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Abstract

Background: Laccases (E.C. 1.10.3.2) are multi-copper oxidases that have gained importance in many industries
such as biofuels, pulp production, textile dye bleaching, bioremediation, and food production. Their usefulness
stems from the ability to act on a diverse range of phenolic compounds such as o-/p-quinols, aminophenols,
polyphenols, polyamines, aryl diamines, and aromatic thiols. Despite acting on a wide range of compounds as a
family, individual Laccases often exhibit distinctive and varied substrate ranges. This is likely due to Laccases
involvement in many metabolic roles across diverse taxa. Classification systems for multi-copper oxidases have
been developed using multiple sequence alignments, however, these systems seem to largely follow species
taxonomy rather than substrate ranges, enzyme properties, or specific function. It has been suggested that the
roles and substrates of various Laccases are related to their optimal pH. This is consistent with the observation that
fungal Laccases usually prefer acidic conditions, whereas plant and bacterial Laccases prefer basic conditions. Based
on these observations, we hypothesize that a descriptor-based unsupervised learning system could generate
homology independent classification system for better describing the functional properties of Laccases.

Results: In this study, we first utilized unsupervised learning approach to develop a novel homology independent
Laccase classification system. From the descriptors considered, physicochemical properties showed the best
performance. Physicochemical properties divided the Laccases into twelve subtypes. Analysis of the clusters using a
t-test revealed that the majority of the physicochemical descriptors had statistically significant differences between
the classes. Feature selection identified the most important features as negatively charges residues, the peptide
isoelectric point, and acidic or amidic residues. Secondly, to allow for classification of new Laccases, a supervised
learning system was developed from the clusters. The models showed high performance with an overall accuracy
of 99.03%, error of 0.49%, MCC of 0.9367, precision of 94.20%, sensitivity of 94.20%, and specificity of 99.47% in a
5-fold cross-validation test. In an independent test, our models still provide a high accuracy of 97.98%, error rate of
1.02%, MCC of 0.8678, precision of 87.88%, sensitivity of 87.88% and specificity of 98.90%.

Conclusion: This study provides a useful classification system for better understanding of Laccases from their
physicochemical properties perspective. We also developed a publically available web tool for the characterization
of Laccase protein sequences (http://lacsubpred.bioinfo.ucredu/). Finally, the programs used in the study are made
available for researchers interested in applying the system to other enzyme classes (https://github.com/tweirick/
SubClPred).
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Background

Laccases (EC 1.10.3.2) are the largest sub-group of multi-
copper oxidases which includes ascorbate oxidases (EC
1.10.3.3), ferroxidases or ceruloplasmins (EC 1.16.3.1) and
nitrate reductases (EC 1.7.2.1). Laccases were first discov-
ered in the sap of the Japanese lacquer tree Rhus vernici-
fera. Since then they have been found in many taxa
including plants, fungi, bacteria, and metazoa. Laccases are
involved in a diverse range of cellular activities such as lig-
nin degradation, lignin biosynthesis, pigment production,
plant pathogenesis, melatonin production, spore coat
resistance, morphogenesis and detoxification of copper
[1-5]. Laccases are also widely used for industrial purposes.
For example, Laccases are in paper and pulp, textile, and
petrochemical industries for detoxification of industrial
effluents [6]. In medicine, Laccases are used for certain
medical diagnostics and as catalysts for the manufacture
of anti-cancer drugs [6]. They are also used for environ-
mental remediation of herbicides, pesticides and as explo-
sives in soil and cleaning agents for certain water
purification systems. In commercial products, they are
found in cosmetics, denim bleaching, wine and beer stabi-
lization, fruit juice processing, color enhancement of tea
and even baking [6,7]. Laccases are popular in industry for
a number of reasons. They are better for the environment,
and have fewer non-specific reactions than conventional
oxidation technologies. Many Laccases are extracellular
enzymes which makes their purification simple. Compared
with other oxidative enzymes, these are easier to use as
they catalyze reactions with molecular oxygen and do not
need reactive oxygen species catalysis [6,8]. Currently, fun-
gal Laccases comprise most widely studied and commer-
cially used Laccases. However, there is much interest in
bacterial Laccases also due to their higher temperature sta-
bility and ability to operate at different pHs than fungal
Laccases. Generally, Laccases are composed of dimeric or
tetrameric glycoproteins with each monomer containing a
copper containing site. These copper sites may be one of
three types: Type-1 or blue copper, Type-2 or normal cop-
per, and Type-3 or coupled-dinuclear centers. These cop-
per binding motifs have been shown to be highly
conserved across all Laccases, with a trend towards greater
similarity in the N and C terminal domains as these are
the copper containing domains. It has been noted that the
size of the central binding pockets are larger in bacterial
Laccases than in fungal or plant Laccases. These copper
binding sites yield significant differences in conserved resi-
dues for Laccases of bacteria, fungi, and plants [9].

Fungal Laccases

Fungal Laccases comprise the bulk of experimentally
studied Laccases. They occur in many fungal species and
are thought to play important roles in morphogenesis,
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fungal-plant interactions, stress defense, pigment produc-
tion, and lignin degradation. While typically studied with
respect to biomass degradation, most fungi found produ-
cing several isoenzymes of different types, enzymatic or
physical properties, and expression levels. These can vary
even more between species [8]. For example, it has been
reported that one of the most efficient lignin degraders,
Phanerochaete chrysosporium produces a Laccase differ-
ent than other efficient lignin degrading fungi [10]. While
most Laccases are extracellular enzymes, many fungal
taxa produce intracellular Laccases [8] also. This is espe-
cially interesting when compared with enzymes of similar
function such as lignin peroxidases which are strictly
extracellular. It is speculated that the cellular localization
of Laccases may be connected their function and sub-
strate ranges. This hypothesis still remains elusive due to
the majority of studied fungal Laccases coming from
wood-rotting basidiomycetes. The enzymatic properties
of fungal Laccases vary greatly such as temperatures vary
from 25-80° C, pH optimums: 2,2’-azino-bis(3-ethylben-
zothiazoline-6-sulphonic acid) (ABTS) from 2.0-5.0,
2,6-dimethoxyphenol (DMP) from 3.0-8.0, guaiacol from
3.0-7.0, and syringaldazine from 3.5-7.0. Similarly, K,
(uM) ranges vary a lot such as: ABTS from 4-770, DMP
from 26-14720, Guaiacol from 4-30000, syringaldazine
from 3-4307. Also Ky (S71) vary in a broad range as:
ABTS from 198-350000, DMP from 100-360000, Guaia-
col from 90-10800 and syringaldazine from 16800-28000.
These properties can further be altered by glycosylation.

Plants Laccases

Traditionally plant Laccases were considered to be only
extracellular enzymes involved in the radical-based lignin
polymerization. However, a high degree of divergence
among Laccases within a single plant species has been
observed, such as ryegrass which contains 25 different
Laccase genes. Also, it is reported that Laccases lack
N-terminal signal peptides for secretion but have signals
targeting to other cellular components such as the endo-
plasmic reticulum or peroxisomes. Another study on
poplars showed that Laccase repression had no effect on
lignin production. Despite the evidence for novel functions
and many known functions in other taxa, the grouping of
plant Laccases still remain elusive [11].

Bacterial Laccases

Bacterial Laccases are known to be widespread in prokar-
yotes; however, only few have been experimentally charac-
terized. To date, bacterial Laccases have been found
mostly to be involved in lignin degradation, catabolism of
phenolic compounds, cell pigmentation, morphogenesis,
and copper defense [12-14]. The best studied bacterial
Laccase is CotA and endospore coat protein from Bacillus
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subtilis which produces a melanin like pigment. This
enzyme has generated high amounts of interest due to its
extremely high temperature stability. Bacterial Laccases
are also unique due to the lack of cellular partitions in
prokaryotes. The reactions catalyzed by Laccases can
produce quinones and semiquinones as by-products,
which are powerful inhibitors of the electron transport
change [5].

Other Laccases

In metazoan, Laccases exist in mammals as well as inverte-
brates. The roles of Laccases in mammals do not appear to
be well understood, however, insect Laccases are known to
be involved in cuticle formation [12]. Cuticle tanning also
known as sclerotiziation and pigmentation is the process
through which proteins in the exoskeleton are conjugated.
This causes the exoskeleton to become insoluble, harder,
and darker.

