of reads. After initial mapping, each

read is extended by 20 bp to the 3’ or 5’ end of the read,
with high quality score, based on the reference genome
sequence. We expect the output mapping to remain the
same.
MR6: Unmapped reads. After initial mapping, only the

unmapped reads are selected and remapped against the
reference genome. We expect that none of the reads will
be mapped.
MR7: Mapped reads. After initial mapping, only the

mapped reads are selected and remapped against the
reference genome. We expect that all of the reads will be
mapped. For paired-end reads only the properly paired
reads are remapped.
MR8: Quality score increase of reads. After initial

mapping, the quality score for all mapped sequences is
increased. We expect the output mapping to remain the
same.
MR9: Correction of errors or mismatches in the

mapped reads. After initial mapping, the mapped reads
are selected and any mismatch or error is corrected in the
reads. We expect the output mapping to remain the same.

Figure 1 Metamorphic Testing Tool. Design of the Metamorphic Testing Tool applied to NGS short-read alignment software.
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Simulated data
Metamorphic testing properties can be applied to any
sample, since there is no need for a gold standard. To
demonstrate its utility on a range of input test cases, we
apply MT on both simulated and real datasets. In terms of
simulated data, we used simNGS and simLibrary (http://
www.ebi.ac.uk/goldman-srv/simNGS/) to simulate NGS
short-read datasets based on the human reference genome
(hg19) of varying number of reads (103, 104, 105, 106, and
107) in order to assess the effect of the total number of
reads in our ability to detect limitations in the alignment
software.

HapMap data
One of the main advantages of MT is that we can test real
data instead of only simulated data. We chose to apply
MT to one widely studied HapMap sample that has been
exome sequenced using Illumina HiSeq 2000 as part of
the 1000 Genomes Project [36,37]. FASTA files with run
ID SRR716647 (from study SRP004078) were downloaded
from the 1000 Genomes FTP site (ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/). The sequencing was paired-end with
26,892,758 Read1 and Read2 sequences. In addition, we
downloaded a single-end dataset of 569,554 reads. This
sequencing run was from HapMap individual NA12872, a
male unaffected sample from 1000 Genomes CEPH (Utah
residents with ancestry from Northern and Western Eur-
ope). Since the metamorphic properties require extensive
manipulation of the FASTQ files, we chose this run as a
representative example of a sequenced exome without
having a very large file size that would limit our analysis.

Variant calling using GATK
In order to assess the downstream effects of violating sev-
eral key MRs (e.g., MR1, MR5 and MR7) during sequence
alignment on downstream genetic variant calling, we ran
a commonly used variant calling pipeline on a HapMap
dataset. After BWA, Genome Analysis Toolkit (GATK)
(v2.6) was employed for variant calling [38]. Since our
MRs do not apply any filtering on the BAM (mapping)
files, the analysis was repeated after considering only the
uniquely mapped reads.

Results and discussion
Limitations of short-read alignment software
We tested the performance of three widely used short-
read alignment tools (BWA, Bowtie and Bowtie2) on
simulated sequencing runs of varying coverage (103, 104,
105, 106, and 107 total number of reads in each FASTQ
file). Table 1 shows the MR results for the three tools
(BWA, Bowtie and Bowtie2) respectively. We additionally
applied the same MRs to an exome sequencing run of
HapMap sample NA12872 for both paired and single end
datasets. Table 2 shows the results (indicating failure or

pass) after applying 9 MRs for the paired and single end
data respectively. Failure (F) indicates difference between
the resulting alignments. This difference could be due to
only a few or multiple reads mapping differently after the
application of MT.
We found that the expected behaviour that is encoded

by MR1 (Random permutation of reads) and MR3 (Addi-
tion of reads) does not hold for BWA for either simulated
or real data (NA12872; single and paired-end) but passed
our tests for both Bowtie and Bowtie2. Similarly, proper-
ties MR4 (Removal of reads) and MR7 (Mapped reads),
although they hold for Bowtie and Bowtie2, they fail for
BWA for simulated paired-end data that are above some
sequencing coverage (> 103 for MR4 and > 107 for MR7).
Metamorphic relations MR2 (Reverse complement of
reads) and MR5 (Extension of reads) fail for all three

Table 1 Results of MT applied to three short-read
alignment programs (BWA, Bowtie and Bowtie2) ran on
the paired-end sequencing simulated reads of varying
number.

