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Abstract

Next Generation Sequencing (NGS) methods are rapidly providing remarkable advances in our ability to study the
molecular profiles of human cancers. However, the scientific discovery offered by NGS also includes challenges
concerning the interpretation of large and non-trivial experimental results. This task is potentially further
complicated when a multitude of molecular profiling modalities are available, with the goal of a more integrative
and comprehensive analysis of the cancer biology.
Microarray transcriptome analyses have resulted in important advances in both the scientific and clinical domains
of biomedicine. Importantly, as technology advances, it is critical to leverage what has been gained from historic
approaches (e.g., microarrays) with new approaches (NGS). In this regard, necessity dictated a need to utilize and
leverage the many years of historical microarray data with new NGS approaches. This is especially important since
NGS approaches are now entering clinical medicine. For instance, NGS-based comprehensive analysis of certain
cancers has already helped to uncover specific mutations that contribute to the malignant process, identify new
therapeutic targets, and improve opportunities for choosing the best treatment for an individual patient.
A suite of custom software tools have been developed to rapidly integrate, explore, discover and validate
molecular profiling data from the NGS modalities of Whole Exome Sequencing (WES) and RNA-seq with each
other, as well as with historical microarray and salient clinical datasets. Importantly, our approach is independent of
any particular type of NGS suite(s) or cancer types. This novel bioinformatic framework is now assisting with the
scientific and clinical management of patients with multiple myeloma.

Background
Next generation sequencing (NGS) is a new frontier in
cancer and biomedical research, and these approaches
are rapidly becoming the preferred method for human
disease-based analysis due to vastly improved genome
coverage and resolution [1]. Recently, the FDA granted
marketing authorization for the first high-throughput
NGS system (Illumina MySeqDx) for the purpose of
clinical test development [2]. This FDA decision is

clearly related to the fact that NGS methodologies are
enabling a new understanding of cancer. For instance,
recent work from The Cancer Genome Atlas (TCGA)
has shown that a particular cancer tissue of origin may
be less relevant to therapeutic response and prognosis
than the collection of causative mutations [3]. Thus, for
cancer scenarios where the standard-of-care options are
poor (e.g., drug resistance, metastasis), drug assignments
based on the mutational landscape of a patient’s tumor
can sometimes provide significant benefit, and are a
very active research topic in clinical trials and transla-
tional medicine [4]. However, NGS also brings new
demands regarding the size and complexity of the
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associated data sets. These “big data” challenges are further
magnified when multiple NGS modalities are utilized and
there are needs or requirements to integrate this data with
other molecular profiling techniques (e.g., microarrays).
NGS and related studies have already contributed signif-

icantly to the improved understanding of multiple mye-
loma (MM) [5-7]. Most recently there were 203 paired
tumor/normal DNA samples analysed by either Whole
Exome Sequencing (WES) or Whole Genome Sequencing
(WGS) [8]. A principal finding was a very complex
genetic landscape with extensive clonal heterogeneity that
serves to limit scientific and clinical utility. In this case it
appears DNA analysis is necessary but not sufficient. An
approach to the genetic complexity and heterogeneity
issue is to combine additional modalities, for example
transcriptome data. By enhancing a DNA examination
with transcriptome data, a multi-modality study of a
particular patient’s cancer is formed, yielding increased
scientific/analytical rigor and potential insights. This is a
primary aim of our methodology.
Microarrays have contributed significantly towards an

improved understanding of MM and many other can-
cers, and there are large archives in the private and pub-
lic domains. Thus, a familiarity with the analytic nature
of transcriptome data from different modalities is
important, especially regarding the explanatory abilities
for cancer biology questions. To this end, a comparison
of microarray vs. RNA-seq is provided in additional
file 1[9]. In contrast to RNA-seq, microarray data is
compressed and is largely a correlative science. RNA-seq
requires less sample material, has base level resolution, a
much larger dynamic range, is discovery-based for both
novel isoforms and gene fusions, and can distinguish
known splice isoforms.
For a cancer center or institute that has a focus on a

particular cancer type, and who have a large volume of
microarray data, the evolutionary shift in technology
(i.e., microarray to NGS) can have disruptive effects on
scientific and clinical workflows. Hence, there is a signif-
icant need to integrate and leverage historic molecular
profiling studies (e.g., microarray) with new and existing
NGS modalities. Additionally, the ability to capture,
model, and successfully carry forward key aspects of a
particular cancer biology learned from the legacy data
and incorporate this knowledge into new and evolving
software approaches is challenging, but needs to be
carefully considered.
This study is a continuation of efforts to develop efficient

software methodologies to allow for the incorporation and
analysis of experimental data from a variety of molecular
profiling modalities [10]. The current and historical work
involving microarray technology to study the cancer
biology of MM at the Myeloma Institute for Research
and Therapy (MIRT), at the University of Arkansas for