Classification of Laccases: current view

Laccases are currently classified as part of a larger classifi-
cation scheme for multi copper oxidases [15,16]. This is
based on multiple sequence alignments and seems to clas-
sify by taxonomical association. The current classification
system i.e. “The Laccase Engineering Database” (LccED),
classifies multi copper oxidases into eleven classes:
basidiomycetes Laccases, ascomycete Laccases, insect
Laccases, fungal pigment MCOs, Fungal ferroxidases,
fungal and plant ascorbate oxidases, plant Laccases,
bacterial CopA proteins, bacterial bilirubin oxidases,
bacterial CueO proteins, and SLAC homologs.

Machine learning-based classification systems

As discussed above, the current classification system for
Laccases largely follow species taxonomy rather than sub-
strate ranges, enzyme properties, or specific function.
Although it has been observed that individual Laccases
often exhibit distinctive and varied substrate ranges, and
have different functions based on distinguishing pH values
among different taxa. We hypothesize that a descriptor-
based computational prediction system could be developed
to generate a homology-independent classification system
for better describing the functional properties of Laccases.
In a previous study on feruloyl esterases (EC 3.1.1.73), an
unsupervised learning approach was used to create a novel
homology independent classification system for this
enzyme class. Various bioinformatics tools were used to
validate the identified classes [17]. In the present study, we
followed a two-way computational strategy to identify and
classify various Laccase subtypes by developing a python
command line-based implementation of the unsupervised
and supervised learning approaches, respectively. Further,
we implemented our prediction models as a web-based
prediction server to classify novel Laccase subtypes. The
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tool could be useful to the biofuel researchers and industry
as well.

Methods

Dataset generation

Alternate names for Laccases were found via cross refer-
encing with the KEGG database (http://www.kegg.jp/
dbget-bin/www_bget?ec:1.10.3.2). To search for Laccase
sequences, we combine these names to start as a basic
query. Sequences with protein or transcript level evi-
dence were selected to ensure high quality data as well
as avoid potentially mislabeled multi-copper oxidases.
Then we search UniprotKB for Laccase sequences using
some search terms as listed in Table 1. Using the
“browse by” option on Uniprot’s GUI the query was
checked for possible contaminating sequences. The con-
taminant sequences were filtered out using NOT condi-
tions (see Table 1). Finally, 329 protein sequences are
collected with average sequence length above 200 resi-
dues. To further validate the quality of the datasets the
protein descriptions of the data were analyzed with the
text clustering functionality in Google-Refine version
2.5. A significant variation was found in the protein
descriptions but no cases of contamination were found.
As a final check of data quality, the lengths of the
sequences were calculated and plotted on a bar graph
shown in Figure 1. Sequences containing non-standards/
ambiguous characters were removed from the data set.

Feature representation of Laccase proteins

It is important to extract better features of protein
sequences to improve the performance of the machine
learning method. We used several features such as
amino acid composition (AAC), Conjoint Triad (CT),
Composition-Transition-Distribution (CTD), Dipeptide
composition (DIPEP), Geary autocorrelation descriptors,
Moran autocorrelation, Moreau-Broto autocorrelation,

Table 1 Search terms used for collecting Laccases-related
enzymes from UniProtKB database.

Basic Query Final query

(name:Laccase OR
name:"urishiol oxidase” OR
name:"urushiol oxidase” OR
name:"p-diphenol oxidase” OR

(name:Laccase OR
name:"urishiol oxidase” OR
name:"urushiol oxidase” OR
name:"p-diphenol oxidase” OR

ec:1.10.3.2) ec:1.103.2)

AND AND

(existence:"evidence at protein (existence:"evidence at protein
level” OR level” OR

existence:"evidence at transcript
level”)
AND fragment:no

existence:"evidence at transcript
level”)

AND fragmentno

AND NOT name:"Catechol oxidase”
AND NOT ec:1.10.3.1

AND NOT ec:1.1033
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Figure 1 Distribution of protein sequence lengths contained
within the initial dataset used in the study. The box represents
the first and third quartiles, the band the second quartile, the star is
the median, and the whiskers are 1.5 the interquartile range. This
was done to identify sequences with significant differences in
length. The outliers on the top and bottom were manually
reviewed.
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physicochemical properties and a composite vector of
amino acid composition and physicochemical properties.

Amino acid composition (AAC)

Each protein sequence is represented as a 20-dimen-
sional feature vector with each element corresponding
to the percentage of one of the twenty amino acids [18].
For a given protein sequence x, let the function f(x;)
represent the occurrence of the 20 standard amino
acids. Thus, the composition of the amino acids Px in
the given sequence can be represented as,

P(x) = [Pl(x),Pz(x),...,on(x)] (1)

where P(x;) is given as,

f(xi)

P (x;) = i
Ziz=01 (x:)

=1,2,3,...20 @)

Dipeptide composition (DIPEP)

Dipeptide sequence composition is similar to amino acid
composition. However, it considers the percentages of
dipeptides occurring in a given protein sequence [18].
Thus, the composition of each dipeptide is given as,

fCxir %)
20 20
Dot Zj:lf(xi' xj)
where P (x;,xj) is the fraction of number of instances

of a specific dipeptide f(xi X;) and the total number of
all dipeptides.

P (x;, x;) = ij=1,23....20 (3)

Conjoint triad (CT)

In conjoint triad, in addition to amino acid composition
it considers the sequence order effect [19]. It is calcu-
lated by grouping the 20 standard amino acids into 7
groups based on physical and chemical similarity [(A,G,
V), (LL,E,P),(Y,M,T,S), (H,N,Q,W), (R,K), (D,E), (C)].
Triads are made from all combinations of three amino
acids of these groups, resulting in a vector length of 343
(7 x 7 x 7). Thus, a protein sequence is represented as,

P(xi,lexk) _ f(xi, x5, 1) ij=1,2,3....20 (4)

i7=1 j7=1 Zjllf(xi'xj'xk) '

where f(xi, xj, %) is the number of occurrences of a
specific triad and Y7 21»7:1 Zjllf(x,-,xj,xk) is the num-
ber of all triads [19].

Composition-transition-distribution (CTD)

In this representation three local descriptors, Composition
(C), Transition (T) and Distribution (D) are used in com-
bination to construct the feature vector. These descriptors
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are based on the variation of occurrence of functional
groups of amino acids within the primary sequence of pro-
tein [20]. Thus, before computing this feature the twenty
amino acids are clustered into seven functional groups
based on the dipoles and volumes of the side chains [19].
The composition descriptor computes the occurrence of
each amino acid group along the sequence. Transition
represents the percentage frequency with which amino
acid in one group is followed by amino acid in another
group. The distribution feature reflects the dispersion pat-
tern along the entire sequence by measuring the location
of the first, 25, 50, 75 and 100% of residues of a given
group. Hence, total 63 features (7 composition, 21 transi-
tion and 35 distribution) are constructed to represent a
protein.

Autocorrelation feature vectors

Autocorrelation features describe the level of correlation
between two protein sequences in terms of their specific
physicochemical property, which are defined based on
the distribution of amino acid properties along the
sequence. There are 8 amino acid properties used for
deriving autocorrelation descriptors.

Moran autocorrelation
The Moran autocorrelation (MAC) descriptor of a pro-
tein is defined as:

! Y (P = P) x (Ppa — P)

N—d 1 N . (5)
NZj:l(Pj_P)

Duac(d) =

where N is the length of the protein sequence, d =
1,2,......30 is the distance between one residue and its
neighbors, P; and P}, are the properties of the amino acid

_ NP
at positions j and j+d respectively. P = ) [\; is the average

of the considered property P along the sequence.

Geary autocorrelation
Geary autocorrelation (GA) descriptor of a protein is
defined as:

1 -
2N =y 2 (B =)’

" . (6)
N_12j=1(PJ‘_P)

Dga(d) =

P> N, Pj and Pj,q are defined in the same way as above.