MRs 103 104 105 106 107

BWA

MR1 F F F F F

MR2 F F F F F

MR3 F F F F F

MR4 F F F F

MR5 F F F F F

MR6

MR7 F F

MR8

MR9

Bowtie

MR1

MR2 F F F F F

MR3

MR4

MR5 F F F F F

MR6

MR7

MR8 F F F F F

MR9

Bowtie2

MR1

MR2 F F F F F

MR3

MR4

MR5 F F F F F

MR6

MR7

MR8 F F F F F

MR9

F (Failure).
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algorithms and input data whereas on the other hand MR6
(Unmapped reads) is never violated. Finally, we found that
MR8 (Quality score increase of reads) fails for Bowtie and
Bowtie2 but not for BWA and MR9 (Correction of errors
or mismatches in the mapped reads) fails for BWA and
Bowtie2 only when applied on the real sequencing run
(NA12872).
Following our “black-box” testing, we attempted to

explain the above results by investigating the nature of
failure. We concluded that MR2 (Reverse complement
of reads) and MR5 (Extension of reads) although they
could be desirable, they are not necessary properties for
a short-read alignment program and indicate a slightly
different specification than what we, as testers, assumed.
The algorithms expect the paired reads to be in a speci-
fic direction to map properly and by reverse comple-
menting them, this structure is lost. Additionally, the
extension of reads by 20bp before remapping, could
extend reads with mismatches and errors, resulting in
favoring alternative mapping locations.
We then investigated the properties that systematically

fail during BWA testing but not for Bowtie and Bowtie2.
Downstream analysis of the BAM files, revealed that the
differences in mapping occur mostly for reads that are
assigned to the lowest mapping quality or are not
uniquely mapped in the genome. By further examining
the implementation of BWA we found that in the case of

non-uniquely mapped reads, the algorithm is set to
report one alignment randomly chosen for each read.
This selection is not entirely random, as we found out,
since for the same FASTQ file a repeated execution
would always produce the same results. The seed for the
random number generator is fixed so the random num-
bers chosen are always the same. This means that in the
case where the reads in the input sequence files are at a
different position in the file - as it happens after random
reshuffling of the reads (MR1), after addition or removal
of reads (MR3 and MR4) or after selecting only the
mapped reads (MR7) - the reported alignment for each
non-uniquely mapped read will be different. Additionally,
we found that suppressing the reads that can be aligned
to multiple locations did not solve the problem as these
reads can be difficult to detect in the BAM file, an issue
that we address specifically in the next section. We
should note that for low coverage sequencing, this issue
might not be always detected as we found out by our
simulation runs.
The reason that Bowtie and Bowtie2 do not suffer

from this problem is because the pseudo-random num-
ber generator is re-initialised for every read, and the
seed used to initialise it is a function of the read name,
nucleotide string, quality string, and the value specified
with a specific parameter “-seed”. Therefore the ran-
domly chosen alignments for reporting will always be
the same for every read pair irrespectively of where it is
located in the input file. On the other hand, since this
implementation uses the quality score, this explains why
MR8 (Quality score increase of reads) fails for Bowtie
and Bowtie2 but not for BWA. Again, the non-uniquely
mapped reads reported differ, hence the resulting map-
ping will be different. We should additionally note that
the Bowtie and Bowtie2 implementation uses backtrack
to find the alignment, from left to right, and if there are
equally good bases, the choice will be random. So when
the number of bases are changed, this selection will be
changed too, which is another reason why MR5 (Exten-
sion of reads) always fails.
Finally, MR9 (Correction of errors or mismatches in the

mapped reads) is the only property that gave different
results between Bowtie and Bowtie2. We found this prop-
erty is largely dependent on the input data. When simu-
lated data are used, then there is no fault detected. This is
expected, since the error structure in the simulated data is
pre-determined and correction of the mismatches in the
mapped reads can only improve the mapping. On the
other hand, real data can suffer from many sources of bias
and a correction of a mismatch can result in mapping of a
read to an entirely different location of the genome. Addi-
tionally, the implementation first checks the number of
mismatches to determine the best alignment taking into
account the sum of quality score. When these mismatches

Table 2 Results of MT applied to 3 NGS short-read
alignment programs ran on the paired-end and single
end sequencing reads of HapMap sample NA12872.