Medical Sciences (UAMS), has resulted in over 19,000
microarray studies. This has included important insights
into the cancer biology of MM, for example, the develop-
ment of risk scores [11,12] and a molecular classification
[13]. A significant need exists to leverage this important
work learned and gained from microarrays with the new
and evolving NGS modalities.
Using a three tier approach the software has been rede-

signed, and extended to accommodate a variety of inte-
gration scenarios involving molecular profiling
experimental data from i) microarrays, ii) RNA-seq, and
iii) Whole Exome Sequencing (WES), as well as features
to capture and model significant cancer biology items
(e.g., prognostic gene groups and molecular classifica-
tion). Figure 1 illustrates the information architecture of
our NGS Association System. Importantly, our approach
is independent of any particular type of transcriptome
reconstruction, variant caller or annotator, quantitation
tool, or file format. Input requirements simply consist of
a tab delimited file with column one being a Gene ID
(Ensembl, Entrez, or Genbank Accession) if known,
column two being the gene symbol (if known), and
column three a chromosome plus loci pair (if known).
Additional columns are imported and associated in a
set-based manner. We continue to integrate Affymetric
probe set-IDs, and gene annotation information from an
assortment of sources as previously reported, as well as
employ a variety of strategies to maximize the integration,
annotation, and association of biological information [10].
The novel aspects of our approach are the abilities

that allow for a rapid integration, exploration, discovery
and validation of large and complex experimental data
from a wide variety of NGS and microarray molecular pro-
filing modalities. For instance, the approach is useful for
comparing the expression of genes of interest between
RNA-seq and microarray. Other supported comparisons
are: i) Whole Exome Sequencing (WES) vs. Microarray,
ii) WES vs. RNA-seq, iii) WES vs. RNA-seq vs. Microarray
(triple integration). The triple integration approach is
illustrated in the paper since it is the most difficult. To our
knowledge, there is no existing software suite available,
commercial or open source, which provides the triple inte-
gration feature. These abilities enable a more informed
view of the intricate details present in the complex cancer
biology, especially in cases of extensive heterogeneity.
Finally, our approach is independent of any particular can-
cer type. Multiple myeloma is used only as an illustrative
example. Eventually, we plan to make our software available
to the greater scientific community, possibly as open source.

Methods
Sample descriptions and library preparation
Bone marrow aspirates and one peripheral blood sample
were collected at UAMS, MIRT from a single patient
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diagnosed with MM and three normal donors. The sam-
ple collection protocol was approved by the UAMS
Institutional Review Board (IRB). Plasma cells from
bone marrow aspirate samples were enriched by anti-
CD-138 immuno-magnetic bead selection in a central
laboratory as previously described [14]. CD-138 is a
marker for a malignant plasma cell, and for this sample
the degree of CD-138 purification was 95%. Germline
material was obtained from the buffy coat following
density gradient centrifugation of the peripheral blood
sample. To ensure the absence of plasma cells, buffy
coat material was also examined by flow cytometry.
Microarray data files were obtained from the study
archive section in our MM historical database and were
processed as previously reported [12]. Note, GEO-based
extraction using Bioconductor with GEOquery along
with in-house developed data wrangling tools can also
be used in workflows, provided the output is in a tab or
comma separated value format in the order of : gene,
probeID, value [15].
Whole exome capture libraries were constructed from