Moreau-Broto autocorrelation
Moreau-Broto autocorrelation (MBA) descriptor of a
protein is defined as:
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N—d

Dypa (d) = Y~ Pj x Pjg (7)
ia

P, N, Pj and Pj,q are defined in the same way as
above.

Physicochemical properties

Physicochemical properties of amino acids have been
used successfully in numerous prediction tools [18]. In
this study, we grouped the amino acids of a protein into
classes based on some physicochemical properties. Also
the theoretical pl, molecular weight, and length of the
protein are used in the feature vector. The non-compo-
sition based values are divided by the length or mass on
the protein titan in order to provide values between one
and zero. Molecular weights were calculated by adding
the weights of the each amino acid in the sequence in a
suitable way related to their chemical activity. A detailed
description of these properties is provided in Table 2.

Split amino acid composition

Split amino acid composition aims to capture informa-
tion about signal peptides at their N- or C-terminal
region. The amino acid composition of the N-terminal

Table 2 Physicochemical properties used to represent a
protein for Laccase subclass prediction.

Sr. No. Physicochemical property Amino Acids # features
1 log10(molecular weight)/7.0 - 1
2 log10(Sequence Length)/5.0 - 2
3 % Charged Residues DREKH 3
4 % Hydrophilic and neutral NQSTY 4
5 % basic polar/positively charged HKR 5
6 % acidic or negatively charged  DE 6
7 % aliphatic AGILV 7
8 % aromatic FWy 8
9 % small DNT 9
10 % tiny AGPS 10
11 % large FRWY 11
12 % hydrophobic and aromatic WF 12
13 % hydrophobic and neutral ACGILMFPWV 13
14 % amidic NQ 14
15 % cyclic P 15
16 % hydroxylic ST 16
17 % contains sulfur (@Y 17
18 % H-bonding CWNQSTYKRHDE 18
19 % acidic and amide DENQ 19
20 % ionizable DEHCYKR 20
21 % sulfur bonding C 21
2 % pl - 22
23 Molecular weight/ 4000000.0 - 23
24 Sequence length / 38000.0 - 24
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region, Center, and C-terminal region are computed and
then concatenated together. The N- and C- terminal
regions are the first and last 25 amino acids in the
sequence. Thus a protein sample is represented as a 60
element vector as,

P(x) = [AACN—terminal AACCenterregion AACC—erminal] (8)

Unsupervised classification

Unsupervised learning organizes the data based on the
similarity patterns between them. In this study, cluster-
ing was used to group the data into classes sharing
same type of similarity not found in other classes. We
followed the similar methodology as outlined in the
paper [17]. We first used self- organizing map (SOM) to
identify the possible number of groups in the dataset
and used that information in k-means clustering to
divide them in different clusters.

Self-organizing maps (SOM)

SOMs are a type of artificial neural networks used in
unsupervised learning to produce low dimensional dis-
crete representations of the vector space represented by
some training data [21]. The discrete elements in SOMs
are called nodes or neurons. It has been used widely in
bioinformatics and computational biology mostly for
tasks such as finding gene expression patterns and pro-
tein classification [22,23]. The SOM map contains m
neurons, where each contains a d-dimensional prototype
vector with d as the dimensions of the input vectors.
First, initial values were given to each prototype vector.
When training begins a vector X’ from the input data is
randomly chosen. The distances from X’ to the prototype
vectors are computed and the neuron closest to ‘x’ or
best matching unit (BMU) is selected. The radius of the
neighborhood of the DMU is calculated, any neurons
found within the radius are deemed neighbors. The
neighbor’s prototype vector is adjusted to be more similar
to the input vector. This procedure was then repeated for
certain iterations (N) [21]. In this study, SOM of multiple
dimensions were studied and N was 10,000 for all dimen-
sions. For the SOM implementation, we used an open
source machine learning package ‘Orange.py’ which is
freely available at http://orange.biolab.si[24].

K-means clustering

K-means clustering is a class of unsupervised learning
algorithms which group input data set into ‘.’ parts or
clusters [25] based on similarity measure. K-means is one
of the oldest and simplest clustering methods, however
still remains a useful tool for cluster analysis. It scales
well to large data sets and medium numbers of clusters,
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however, has the drawback of needing to specify the
number of clusters expected. The basic k-mean algorithm
begins by initializing k cluster centers (centroids) and
iterating to minimize the average distances between cen-
troids and their cluster members. The data which are
close to any cluster centroid belong to that cluster. The
centroids were pre-computed using the neurons from the
SOM. In this study, an open source machine learning
library ‘Sci-Kit Learn’ was used to implement the
k-means clustering method [26].

SOM for finding K number and centroid locations for K-
means clustering

In this study, first an SOM network computed containing
N neurons and calculates the Davies-Bouldin index (DBI)
of the map treating the neurons as clusters. Then, (N) x
(N-1) prototype maps were created by making all combi-
nations of each neuron with the other neurons. The DBI
is computed for all prototype maps, and the prototype
map with the lowest DBI is selected. If the DBI of this
map is lower than the current map the map is changed to
other prototype map and the previous steps are repeated
until no prototype map with a lower DBI can be found.
This reduces the size of the map by one each iterations
with the final number of neurons being used as the k
value for k-means clustering and the cluster centroids are
computed from the vectors belonging to each neuron.
The efficiency of k-means clustering is measured using
the difference between the inter-cluster and intra-cluster
variance and the Davies-Bouldin index. As SOM find the
clusters in random fashion, to get the optimum number
of clusters, the clustering procedure was run 500 times
for each vector type. The optimum number of clusters
was chosen by selecting the cluster from the most often
occurring cluster number with the largest intercluster
and intracluster difference and smallest DBIL

Davies-Bouldin index (DBI)

The DBI is a metric for evaluating overall quality of a
given set of clusters originally developed to aid in deter-
mining the optimum number of clusters within a dataset
[27]. Minimization of the DBI of the clusters within a
dataset seems to generally indicate natural partitions of
data sets. However, it should be noted that this is a heuris-
tic approach and good values do not always indicate the
best clustering arrangement. DBI of a clustering approach
is defined as,

1 N
DB= 3 Di )

where D; is the worst case scenario of all values of R;;,

Di = man;i.ij Rl] (10)
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R;; is a measure of the clustering quality, defined as
R = Si + S]' 1
v = Mi,j ( )

The measure of scatter (S) within a given cluster i, is
defined as

L q
S; = \/Ti Yo 1% — Al (12)
where Xj is a n-dimensional feature vector assigned to
the cluster C; and q was kept as two and M;; is a measure
of separation between two clusters defined as
Mij = Ai = Aj, (13)
where A; is the centroid of cluster C; containing samples
X1, X5..... X and computed as,

Xi+X0+X3+...+X;,
A= L

Intra-cluster variance

Intra-cluster variance was calculated using the Euclidean
distances between the points in the cluster and the centroid
of the cluster.

Inter-cluster variance
Inter-cluster variance was calculated using the Euclidean
distance between the centroids of the clusters.

Co-occurrence matrix analysis

The cluster numbers returned from the clustering
approach is arbitrary which presents a unique problem
when trying to access the similarity between runs. Thus,
to assess the consistency of belonging of samples in a par-
ticular group, a co-occurrence matrix was generated to
show the number of times a given data sample in one
group occurred with other groups. The higher the num-
bers of data samples occurring together, the more consis-
tency the clusters in various runs.

Support vector machine (SVM)

SVMs are a class of supervised learning algorithms
based on the optimization principle from statistical
learning theory [28,29]. Support vector machines have
been used widely in computational biology in diverse
topics such as subcellular localization [18,30-32], protein
function prediction [33], secondary structure prediction
[34], disease forecasting [35]. SVMs solve classification
problems by calculating a hyperplane that separates the
training data with a maximum margin. For multi-class
classification the classification is transformed into a
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series of binary classifications. There are numerous stra-
tegies for handling a multi-class problem separated into
binary classifications and in this study the one-versus-
rest approach was used. The SVM Classifiers were
developed using the SVM_Light package (https://github.
com/daoudclarke/pysvmlight), which is an open source
package for SVM implementation [36]. In a preliminary
study, the RBF kernel was found to perform best. There-
fore, we used RBF kernel in all our SVM classifiers.