MRs BWA BOWTIE BOWTIE2

Paired-end sequencing reads

MR1 F

MR2 F F F

MR3 F

MR4 F

MR5 F F F

MR6

MR7 F

MR8 F F

MR9 F F

Single-end sequencing reads

MR1 F

MR2 F F F

MR3 F

MR4

MR5 F F F

MR6

MR7

MR8 F F

MR9 F F

F (Failure).
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are fixed, there might be additional alignments that are of
equal equality and the number of alignments can change.

Effect of MRs in downstream analysis
In order to investigate the effect of these properties in
downstream WGS or WES analysis, we ran a commonly
used pipeline that involves BWA alignment followed by
using Genome Analysis Toolkit (GATK) for variant call-
ing [38]. We ran this pipeline for the exome sequenced
sample NA12872. Since our MRs do not apply any fil-
tering on the BAM (mapping) files, the analysis was
repeated after considering only the uniquely mapped
reads. We found that prior to any filtering, the number
of variants called is different when we use the Original
BAM file, and the resulting BAM files after MR1, MR5
or MR7 (Figure 2A).
We subsequently filtered non-uniquely mapped reads

and repeated the variant calling step. We found that
there is still discordance between the numbers of variant
calls made (Figure 2B). These reads were filtered by
mapping quality of 0 as well as reads with an indicated
tag of aligning to more than one position ("XT:A:R” and
“XT:A:M” for paired-end reads indicating one of the
reads is not uniquely mapped). We found that higher
quality threshold is needed to achieve concordance
between the results and the specified tags are not suffi-
cient to capture all of the non-uniquely mapped reads
(given also that the reported ones will vary between the
different MRs as we described in the previous section).

Implication on genomic medicine
Multiple studies have assessed the performance of these
and other mapping algorithms [33,39-41] but we were
able to do this without the need of an oracle or the
direct comparison of the methods. Instead of requiring
a mechanism to verify whether an individual test output
is correct, the MT technique verifies whether a pair of
test outputs conform to a set of domain specific proper-
ties, and thus greatly increases the number and variety
of test cases that can be applied. Using MT, we detected
limitations of BWA, Bowtie and Bowtie2 by demonstrat-
ing violations of several user expectations, encoded in
the form of metamorphic relations. Although some of
these relations are not necessary properties of short-
read alignment software, they are important for software
validation and software analysis. We detected violations
in some MRs that could be characterised as necessary
and thus revealing limitations in the implementation of
these tools, despite being quite minor. The problems
associated with these minor limitations in sequence
alignment may be overcome by applying strict quality
control filtering in variant calling. Nonetheless, we do
believe that it is important to test whether such widely
used programs have limitations when we analyse a

range of sequencing datasets, as it has also been shown
in previous studies [42]. Since one of the major advan-
tages of MT is that it can greatly increase the number of
test cases, we can imagine it is possible to extend this fra-
mework to automatically and systematically generate
many artificial “positive controls” and “negative controls”
that can be embedded within each FASTQ file, and be
checked for correctness.

Conclusions
This work illustrates the importance of testing to verify
and validate bioinformatics software. Systematic testing
can reveal program faults and outcomes that are unex-
pected and undetected by the user. Such errors or lim-
itations can have tremendous effects in bioinformatics
and in scientific computing in general, affecting down-
stream research or clinical decisions. We proposed a
Metamorphic Testing framework for bioinformatics

Figure 2 Number of variants called using original read
mapping and mapping after the application of MR1, MR5 and
MR7. A. Using all the reads. B. After removal of non-uniquely
mapped reads.
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software testing, and demonstrate its utility by testing
three widely used sequence aligners.

Availability of supporting data
The source code and documentation of the MT tool are
available at https://sourceforge.net/projects/mr-test/.
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