500 ng of tumor and normal DNA after shearing, end
repair, phosphorylation, and ligation to bar coded sequen-
cing adaptors for a single patient. DNA was fragmented by
the S220 focused-ultrasonicator (Covaris), using a stan-
dard protocol for a target bp of 300. DNA was size
selected for lengths between ~250 - 330 bp and subjected
to exonic hybrid capture using SureSelectXT Human All
Exon V5 (Agilent). Libraries were enriched using 14 cycles
of PCR. The library was run at a concentration of 8 pM.
Samples were multiplexed and sequenced on an Illumina
HiSeq 2500 using the rapid run mode (paired-end 101 bp

reads) to an average depth of coverage of 100x, for tumor
and normal respectively.
For the RNA-seq samples each Illumina mRNA-seq

library was prepared using the TrueSeq mRNA kit v2.
The starting sample material was 200 ng of total RNA
and fashioned according to the manufactures instruc-
tions. This was done for one patient with MM and
three normal donors. Poly-A selection for mRNA isola-
tion using streptavidin-coated magnetic beads, followed
by thermal mRNA fragmentation per standard Illumina
protocol, was used during the sample prep process. The
fragmented mRNA was subjected to cDNA synthesis
using reverse transcriptase according to the manufac-
turer’s instructions. The cDNA was then converted into
double stranded cDNA followed by an end repair pro-
cess, and then ligated to Illumina paired end (PE) adap-
tors. Size selection was performed using AMPure XP
beads (Beckman Coulter), generating cDNA libraries
ranging in size from 300 to 350 bp (base pairs). The
library was enriched using 15 cycles of PCR and purified
again by AMPure XP beads. The library was run at a con-
centration of 8 pM. The RNA-seq experiment was run on
an Illumina HiSeq 2500 in the rapid run mode utilizing
101 bp PE sequencing. In summary, the fragment length
is ~300-350 bp and thus the inner-mate-distance is ~98-
148 bp since we are performing 101 bp PE sequencing.

Whole exome sequencing (WES) data analysis and
alignment
Generation of FASTQ files was performed via CASAVA
(http://support.illumina.com/sequencing/sequencing_
software/casava.html). Reads were analyzed and quality

Figure 1 NGS Association System Information Architecture. The basis for integration of multiple molecular profiling modalities is illustrated.
This includes processes for data transformation, reduction and association, as well as the direct interfacing to multiple custom and third party
software tools and subsystems.
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checked using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Based on the quality
reports, it was decided to trim the last nine bases from
each read, using Trimmomatic [16]. Paired-end reads
were aligned to the human genome (GRCh37) by a
hybrid approach that utilizes BWA [17] and Stampy
[18]. Duplicate reads were removed using Picard tools
(http://picard.sourceforge.net). Sequence recalibration
and local realignment were performed using GATK
[19]. Single nucleotide variant (SNV) and small inser-
tions and deletions (InDels) calling was performed by
Strelka [20]. SnpEff [21] was used to functionally annotate
all variants.

RNA-seq read alignment and transcriptome processing
The RNA-seq data analysis utilized the Tuxedo suite. A
standard pipeline protocol was utilized. Trimmomatic was
utilized for preprocessing prior to alignment. RNA-seq
reads were mapped using TopHat version 2.0.8 (http://
ccb.jhu.edu/software/tophat/index.html) against the
human genome (GRCh37). Alignment utilized the follow-
ing options: “-p 8 -G Ensembl.gtf”, where Ensembl.gtf
contains the coding transcripts in GTF format. Cufflinks
version 2.1.1 (http://cufflinks.cbcb.umd.edu/) was run for
transcriptome reconstruction and quantitation for each
generated BAM file with the following options: “-p 8 -g
Ensembl.gtf”, thus allowing for both annotation and novel
transcript discovery. Normal donor assemblies were
merged with Cuffmerge. Differential expression analysis
between the MM sample and normal donor pool utilized
Cuffdiff.

System session management, data import, processing,
and user interface
User profile management
Additional file 2 illustrates the user profile management
feature of our system. Subfigure A shows the User Pro-
file tab. In this case, the “Login Name” is utilizing the
UAMS domain account, which provides extra security
and ease of use for this particular user. Various privi-
leges for site administrator rights, as well as allowing for
special debug modes, and IGV (Integrative Genomics
Viewer) [22] integration are provided. Subfigure B dis-
plays the Gene groups tab that allows for the creation
and modification of custom groups of genes for user
driven search strategies.
Upload of experimental data
Additional file 3 illustrates the experimental upload fea-
tures. Provisions are provided to create new patient (or
a symbol for a scientific study, e.g., mouse model, cell
line, etc.) entries and this is shown in subfigure A. One
or more experiments along with salient information can
then be associated with a patient, etc. This is shown in