Performance evaluation parameters
To assess the performance of the developed models, we
used a five-fold cross validation test on the training
dataset and then tested the models in an independent
test. In a five-fold cross-validation procedure, the origi-
nal sample is randomly partitioned into five equal size
subsamples. Of the five subsamples, a single subsample
is retained as the validation data for testing the model,
and the remaining four subsamples are used as training
data. The cross-validation process is then repeated
5 times (the folds), with each of the 5 subsamples used
exactly once as the validation data. The results from the
five-folds are then averaged to produce a single estima-
tion. The performance is measured by the parameters
such as overall sensitivity, specificity, precision,
Matthews Correlation Coefficient (MCC) and average
accuracy. These parameters are defined as follows:

(i) Sensitivity or coverage of positive examples: It is
the percent of positive samples correctly predicted,

TP

(14)
TP + FN

Sensitivity(S,) =
(ii) Specificity or coverage of negative examples: It is
percent of negative samples correctly predicted as positive,

Specificity (Sp) = x 100 (15)

™
TN + FP

(iii) Accuracy: It is the percentage of correctly predicted
samples,

TP + TN
* % 100 (16)

A Acc) =
ccuracy (Acc) TP + FN + FP + FN

(iv) Error rate: It is the total percentage of incorrect
predictions is calculated as

Error rate (ER) =
FP + EN
Error rate (ER) = x 100 (17)
TP + FN + FP + FN

(v) Precision: It is the percentage of positive PPIs those
are correct identified true prediction,

Precision = x 100 (18)

TP + FP


https://github.com/daoudclarke/pysvmlight
https://github.com/daoudclarke/pysvmlight
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(vi) Matthew’s correlation coefficient (MCC): it is con-
sidered to be the most robust parameter of any class pre-
diction method. MCC equal to 1 is regarded as perfect
prediction while 0 for completely random prediction.

(TP x TN) — (FP x FN)

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(19)

where true positive TP) is the numbers of positive
samples that are predicted correctly; false negative (FN)
is the number of positive samples that are predicted to
be negative; false positive (FP) is the number of negative
samples that are predicted positive and true negative
(TN) is the number of negative samples that are pre-
dicted correctly as negative.

Feature scaling

To have knowledge of most relevant features for classifica-
tion of Laccase types, a feature scaling approac is con-
ducted. Feature scaling was performed using univariate
feature selection using the functions provided by Sci-Kit
Learn using the program scale_features.py[26]. Univariate
feature selection implemented by considering each element
of the descriptor vectors independent from one another
and ranking them based on their occurrence between
classes.

Domain map and phylogenetic trees construction

The program doMosaic was used to create domain maps
for visualization of the domains in the initial data and
newly generated classes [37]. Interproscan was used to get
the information about the domains in the Laccases [38].
To show the relationship between Laccase samples, a phy-
logenetic tree was generated with the cleaned dataset
using Clustal Omega version 1.0.3 [39]. Dendroscope ver-
sion 3.2.10 was used for the visualization of the tree.

Results and discussion

We have studied several SOM architectures to see the
effect of clustering of the Laccases with many descriptors.
The clustering algorithm was run 500 times for each SOM
map size. The clustering performance of each descriptor is
listed in Table 3. Physicochemical properties showed the
best average performance among all the feature vectors
providing 12 clusters as optimum cluster size. This is also
in close agreement with the study for feruloyl esterases
classification where the strongest descriptor was the com-
posite vector combining amino acid composition and phy-
sicochemical properties [17]. We also performed a co-
occurrence matrix analysis to see the consistency of clus-
ter instances in each group. The physicochemical property
descriptor shows consistency in cluster instances between
runs and different SOM dimensions. The co-occurrence
matrix is shown in Figure 2. The 6x6 SOM dimension
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gave the best run with a DBI of 0.37 with an inter-cluster
variance of 0.0088 and intra-cluster variance of 0.0015.
The performance of the physicochemical descriptor in
each SOM dimensions is listed in Table 4. The proteins
classified in each group after the clustering approach are
listed in Table 5.

Analysis of the taxa in each class revealed that the
majority of the classes were dominated by single taxa as
reported in Table 5. Several review papers containing
large tables of experimentally validated Laccases with
various properties were considered to validate the clus-
ters. Unfortunately, these were difficult to draw patterns
from as the substrates tested varied widely and heterolo-
gously expressed Laccases often have drastically different
activities due to different amounts of glycosylation
[15,40,41]. To better understand what is driving the dis-
tinction of different classes, feature scaling was applied to
the physicochemical properties of all classes together, as
well as each class against each other. The major contri-
buting features were the percentage of negatively charged
amino acids, isoelectric point, and the percentage of
acidic or amidic groups. The detailed information about
the significant features is shown in Figure 3. This is parti-
cularly interesting as Laccases as a group operate over a
wide range of pHs while individual enzymes seem to
have fairly specific or broad pH and substrate ranges
[41]. Also, it has been reported that different Laccases
produced by the fungi Coriolus versicolor were easily dis-
tinguishable by their isoelectric points [42]. The differ-
ences between classes in terms of physicochemical
properties, the best features were calculated for all classes
and shown in Figure 4. This showed that the variation
seems to be strongly influenced by acid/base properties,
and next to the small residues or aliphatic residues. The
isoelectric point occurred most often within the top three
features with 45 cases, followed by basic amino acids with
34 cases, acidic with 32 cases, ionizable amino acids with
23 cases, acidic and amidic with 13 cases, charged residues
with 12 cases, #-bonding and small amino acids both had
8 cases, tiny with 6, neutral and hydrophobic with 4,
aliphatic with 4, hydrophilic with 2, and molecular weight
with 2.

Additionally, we analyzed the descriptor values for phy-
sicochemical properties and amino acid composition
between classes with a standard ¢-test. The ¢-test results
of the AAC features between the 12 classes are listed in
Additional file 2. It shows that Ala, Cys, Asp, Glu, His,
Lys, Met, Asn, Arg, Ser, and Thr vary significantly
between the classes. This is particularly interesting as the
amino acids which have the highest amounts of statisti-
cally significant differences between classes seem to be
involved in important aspects of Laccases. For example,
the top two amino acids are aspartic acid and lysine with
significant differences among 51 of the 66 possible class
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Table 3 Performance of different descriptors in clustering of Laccases using various SOM dimensions
SOM Dimensions AAC C of CTD CcT DIPEP MA MBA Physico-Chemical Properties  Sequence Order Coupling

5x5 13 11 12 5 8 13 12 18
5x6 13 15 5 5 4 15 13 22
6x5 12 14 8 5 5 16 12 24
6x6 13 15 11 6 5 18 13 16
7x7 9 17 7 7 6 22 11 39
8x8 11 13 9 9 11 14 14 45
CDVD 8.2E-5 25E-4 -013 -10E4 292 47E3 6.1E-3 -1.3E4
DBI 0.89 048 0.95 0.61 062 042 037 0.12

SOM: Self Organizing Map, AAC: Amino Acid Composition, DIPEP: Dipeptide Composition, CT: Conjoint Triad, C of CTD: Composition of CTD, MA: Moran
Autocorrelation, MBA: Moreau-Broto Autocorrelation, CDVD: intercluster - intracluster variance, DBI: Davies-Bouldin Index.

Co-Occurrence Matrix

105

Sequence Number

30

15

0

Figure 2 Co-occurrence matrix for the 12 clusters. The colors indicate the number of times given sequences in the data set occur in the
same cluster. Red values represent high co-occurrence and blue low co-occurrence, both of which indicate a low amount of variation between
consecutive runs of the clustering program.
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Table 4 The average clustering performance at each SOM
dimensions for physicochemical properties.