subfigure B. Due to the large size of datasets, we have
developed a scheduling strategy to accommodate data
import and associative processing, which can be time
intensive. Depending on the particular molecular profil-
ing modality, one or several files may be uploaded to a
server. Next, an import request is placed in a job queue.
The import process will begin some of the basic data
validation steps pertaining to the molecular profiling
experimental data, and place it into a staging/raw set of
database tables. Subsequently, the newly imported
experimental data can now be subjected to a variety of
transformations, associations, reductions, filtering opera-
tions, etc. The import task/process continually checks
the queue, and processes the next available job, by
either importing or transforming the user requested
datasets. This is illustrated in subfigure C.
Data cleaning and validation
Data integrity is paramount for accurate and reproduci-
ble science. In biomedicine and life sciences research,
this can be a particularly challenging endeavour, given
the arrival of big data from Next Generation Sequencing
(NGS) experiments. The data is so massive that is
becomes easy for errors to hide from detection. Thus,
all files produced by the different NGS modalities were
studied, and a specific parser has been designed for that
file type. Some of the basic cleaning and validation steps
include: giving the generic text data an explicit data
type, range checks on all numbers, set membership
checks on various symbol names/groups, etc. Incoming
data must fit within certain expected ranges and formats
before being placed in the appropriate database table.
Aspects of these operations are shown in Figure 1.
Data transformation, reduction, and management
Once the data has successfully been imported into the
database in its raw format, the next step is to perform the
association and transformations to annotate and connect
the different datasets. The sources of information used to
construct our knowledge base, as well as the operation of
the association algorithms, are modifications and enhance-
ments of previously described methods [10]. Newly created
ID association tables and software, acting as a switching
center, allows for the conversion between different gene
identifiers, and is shown in additional file 4. Conversion
can be either direct or indirect depending on starting and
target IDs. The ability to also convert between the different
identifiers based on chromosome and loci has been added.
An executive console is illustrated in additional file 5.

This feature provides the ability to view experimental/study
information on an aggregate basis, along with the particular
modality, date loaded, number of rows (size) of various
tables, etc. The ability to perform complex cascading delete
operations on an entire study or just certain aspects is
provided.
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User interface
Different experiments and modalities can be associated
with a particular patient. On the patient view, available
experiments may be viewed individually or in different
combinations with other existing modalities, giving an
integrated view. Additional file 6 displays an example of
the Patient Experiments View, where for a particular
patient, the available studies (RNA-seq, DNA, Microar-
ray) for integration and viewing may be chosen. The user
simply checks one or more of the left most boxes (next
to Date), and then presses a “View” button. Additional
file 7 contains a figure that shows results from the Cuff-
diff Experiment for patient John Doe (Date 3/26/2014)
following a simple selection and view. Subfigure A
shows the initially loaded dataset and subfigure B shows
a reduced dataset after applying a user defined custom
filter consisting of five key genes.
Since users of the system will have different back-

grounds and needs (e.g., clinical researcher vs. basic scien-
tist), the ability to show a minimum or maximum number
of columns/data elements has been provided. This is illu-
strated in the figures contained in additional files 8 and 9.
Basic ergonomics are utilized regarding the display of grid
columns, specifically column color schemes and their grid
location, and are consistent regardless of the study, or stu-
dies loaded. For instance, the first three columns and last
column are always: Entrez ID, Gene Symbol, Gene Name,
and Member List, respectively. These are always colored
grey in the referenced figures. Member List indicates the
gene belongs to a certain user defined group(s), it is color
coded but also has a “hover over” feature to reveal the
group name (since gene groups may be shared among
users). WES data/columns will appear next (if loaded) and
these columns are always shaded green. RNA-seq columns
then follow (not loaded in this example) and would be
shaded light red. Finally, microarray columns appear last
and are always shaded blue.
Data visualization
In addition to seeing the data in tabular formats, dynami-
cally produced visualizations are created for different mod-
alities to aid data explorations. Currently, these
visualizations include simple bar and pie charts. These
data-driven visualizations charts are created using NVD3
(http://nvd3.org) and D3 (http://d3js.org), and are demon-
strated later in this study.
IGV integration
An integration option with IGV to promote the explora-
tion and validation of the NGS data has been further
developed. Using the IGV port interface the server sets up
a socket connection to the users running a copy of IGV.
Through this connection the server sends commands to
IGV to load datasets for a particular NGS experiment.
This automation allows the user to quickly jump to differ-
ent locations within the genome, by a single click on the

gene(s) of interest, in the web browser. Illustrated exam-
ples of this feature will appear in the results section.
Systems integration testing
A systems integration testing strategy was developed
owing to the complexity of the NGS Association
System software. Due to the utilization of third party
tools and their custom developed interfaces, different
software technologies (e.g., database stored procedures
for fetching and set-based operations on large data
sets, object oriented approaches for business logic, and
a modern browser-based presentation system); along
with extensive extraction, translate, and load (ETL)
operations for the various molecular profiling modal-
ities, as well as knowledge base construction and asso-
ciation operations, unit testing alone was not sufficient.
Thus, a series of more elaborate testing scenarios are
employed to exercise the entire NGS Association
System in very deliberate ways, along with expected
system actions and outputs.

Results and discussion
In this study, custom software methodologies have been
further developed to allow for the rapid integration,
exploration, discovery and validation of experimental data
from a variety of molecular profiling modalities [10]. The
current and historical work involving microarray technol-
ogy to study the cancer biology of MM at MIRT has
resulted in an extremely large microarray archive.
Certainly, there is a need to leverage this important work
with the new and evolving NGS modalities. Methods to
incorporate cancer biology knowledge garnered from
historic microarray studies, and to best aid with analysis
approaches involving new NGS modalities, continue to be
an active research topic. Importantly, for cancers known
to be very genetically complex and heterogeneous (e.g.,
MM), DNA/WES is necessary but not sufficient, and an
integrated multi-modality approach as presented in this
study may aid with this dilemma.
The NGS Association system is independent of any par-

ticular cancer type. Molecular profiling results from a sin-
gle patient with MM have been selected to illustrate our
systems ability to rapidly find and analyse salient findings
across multiple modalities. A diagram of the samples and
molecular profiling studies used in the various analyses are
presented in Figure 2. Although the outcomes for MM
patients have considerably improved, those who are refrac-
tory to, or relapse following therapy with an IMiD and/or
proteasome inhibitor have a poor prognosis [23]. NGS
sequencing of MM patients have revealed multiple targeta-
ble mutations, including KRAS [5,8].
Figure 3 shows the system rendered results of the Cuff-

diff dataset that was searched using two genes having can-
cer biology significance in many cancers including MM
(KRAS and TP53). The Cuffdiff Chart in subfigure A was
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automatically generated by a single point and click. All
genes in the table (subfigure B) contain a significant p-
value and q-value. Next, a triple integration was performed
by combining the Cuffdiff gene data with WES and a

microarray experiment. This is shown in Figure 4. Here
the search criteria was based on a user defined five key
gene group, which includes KRAS and TP53. The KRAS
entry is circled for illustrative purposes.

Figure 2 Samples and Molecular profiling studies. Illustrated is a diagram of the patient samples and molecular profiling studies used in the
various analyses.

Figure 3 System Rendered Results for Key Cancer Biology Genes. Automatically rendered bar chart and table from a Cuffdiff dataset that
was searched using two genes (KRAS and TP53), which have cancer biology significance in many cancers, including MM. The Cuffdiff Chart in
subfigure A was quickly generated by a single point and click. All genes in the table (subfigure B) contain a significant p-value and q-value.
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The integrated WES data (green columns) includes:
Effect, Codon Change, AA Change, Tumor DP (Depth),
Tumor AF (Allelic Frequency). Next, the corresponding
RNA-seq data (light red columns) show the Sample 1
FPKM (pooled normal), Sample 2 FPKM (tumor), and
p-value from Cufflinks. The microarray data (blue col-
umns) display the corresponding Affy Probes, and Avg
Probe Values. This minimal view shows KRAS with a
non-synonymous hotspot mutation resulting in a change
in the amino acid Glycine to Asparatic Acid at the 13th

position (G13D). This finding has a depth of coverage of
113 reads and an allelic frequency of 14%. This is a
known druggable mutation. The table in additional file
10 shows potential drug candidates through drug-gene
interactions via custom automation/linkage (Figure 1,
Subsystems Complementing Integrated Molecular Profil-
ing Data Exploration, Drug-Gene interaction linkage)
from our system to the DGIdb [24].
Additional file 11 shows a triple integration of data