SOM Intercluster-Intracluster Davies-Bouldin
Dimensions Variance Index

5X%X5 0.005325395 0385778113
5%6 0.006355107 0.365723878
6 X5 0.006241709 0.363347417
6%x6 0.0061449 0.372815039
7 X7 0.006477438 0.332075399
8x8 0.006438212 03249138

comparisons. Aspartic acid plays an important role in
many Laccase catalytic domains such as: assisting in sub-
strate channels in basidiomycete Laccases, affecting Lac-
case activity of C-terminal domains when mutated in
bacterial Laccases, and assisting in the exit of protons
from the N-terminal domains of bacterial Laccases
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[43-45]. Lysine can also be found widely in catalytic
domains, for example C-terminal lysines have been impli-
cated in the inactivation of heterologously produced Lac-
cases [46]. Aside from function, lysines are also widely
used as a cross linking target to bind Laccases to various
materials [47-49]. Glutamic acid had the next most sig-
nificant differences between classes. This was observed in
Leu-Glu-Ala motifs which follow the copper ligating his-
tidines and are thought to be related to Laccases with
higher redox potentials [50]. Further, Asparagine closely
followed with 41 significant differences. Many Laccases
are known to contain asparagines which serve as sites for
N-linked glycosylation [51]. These sites have been shown
to be involved in regulation of Laccase activity through
catalytic sites such as the Leu-Met-Asn motif which
often replaces the previously mentioned Leu-Glu-Ala
motif [50]. N-Glycosylation has also been found to

Table 5 Distribution of Laccases in different identified clusters under each taxa.

Cluster

Bacteria Fungi Metazoa Plants Total UniProt Accessions

Number

cluster-0

23

31

Q12541 P17489 Q70KY3 Q12542 Q941X2 QO9HV5 Q8XTW2 BSMAF4 Q4VY49 Q68LMO
ROWWK4 ROWS76 I0AVQ6 Q77854 Q6E124 Q2VT19 G8A542 GBA560 G8AS55 I13PL63 G8A529
TTUMR7 D2KZ04 D2KZ05 DOE8H8 S5Q958 Q38757 Q8WOV5 Q2PAJT G8XQWO ET1ACR6

cluster-1

34

40

QODHL2 Q339K6 Q8RYM9 Q12718 P33644 Q9P8G4 B6V331 Q6R5P8 Q6RYAS 060199
GOWM60 R4JRR8 D3K4IT Q5IR80 Q50JG5 B8Y3J5 Q96UK8 F2VPT7 C1JCL7 Q9P8B9 COJRGY
COJRG8 G4XIH4 Q72852 HOC4A2 D4AIAS Q69FXT Q69FW7 Q69FW8 Q1EPM3 G8A545
D2KZ06 D2KZ01 D2KZ07 Q716A3 Q716A2 Q308C0 BOJDP9 COP5Q0 Q4VJ26

cluster-2

24

28

QT10ND7 Q8VZA1 QOIQU1T P78722 Q5N9X2 Q02081 Q95IY8 QILFD2 B3TLAG COJRGE Q852A8
Q2PAJ0 Q2PAI9 Q9AUHY9 Q9AUI3 Q9AUI5 Q9AUI0 BOHHK7 QOFSCS Q9ZQW3 K4P1L9
K4PCQ7 KANZE7 K4P1P7 K4NZ22 B1PXG7 FAMKL7 M5AN30

cluster-3

081081 Q9AUI2 024041 024044 024043 024042 Q9ZQW2 M5AP95

cluster-4

25

P56193 Q02075 Q8IV20 Q8BZT9 Q99US8 Q49137 Q4U3X4 QIVX11 Q8WPD1 M4GPQ6 Q8I8Y1
MOPLY3 A5YWO Q8I8Y2 USEZN5 D5MRE2 DSMRET F6UMPT U3CY61 U3E6QY KOIXR5 F8V189
F8V190 JOPBQS JOPBR2

cluster-5

66

67

059896 Q02497 Q01679 Q12739 B8YQ97 QOUVQ2 115B14 U3M7S8 QTW6B1 D3YJ58
COWKP8 059944 G4XU43 Q8WZG3 A3F878 QOUVQS QY780 BSMAF5 QOUVY4 F4ZCH1
Q6HIH7 QOUNT7 ABW7J6 Q6ATAT 074171 094222 GOMAT7 Q96UT7 Q68LM3 ROWUR2
Q68LM2 RIWS74 Q68LM4 Q68LM1T GIIBW6 Q68LM5 Q8WZI0 GIIBW7 Q8TG94 COJRGY
COJRG5 HIBT70 Q77853 Q77855 HIC4A3 QOHDQO B2L9CT Q96TR6 E7BLRO Q2VT18 Q6STFO
Q69FX0 Q69FW9 Q6X938 MIGME7 C6G7V1 C1KDZ5 11VE6S 11VE67 11VE6E D2KZ00 D2KZ03
D2KZ02 D2KYZ9 Q716A0 BOJDP8 Q8W0OV4

cluster-6

26

27

Q12729 Q96WM9 Q12717 Q8NID5 I3NL60 Q50JG4 Q50JG3 ROWT58 ROWUTT ROWWK7
IMTWIV7 NW1V8 Q77856 Q517J0 E7BLQ8 E7BLQYS H8ZRU2 Q6RYA4 C5IXN8 Q2AAD1T Q6TH77
C1KDZ6 C1KDZ7 C1KDZ8 U5XIRO B5G552 B2CMA7

cluster-7

23

27

Q12570 DOVWU3 Q2QUN2 Q5N7A3 Q5N7B4 Q9HG17 Q50JG6 ROWUQ4 Q8WZH9 ROWTS5
C5NN27 COJRG4 COJRG3 COJRG2 COJRHO HOBT71 D9J137 Q8TFL8 Q2HWK1 B5G554 B5G556
Q716A1 K9R5B2 E1U754 E1U755 AGNSN5 KANZF4

cluster-8

29

43

Q9LYQ2 Q84J37 Q53LU4 Q2R0L2 P06811 Q2ROLO Q2QZ80 QOLFD1T FENSE7 ROWU16
G8A520 Q7JQF6 A1Z6F6 Q8I8YD A7XQR9 B4F7L6 B5BR55 D4AHS59 Q58IU3 Q58IU2 101V86
EORH10 E9RH11 Q49141 Q49140 A7XQS2 B5B2D0 D5MRR9 DSMRE3 D5MRST DOESH2
DOE8H7 DOE8H4 DOESH5 DOES8HO DOE8H6 DOESH3 DOESHT U6A581 Q4ZGM4 COE6Q3
Q6TDS6 B2M153

cluster-9

cluster-10

1

Q9FY79 QILMS3 Q02079 Q9ZPY2 Q5N7B3 GOWXI9 GOWXI5 Q8L4Y3 Q97P47 Q2LD62
BOHHV7 G87904

Q9SR40 Q6STES Q8WOV6 Q2PAJ2 P93366 Q72HW2

cluster-11

Q6ID18 QOFLB5 Q1PDHE Q9FJD5 Q56YTO 080434 QOAUIT Q9AUI6 Q9AUI4 I3W7EE K4PCR3
K4PTM3
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80

ANOVA Score

Feature Type

Figure 3 The best physicochemical properties between all classes using ANOVA feature selection. Larger numbers indicate stronger
correlations between classes. Scores for other descriptors are not shown as they have ANOVA scores near zero.

M Acidic or Negativly Charged (DE)
B P! (Isoelectric Point)
Acidic and Amide (DENQ)
M Small (DNT)
M Basic Polar or Positivly charged (HKR)
M Hydrophobic and Neutral (ACGILMFPWV)
B Cyclic (P)
I H-Bonding (CWNQSTYKRHDE)

provide protection against proteolysis [51,52]. Other
types of glycosylation such as O-linked glycosylation are
also major factors, so it comes as no surprise that both
serine and threonine are high on the list [52].

In our other statistical analysis, the ¢-test results of the
important physicochemical properties as identified in
Figure 3 are listed in Additional file 3. It shows that all the
physicochemical properties identified to be important in
discriminating between classes are also significant. We
believe since the generated classes contain many signifi-
cant differences in physicochemical properties and the
amino acids with high numbers of significant differences
also strongly related to Laccase function, these classes may
indeed represent different functional classes of Laccases.
To investigate the classes further, a cladogram was con-
structed from a multiple sequence alignment using the
sequences used for clustering. We then mapped our clus-
ters and the classes from LccED to the cladogram Figures
5a and 5b respectively [15,16]. Despite many of the clus-
ters being dominated by a single taxa, when mapped to
the cladogram they are widely dispersed throughout the
taxonomic regions of the cladogram. This contrasts shar-
ply with the LccED classes which largely only follow tax-
onomy. Many of the neighbors in the tree are composed
of enzymes from the same or similar organisms; these
could indicate Laccases of different function from within
an organism.