sets from WES, Cuffdiff isoforms, and gene expression
microarray. There are two KRAS gene isoform tran-
scripts from the Ensembl annotation with non-zero
values in the column Sample 2 FPKM (tumor), namely
ENST00000556131 and ENST00000311936. Figure 5,
subfigure A shows an automated visualization of the
FPKM Chart for KRAS and its associated isoforms. This
was automatically generated by clicking the picture icon
located in the rightmost region on the first line of the
KRAS entry, in subfigure B. In this view the novel iso-
form (i.e., CUFF.19733.1) was also fetched from the
experimental data. The columns Transcript Id and
P-Value show that only one transcript (ENST00000
311936) is significant. The visualization allows changes
to be spotted quickly. A “hover over” feature, allows
viewing the tumor or normal isoform FPKM values, in
the ring/donut plot of subfigure A.
Further discovery and validation of the KRAS finding is
illustrated in Figure 6. IGV automation is utilized, and

by a single point and click on the web page entry for
KRAS, relevant information is spontaneously sent to IGV.
The transferred information includes data from Variant
Analysis, RNA-seq aligned reads, WES aligned reads, the
reference genome and RABT (Referenced Annotation
Based Transcript) assembly. For illustrative purposes, the
significant isoform, ENST00000311936, is circled in green,
and the location of the non-synonymous hotspot muta-
tion, G13D, is circled in red. A potential novel isoform
(CUFF.19733.1) from the normal pool is circled in blue.
Further exploration, discovery, and validation is accom-

plished by using IGV to drive further into the integrated
complex data sets, as is shown in additional file 12. The
same circled entries and color assignments apply. IGV is
used to validate the KRAS G13D hotspot mutation by
examining the WES aligned reads. Since KRAS is known
to code from the reverse strand, the point mutation is
shown as a “T” on the IGV display. However, the RNA-
seq aligned reads do not appear to show evidence of the
point mutation. This is confirmed by driving further into
the IGV display and is shown in additional file 13. In this
case, although there is a KRAS DNA point mutation indi-
cating a non-synonymous G13D, it is not reflected into
the transcriptome and therefore, will not be translated to
protein. Since a mutated KRAS protein is the drug target,
a planned therapeutic assignment, which is many times
based solely on DNA gene mutational data, may now be
reconsidered given the integrated transcriptome findings.
Additional file 14 shows IGV validation of a novel splice

isoform (CUFF.19733.1). Although it is from the normal
pool it is shown for illustrative purposes. The novel exon
is circled in purple, and the isoform with closest similarity
is ENST00000311936. Figure 7 shows automation utilizing
R with the shiny package and Plot Protein [25] for the
KRAS G13D hotspot mutation. A “lolliplot” is produced
that demonstrates amino acid changes in the context of
previously reported mutations and protein domains. The
G13D mutation found in our experiment is colored red.

Figure 4 Triple Integration (WES, Cuffdiff Gene, Microarray). A triple integration was performed by combining Cuffdiff gene data with WES
and a gene expression microarray experiment. The integrated WES data (green columns) includes: Effect, Codon Change, AA Change, Tumor DP
(Depth), Tumor AF (Allelic Frequency). The corresponding RNA-seq data (light red columns), show the Sample 1 FPKM (pooled normal), Sample 2
FPKM (tumor), and p-value from Cufflinks. The microarray data (blue columns) display the corresponding Affy Probes, and Avg Probe Values. The
grey columns are common across all modalities and show, Entrez ID, Gene Symbol, Gene Name, and Member List (gene list).
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Other canonical mutations are colored blue. The RAS pro-
tein domain is colored green.
TP53 is a key tumor suppressor gene and known as the
guardian of the genome. Cells that have a functional p53
pathway are less likely to transform. Genomic instability is
a cardinal finding in p53 mutant cells. When TP53 is
deleted in MM, a patient’s likely survival becomes signifi-
cantly shortened [26]. Classical tumor suppressor genes
are usually characterized by nonsense or frame shift muta-
tions that lead to truncated non-functional proteins.
However, over 75% of all p53 mutations are missense and
result in a single amino acid substitution. Accumulation of
p53 mutants, to the point of showing a gain of function,
can be seen because the mutant molecules can be more
stable than the wild-type, and thus accrue [27-29].
Figure 3 shows the Cuffdiff Chart (subfigure A) and

table (subfigure B) entries for TP53. Both the automati-
cally generated bar chart and Value 2 (tumor) table entry
clearly show TP53 is significantly overexpressed vs. normal.
Additional file 15 shows a triple integration of experimen-
tal data sets from WES, Cuffdiff isoforms, and microarray.
The red box is used to illustrate the seven TP53 transcript
isoforms, which are associated with the appropriate
non synonymous mutation (C277F or C266F or C145F)

depending on how the exon with the point mutation
(G > T) was spliced.
Approximately 90% of missense mutations for TP53

occur in the DNA binding domain, which spans amino
acids 102-292, and all candidate SNVs in this experi-
ment also fall in this region. The tumor depth is 82
reads and allelic frequency is 95%. By a single click on
any of the TP53 entries, we can jump directly into IGV,
and begin to validate and further explore this SNV. This
is illustrated in the figure found in additional file 16.
Since TP53 is coded on the reverse strand the point
mutation appears as an “A” rather than “T”, in IGV
under the WES aligned reads section. In this case the
RNA-seq aligned reads show concordance with the
DNA findings. Together they provide stronger evidence
for this biological finding. This important experimental
data discovery was validated quickly due to the integra-
tive and exploratory abilities of our system.
When TP53 is deleted, the effect and clinical ramifica-

tions are understood in MM and other cancers. However,
the implications of TP53 missense mutations are not fully
understood, and clearly may be important for therapeutic
assignments and assessing prognosis. Thus, tools and
approaches to track and study TP53 and other relevant

Figure 5 KRAS Automated Visualization and Exploration. Subfigure A shows an automated visualization of the FPKM Chart for KRAS and its
associated isoforms. This was automatically generated by clicking the picture icon located in the rightmost region on the first line of the KRAS
entry, in subfigure B. In this view, the novel isoform (i.e., CUFF.19733.1) was also fetched from the experimental data. The columns Transcript Id
and P-Value show that only one transcript (ENST00000311936) is significant.
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Figure 6 Validation of the KRAS G13D Hotspot Mutation via IGV Automation. IGV automation is utilized to validate the non-synonymous
hotspot mutation involving codon 13 for KRAS, where Glycine is replaced by Aspartic Acid (G13D). By a single point and click on the web page
entry for KRAS, the IGV display is rendered. During this process, all relevant information is spontaneously sent to IGV. This includes data from
Variant Analysis, RNA-seq aligned reads, WES aligned reads, the reference genome and RABT assembly. For illustrative purposes, the significant
isoform, ENST00000311936, is circled in green, and the location of the G13D hotspot mutation is circled in red. A potential novel isoform
(CUFF.19733.1) from the normal pool is circled in blue.

Figure 7 KRAS Protein Plot. Automation is utilized to generate a “lolliplot”, which illustrates the discovered amino acid changes for KRAS in the
context of previously reported protein mutations and known domains. The G13D hotspot mutation found in the experiment is colored red.
Other canonical mutations are colored blue. The RAS protein domain is colored green. Automation was achieved by a custom interface, along
with R, the shiny package and Plot Protein.
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cancer mutations are needed. Our system provides a
small step in this direction.

Conclusions
There is much to learn about the complexities of cancer
genomes and NGS approaches are enabling a new
understanding. As molecular profiling technologies
evolve, it is critical to leverage what has been learned
from historic techniques (e.g., microarrays) as new dis-
ruptive approaches (e.g., NGS) continue to gain a scien-
tific presence and become a significant modality in
clinical workflows (e.g., MySeqDx). These new and rapid
changes are now reflected to the point that the science
of computational biology is now driving many aspects of
traditional “bench research”. For instance, it is now
common to use PCR to cross-validate specific computa-
tional findings. This is especially true in cancer. Further-
more, it is established that molecular heterogeneity
results in complex genetic landscapes and are a com-
mon and confounding problem with many cancers.
Demonstrated in this study are multi-modality integra-
tive approaches, using KRAS and TP53 as examples,
aimed to combat the heterogeneity dilemma, and bring
more clarity to complex NGS studies.
The novel aspects of our approach are the abilities

allowing for a rapid integration, exploration, discovery
and validation of large and complex experimental data
from a wide variety of NGS and microarray molecular pro-
filing modalities, and are independent of any particular
cancer type. Supported comparisons include: i) RNA-seq
vs. Microarray, ii) WES vs. Microarray, iii) WES vs.
RNA-seq, iv) WES vs. RNA-seq vs. Microarray (triple inte-
gration). The triple integration approach was illustrated in
this study because it is the most difficult. To our knowl-
edge, there is no existing software suite available, commer-
cial or open source, which provides the triple integration
feature. These abilities enable a more informed view of the
intricate details present in the complex cancer biology, as
was demonstrated with the KRAS and TP53 findings. The
integrative KRAS findings indicate that the hotspot G13D
DNA mutation does not appear to be translated into pro-
tein, thus negating the need for an expensive medicine tar-
geting this particular mutation. TP53 integrative findings
clearly displayed concordance between the DNA and
RNA-seq transcriptome results and thus strengthen the
biological evidence of the missense mutation.
There is a need to capture and model salient cancer