Classification framework

To allow for the classification of newly discovered Laccases
and Laccases with no experimental evidence, a Support
Vector Machine-based classification system was developed.
To accomplish this, 90% of the Laccase data collected was
used for 5-fold cross-validation and the remaining 10%
kept aside for independent testing. As physicochemical

descriptors were used to build the classes, physicochem-
ical properties were also used to develop the SVM classi-
fiers. The developed models were further used to classify

sequences annotated as Laccases with “homology” or
“predicted” level evidence in the UniprotKB database.

5-fold cross-validation

The performance of the classifier in 5-fold cross-validation
for all classes is reported in Table 6. The results show that
the model achieves the overall accuracy of 99.03%, MCC
of 0.9367, precision of 94.20%, sensitivity of 94.20% and
specificity of 99.47%. The overall specificity is extremely
high indicating a low rate of misclassified sequences. Con-
sidering the classes individually, the highest metrics
achieved were MCC 1.0 and accuracy, specificity, and
sensitivity of 100%. The lowest performance was accuracy
of 98.98%, MCC of 0.7252, sensitivity of 80% and specifi-
city of 99.31%.

Independent testing

Performance results on an independent test data are listed
in Table 7. The model also provides higher performance
with an overall accuracy of 97.98%, error rate of 1.02%,
MCC 0.8678, precision of 87.88%, sensitivity of 87.88%
and specificity of 98.90%. It should be noted that the MCC
of cluster-3 was zero. However, this class contains only
one sequence and performs well in cross validation, so we
believe it is still credible.

Confusion matrix

Confusion matrixes were made in order to better under-
stand which classes are more similar to one another. The
confusion matrix for the independent test set is shown in
Table 8. According to the confusion matrix, it appears
that few proteins in classes 1, 2, 8, 10 and 11 are predicted



Weirick et al. BMC Bioinformatics 2014, 15(Suppl 11):515 Page 12 of 19
http://www.biomedcentral.com/1471-2105/15/S11/515

0 1 2 3 4 5 6 7 8 9 10 11
0 115478 883 140 267 267 286 154 503 499 1320 Isoelectric Point

83 270 158 115 249 249 155 63 54 67 171 H-bonding (CWNQSTYKRHDE)
69 98 81 76 174 [174 141 22 44 43 72 Acidic or Amide (DENQ)

1115 312 582 303 550 431 [{210]203 386 329 897 Amidic (NQ)
83 97 115 263 225 274 79 201 104 24 Basic (HKR)

69 68 95 233 8 230 52 187 95 17 8  Tiny (AGPS)
2478 312 45 588 18321017339 247 69 17 71  Small (DNT)
270 97 41 463 402 330 120 223 40 12 20  Molecular Weight
98 68 20 369 277 306 83 157 36 12 12
3883 58245 342 43724404672 509 60 42 34
158 11541 315 310 256 85 243 49 35 34
81 95 20 269 114 196 79 131 39 18 26
4 140 303588 342 1047830 732 207 215 177 490
115 263463 315 945 566 584 168 134 99 379
% 233369 29 76 464 49 162 55 8 20
5267 550183243721047 115 221 1036 1807 2354 6172

249 225402 310 945 84 123 519 324 172 437

174 86 277 114 1261 70 HEM439 189 92 300

6 267 43110174404 830 115 220 738 988 1964 5477
249 274330 256 566 84 127 497 233 238 866
174 230306 196 464 76 [1277 224" 102 221 206

7 286 [0339 672 732 221 220 350 379 375 1010
155 79 120 85 584 123 127 217 152 116 422
141 52 83 79 496 BBWI127 171 141 29 74

8 154 203247 509 207 1036738 350 325 278 789
63 201223 243 168 519 497 217 39 96 215
22 187157 131 162 439 224 171 30 56 82

9 503 38669 60 215 1807988 379 325 52 34
54 10440 49 134 324 233 152 39 43 28
44 95 36 39 53 189 102 141 30 20 16

10499 32917 42 177 23541964375 278 52 28
67 24 12 35 99 |172 238 116 9% 43 26
43017 12 18 87 |92 221 29 s6 200 17|

11132089771 34 490 61725477 1010789 34 28

171 83 20 34 379 437 866 422 215 28 26

72 82 12 26 220 300 206 74 82 16 17

Figure 4 Distribution of best three physicochemical properties between each class for the classes generated by LacSubPred. The
numbers represent the ANOVA score. Larger numbers indicate stronger correlations between classes. This indicates the best features and extent

to their contribution for the distinction between the classes.
. J

as other classes. The results in confusion matrix show the reliability. Each point on the curve is based on the confi-
efficiency of the developed classifier in predicting the sam-  dence score thresholds of a single classifier. Each ROC

ples correctly. curves compute the area under the curve (AUC). This indi-
cates the probability of positive sequence having a higher
ROC curves value than a negative sequence when two are selected at

ROC curves are important to consider for prediction sys-  random [53]. The more shift of the curve toward left, the
tems to give an accurate measure of credibility and or more accurate the predictor. We calculated the ROC
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Figure 5 Figure 5a. Phylogenetic tree from a multiple sequence alignment using the high quality Laccase dataset form the used for
clustering. Different colors represent different classes from the Laccase Engineering Database (orange: basidiomycete Laccases, pink:
ascomycete-Like MCO, blue: insect Laccase, purple: Fungal Pigment MCO, black: fungal ferroxidase, yellow: bacterial CueO, green: plant Laccase).
Figure 5b. Mapping of Laccase groups predicted by our clustering approach in the phylogenetic tree derived from the data used for clustering.
The colors represent the 12 classes and also numbered as predicted by our approach.

curves for each class for 5-fold cross-validation and inde-
pendent set testing separately. The ROC curve for 5-fold
cross-validation is shown in Figure 6 and for independent
set in Figure 7. Each contains a line for each class in the
prediction system as well as a line showing the average per-
formance of all classes. All classes show excellent perfor-
mance with lines very close to the left side of the chart,
indicating a high rate of correct predictions from these
models. Indeed, the overall area under the curve rounds up
to 1.00 showing the reliability of our classifier.

Functional annotation of different classes with domain maps
To investigate the role of domains in the functional varia-
tion between different classes, we generated domains maps
for the sequences in each class. Eleven different types of
domains were found to exist within the dataset. The fre-
quently occurring domains are PF07732, PF00394,
PF07731 and PF02578. The first three are mostly found in
plants and fungi and the domain PF02578 found mostly in
bacterial or mammalian origins. Class 4 contained a couple
of polyphenol oxidase domains and tyrosinase domains.

Table 6 Performance of physicochemical descriptor classifier in a 5-fold cross-validation test.

Cluster # ACC (%) ERR (%) McCC PER (%) SEN (%) SPE (%) FN FP TP TN
cluster-0 98.63 0.35 091918 96.15 89.29 99.62 3 1 25 264
cluster-1 98.98 0.69 0.72522 66.67 80 99.31 1 2 286
cluster-2 98.98 0.01 0.8483 100 7273 100 3 0 282
cluster-3 98.63 0.35 0.9356 97.06 91.67 99.61 3 1 33 256
cluster-4 98.98 1.02 0.939%1 89.29 100 98.88 0 3 25 265
cluster-5 100 0 1 100 100 100 0 0 7 286
cluster-6 100 0 1 100 100 100 0 0 23 270
cluster-7 98.98 0.69 0.96881 96.72 98.33 99.14 1 2 59 231
cluster-8 99.66 0.34 0.97797 96 100 99.63 0 1 24 268
cluster-9 98.98 0.35 0.93086 95.65 9167 99.63 2 1 22 268
cluster-10 100 0 1 100 100 100 0 0 39 254
cluster-11 9932 0.01 090134 100 81.82 100 2 0 9 282
Overall 99.03 0.01 0.9367 94.20 94.20 99.47 - - - -

ACC: accuracy, ERR: error, MCC: Matthews Correlation Coefficient, PER: Precision, SEN: Sensitivity, SPE: Specificity, FN: False Negatives, FP: False Positives, TP: True