biology knowledge gained from historic approaches.
We continue to lay the groundwork for such endea-
vours concerning MM and other cancer types. It is our
hope that such efforts will advance our understanding
of the underlying cancer biology of MM, improve
patient outcomes, and begin to further approach the
concept of a cure.

Additional material

Additional file 1: Microarray vs. RNA-seq

Additional file 2: User Profile Management. User session profiles
and custom gene groups may be created and modified enabling a
more personalized experience with NGS Association System.

Additional file 3: Experiment Upload. A series of dialogs that profile
the various steps for the creation of an example experimental
study are shown. Once a patient is created, experimental details
may be entered, and then the molecular profiling data can be
scheduled for upload.

Additional file 4: Association Algorithm. Association tables and
software procedures allow for the conversion between different
gene identifiers. Conversions can be either direct or indirect
depending on the starting and target IDs.

Additional file 5: Executive Console. The executive console provides
basic study statistics as well as an overview of all imported and
mapped study-related data. The ability to delete raw and/or
mapped experimental data is provided from this interface.

Additional file 6: Patient Experiments View. All molecular profiling
experiments for a patient can be viewed. A single modality or
multiple modality session can be initiated.

Additional file 7: Filter Options. Filtering options help to quickly
reduce thousands of results to targeted key genes of interest.

Additional file 8: Integrated Data Exploration, WES + Microarray
(Min View). A minimal view of a WES and gene expression
microarray integrated dataset. Grey colored columns are common
across all modalities. Green columns are specific to WES and blue
for microarray data. When present, RNA-seq columns are shaded
light red.

Additional file 9: Integrated Data Exploration, WES + Microarray
(Max View). A maximal view of a WES and gene expression
microarray integrated dataset.

Additional file 10: Drug-Gene Interactions. These are acquired by
linkage to DGIdb.

Additional file 11: Triple Integration (WES, Cuffdiff Isoform,
Microarray). Displayed is a triple integration of data sets from WES,
Cuffdiff isoforms, and gene expression microarray. Two KRAS gene
isoform transcripts from the Ensembl annotation with non-zero
values in the column Sample 2 FPKM (tumor), namely
ENST00000556131 and ENST00000311936, are contained in the red
circled region.

Additional file 12: Further Validation of the KRAS G13D Hotspot
Mutation. IGV automation is utilized to further explore, discover,
and validate the KRAS G13D hotspot mutation; by examining the
WES aligned reads. Since KRAS is known to code from the reverse
strand, the point mutation is shown as a “T” on the IGV display.
The RNA-seq aligned reads do not appear to show evidence of the
point mutation, and this finding requires further confirmation.

Additional file 13: Confirming a lack of transcription for the KRAS
G13D Hotspot Mutation. IGV automation is again utilized to further
explore and discover a lack of transcription for the KRAS G13D
hotspot mutation. Although there is a KRAS DNA mutation, which
is a known druggable target in many cancers including MM, there
is no evidence of transcription. Therefore the mutational change
will not be translated into protein. These integrative findings
provide important information for clinical decision making and
therapeutic assignments.

Additional file 14: Validating a KRAS Novel Splice Isoform. The KRAS
novel splice isoform, CUFF.19733.1, was discovered in the NGS
Association System, and is now further explored and validated by
IGV automation. The novel exon is circled in purple and the
isoform with the closest similarity is indicated.

Additional file 15: Triple Integration (WES, Cuffdiff Isoform,
Microarray). A triple integrated view of experimental data sets from
WES, Cuffdiff Isoforms, and microarray is shown. Circled in red are
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seven TP53 transcript isoforms associated with the non-
synonymous mutation (C277F or C266F or C145F) depending on
how the exon with the point mutation (G > T) was spliced.

Additional file 16: Validation of a TP53 Missense Mutation. RNA-seq
aligned reads show concordance with the DNA findings (WES
aligned reads) and are circled in red. Together they provide
stronger evidence for the mutational result. This validation was
accomplished by a single point and click.
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