Positives, TN: True Negatives.
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Table 7 Performance of physicochemical descriptor classifier on an independent test data.
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Cluster # ACC ERR MCC PER SEN SPE FN FP TP N
cluster-0 100 0 1 100 100 100 0 0 3 30
cluster-1 97 003 0.851 100 75 100 1 0 3 29
cluster-2 100 0 1 100 100 100 0 0 3 30
cluster-3 97 0.03 0 0 0 100 1 0 0 32
cluster-4 100 0 1 100 100 100 0 0 2 31
cluster-5 97 0.03 0.909 100 86 100 1 0 6 26
cluster-6 100 0 1 100 100 100 0 0 3 30
cluster-7 100 0 1 100 100 100 0 0 3 30
cluster-8 97 0.03 0.851 100 75 100 1 0 3 29
cluster-9 100 0 1 100 100 100 0 0 1 32
cluster-10 97 303 0.696 50 100 97 0 1 1 31
cluster-11 97 303 0.696 50 100 97 0 1 1 31
Overall 97.98 1.02 0.8678 87.88 87.88 98.90 - - - -

ACC: accuracy, ERR: error, MCC: Matthews Correlation Coefficient, PER: Precision, SEN: Sensitivity, SPE: Specificity, FN: False Negatives, FP: False Positives, TP: True
Positives, TN: True Negatives.

Table 8 Confusion matrix for the predicted Laccase subtypes from 5-fold cross-validation testing.

Predicted class

clusters cl-0 cl-1 cl-2 c-3 cl-4 cl-5 cl-6 cl-7 cl-8 cl-9 c-10 cl-11
True Class  cl-0 (28) 25 0 3 0 0 0 0 0 0 0 0
c-1 (36) 1 33 0 0 1 0 0 1 0 0 0
c-2 (25) 0 0 25 0 0 0 0 0 0 0 0
cl-3 (7) 0 0 0 7 0 0 0 0 0 0 0 0
cl-4 (23) 0 0 0 0 23 0 0 0 0 0 0 0
cl-5 (60) 0 0 0 0 0 58 1 1 0 0 0 0
cl-6 (24) 0 0 0 0 0 0 24 0 0 0 0 0
c-7 (24) 0 1 2 0 0 0 0 21 0 0 0 0
cl-8 (39) 0 0 0 0 0 0 0 0 39 0 0 0
cl-9 (11) 0 1 0 0 0 0 0 0 0 9 1 0
cl-10 (5) 0 0 0 0 0 0 0 0 1 0 4 0
c-11(11) 0 0 1 0 0 0 0 0 1 0 1 8
values in parentheses represent total number of sequences present in each subtype.
Receiver Operating Characteristics for 5-fold testing on 90% of data.
l,OEEf —
f — micro-average ROC curve (area = 1.00)
0.8 class 0 (area = 0.99)
class 1 (area = 0.99)
2 class 2 (area = 1.00)
i 0.6 —— class 3 (area = 1.00)
§ class 4 (area = 1.00)
& — class 5 (area = 1.00)
50.4 — class 6 (area = 1.00)
—— class 7 (area = 1.00)
L class 8 (area = 1.00)
0.2 e class 9 (area = 0.97)
.7 g class 10 (area = 0.99)
PP d class 11 (area = 1.00)
090 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 6 ROC curves of different classes in a 5-fold cross-validation test. Area under curve for each enzyme subtype is also depicted.
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Receiver Operating Characteristics for 5-fold testing of 10% of data.
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curve for each enzyme subtype is also depicted.

False Positive Rate

Figure 7 ROC curves of different classes generated from the best model (physiochemical model) in an independent test. Area under

0.6 0.8 1.0

The domain maps generated for all the classes are shown
in Figure S1 in the supplementary material. The majority
of the domain maps were highly similar within and
between classes with respect to domains present. However,
there were some differences between the positions of the
domains. We believe that these differences in the relation-
ships between the positions of the domains could also
account for functional differences.

Classification of Laccase homologs from UniProtKB
The efficiency of our prediction approach is tested by
identifying the Laccases in UniprotKB with homology or

predicted level evidence. Out of the 1656 sequences
retrieved, 1587 were predicted to one of the 12 classes
and reported in Table 9. These annotations could be a
good resource to the scientific community working in
these areas.

Web tool for classification of Laccases

We have developed a web resource for the classification of
the Laccase subtypes by implementing the machine learn-
ing models. It will be very useful to the researchers to
characterize the newly found Laccase sequences. The tool
can be found at http://lacsubpred.bioinfo.ucr.edu/. We

Table 9 Classification of UniProt sequences with our method for those annotated as Laccases with homology or

predicted level evidence in UniProt KB database.

Cluster-0 190 Q7XE50 Q67812 P74606 G41J94 V5XWB3 B2C6F1 QO8AC3 Q5BEX9 J7MF98 CONDS7 B2WK27 CONNGO B2VRC3 M5BZA6 R1G4L9
D6BQM4 D6BR75 18U420 F8Q484 F8Q476 KOMGI8 KIMEL4 KOMEYO KOMEY3 ATYJE8 C5GOU9 F2RR98 CoH349 H1V814 C6HIZ6
B8P5X0 D7F612 H6BR26 M7SF91 R7SPG3 R7SPI3 L7199 L7JBV3 L7IRCO A2QS62 A2QL29 A2QL49 G2WRK6 G4ND85 GAMZV7 L7IFQ2
L7IP33 L71255 K1X050 13VB24 G7X777 N4U815 N4TWZ3 G3XU06 C5GE22 N4TVCS G3Y787 QE6VMB7 QEVMCO KOHCS9 KOHQU3 K9I712
K9H938 K91022 K9I2L1 KOHG94 KI9HJU4 KOHNKS E4ZMJT ESAE29 D3GBUO D2D2A3 B8QJ10 D2DX16 E9R598 M7UAAS V513GT FOUGRI
FOUJJO F8P301 E9DUY5 E9FCN3 E9F648 E9F7W6 E9F671 E9FDX0 M7WUL3 V5XX03 V5XVN3 VSXWB7 R7SEAO N4VBQS N4VMC7
B8NWQ2 B8MZ52 BENPM5 BENMX2 B8NBJT SODUR9 SOEOUS5 R8BVQ5 F2T3A3 Q752V2 Q7RYF6 Q756W1 D8QAXS5 Q6EQY2 Q96VT5
Q9C497 COSBX8 B2DFUT ABNCW1 QO8ACO ABNCV5 ABN4C5 QO8ABT QO8ABO G3JB06 HOEYNS Q96TR4 NT1RLUO N1RPZ1 BSMHGS
Q872X3 Q8TFE3 V2X2F4 V2X113 V2XZ31 V2WZWO0 V2XKE2 V2XJ10 V2WNA2 V2X2H5 V2WZ01 C5JSC6 ATYJE9 M2QJC6 A7EIGY
M2R2P1 L2GGI1 L2FPD4 R9A8VE F4RHUO FARB81 F4R7H8 F4R9G7 Q8TFD9 C3SAH7 JOWOJ5 QSKEAOD JOVY90 Q5K7HS S7PZAT
G2Q560 G2QFDO S7TRMW6 G2QG31 M1W227 K1PEO3 K1QYL2 K1PU89 F2UPC3 K7TYL9 K7U2C8 M8AXH2 M8BNTS B6B2YS K7SIFS
S3J3R5 B6RAS59 F6L7B5 L7P6CS L8NIT9 L7E7DS5 GOFWW3 F5ANG7 G8IJH7 Q8GB87 L8PIS4 Q8NLHS5 Q3ICN9 KOPVAS F4KPJ9 H2G3K4

KOv2J8 G8PGIT H2HE99 H2GRM9 MOX7P2 JOGZX3

Cluster-1 120 QODHL5 Q69L99 066554 Q87AR8 P67256 P67257 P33663 QIPET8 P45496 M5CF06 M5C3X0 L7JBX6 B7UB78 L7IH98 ROPCCO E9ELE3
SAPNX6 M7YVZ5 MBAE68 M7YSXT M7YW17 M7Z572 M8A139 G7KE42 G7JUWS8 G7JZP3 G7IMZO0 K7UTI2 K7TRU9 M8BZ91 MBALT2
R7W1V7 N1TQWO1 M8BGG3 M8C3K6 M8B5Q9 N1R3U3 B6REKS G77J86 BIIG57 BOHCKO BOHCI9 BOGMIO Q337U9 V6ZGQ2 D2KMW3
17AL37 Q4H436 VBK3V9 VBHET4 G6HM36 E9YFX5 V2VMN4 S7P3Q8 V62555 T2LUJ3 FOU2L8 V7J4U2 U1T5B7 V5PQZ3 14JMD8 V5AFY1
R8ZME9 M5SSIT F7NAJ8 SOHOG8 V8LOGS TOB7N3 V7KOE4 VBCWGS MEWH33 T5KM43 U2AIM6 GOPZI6 V7KQ45 S7TXNT F5ANG6
V7L5L4 TOQ5D9 M3VAT7 NOVZ85 KOXMX1 K8EJK7 M2VPI6 D6AWTE U4MOA2 U5RLM8 RIZIN7 U5R119 LODYT4 S5F6GO T1XAQO
FOQ362 V6K2N9 T2EB93 T2E701 H6MRY5 T2ECM1T T2EN58 E8U3Z4 G2SEAS USWK13 G7ZEAT F4GD53 GOGDH2 F6AUO5 GOKOP6
FEB3B1 U3QKS9 GOJKUT FEDHE1T KALEN3 F4CL81 SS5NVMS5 V5XFVS5 FORPC2 F8AYB4 F2NPR3 TOYGH7 T1BRUO

Cluster-2 7 G7/L1B5 G7J2E0 G7J2E1 BOIG57 BII2G5 BOHCKO BOHCI9
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Table 9 Classification of UniProt sequences with our method for those annotated as Laccases with homology or pre-
dicted level evidence in UniProt KB database. (Continued)

Cluster-3 349 Q99046 QO0JHP8 Q87AR8 QIRT03 P67256 P94338 P67257 P33663 QICCE3 QIPET8 P45496 QO8AB4 QO8AB6 QO8AB3 QO8BAC4

Q9Y781 C1GYT7 M5CF81 M5BXM9 JOWTPS5 H1VYH8 D3KDKO 16Q585 Q6VMCT Q9Y782 Q875H1 BODD17 BODD16 G4XU44 E9FDT4
A1D1J3 D8QAXS5 C1G7M9 C5HL40 QOKHD1 QO8ACS5 QO8AB5 QOBABS ASN889 ABN4MO ABN893 HOEYNS U5QB88 U5QEW4 U5QB94
FOXLH6 V2X2V9 V2WLLO V2XHV1 V2WNA2 V2WKD7 013420 M7YWY1 M8AE68 M7YE76 M7YDG7 M8A1Z6 K7UNU7 K7U8Y5 K7TU80
K7UAF3 K7TYL9 M8BD16 M8C508 R7WA4T4 R7VZA0 M8BNTS V4Q585 V6ZGQ2 S6WSA8 U6Z713 V8K3V9 S6P2D4 EQVBD2 13AGZ9
C4HZR3 S6WOB1 S7VA95 S6KUVE V2K349 V6VBS8 S6TTH2 L7HFVE VBHET4 JOYDS8 EOWV02 S65577 U5VKOO U7P8G6 FAQUH2 E9Y374
V5P9V4 V2VMN4 S7P3Q8 V67555 S6TNM2 S6MIFO K2J354 C4HCI8 U3HATT V8DID3 T2LUJ3 T5FBY6 U2UALS R5B3Q9 K5BB49 D2SYY6
FOU2L8 S6NOCT U7HPI8 F3XON9 SOACK2 SOAGRS8 V4H7V8 V7J4U2 UTT5B7 S6UPW2 S6PLNG V5PQZ3 NAWL2 14JMD8 S6RKW7 K4YEQ7
V5AFY1T LOU8Z5 M5QZ37 L7GS59 S2KKX0 U7NUT4 E9VXI8 S6PW15 S3MSW6 R5IKW2 T5GFQ3 T5FTT4 S3FWN6 S7TK32 UOE669
S5RYBO U2WG75 NOD6V4 S6L531 G3IUL2 S3E4U6 L8Y324 M5SSIT L7FVM2 VBEKS3 D4X8B0O S9STIT H1KST3 S3F1HT F7NAJ8 SOHOGS
G2DYC3 V8LOG5 D5FL31 TOB7N3 14N140 I8NS20 V5CG64 M7WBY4 T5HP32 U3HXES E9X8B9 S6V7D6 BOFMT2 T5EBW6E VAWZBO
U7NNM4 V7KOE4 T5IE49 TSFRA3 17RQ32 S2KX53 VBEMA40 B5GZZ8 T5L.C46 A3QVH2 S6REGO U1FBQ2 M7VYD7 F4QSG8 H4FDUS
K6AF68 K6CUJ1 VBCWGS E9XISO M7VWH4 R7HNS6 NOUB61T T5KM43 T5F756 V5PFI4 U2AIM6 E9ZDUT TOUI6 K5Y160 GOPZI6 V6JAD!1
V4V0B4 V7KQ45 V8QMCO ROFHHT T5IKC4 VB8G7M9 M7RCK7 I7IETS E3VW04 R4YX27 V7DIMS M3AK06 UTUTN2 G8XUN7 U5AUF6
G4E2X0 S7UGQ3 R6T8W7 GOEOYO S6JXK8 17PQJ2 I7AYT4 V2WWR6 G412WO0 L7FPM1 S3F3H5 S3EKB6 EQVNAS M3VA17 C4H9Z9
SEMLH9 18MF47 V8R2K2 M7UZV1 N9VZ85 V5BX08 KOXMX1 HOG5H7 A3ZAS6 S6NOZ2 I7QN70 J7SN9O GAFII2 J9S5G3 M2VPI6 U7RH62
E9Z1L2 EOWIRT VAMW22 EOIYQ8 Q1CLWY COLWOT U4MOA2 L8N5P4 F2K1G6 L7ZQF4 G8TX43 R9ZIN7 B7N7Z3 16XY59 GOA3R6
14CP94 C4ZRL6 M9OR493 U5LY75 GODJC3 M4JYB4 16ZBU4 FEAGI9 LODYT4 F6CIVI H2HZF6 B1VQH9 F8F070 S5F6GO GOA3Z5 T1XAQO
I3XBF5 FOQ362 F6EXD3 T2EB93 HOMRYS T2EN58 B7M164 G8S901 MIS5N5 E8U3Z4 MAWRWO G2SEAS C6UMB4 F8GKMO GBAZV3
GOAYB6 B1XC98 B7NI83 USWK13 G7Z7B9 LOFEJ1T G7ZEAT I0AC26 GOC4MS5 FAGD53 GOBZP7 FEAUOS5 GOKOP6 J7L6NS5 S6A106 F6B3B1
MORKU1 B7LFZ0 D7ALZ3 U3QKS9 FEDXN2 B7LVY7 F3Z0Y9 T2MUS2 V5UKF6 GOJKUT G2S6B7 F6BWK2 14B8C3 F4LJ75 F4CL81 H2IF)7
U7DKH5 A6BY94 V5T2H8 H1YL11 F7ZEF4 ROUYU4 ATA7G9 Q39Q28 FORPC2 E4PNH4 COUWMS Q74H10 S5Y607 FBAYB4 M5DVF3
GOB840 GOB416 G4PUB6 GOBKW2 GOBPY6 F2NPR3 B5EBAO B7MBA6 TOYGH7 T1AI46

Cluster-4 29

QODHLS5 QOIP28 Q5N9W4 J3POAS5 M5BZV9 F8MRY7 BODURO G4UW76 G4UY21 Q7STM8 V2WYW9 L8WE35 M7YD49 M8AA34 M7YW17
M7Z3H9 M7ZXZ0 G7KEX5 G7LTA9 K7V3L7 M8C2V0 M8BD16 M8BYM7 R7VZAQ G77J86 Q9FSCY BOHHK?7 BOHC76 D7M768

Cluster-5 2

G7L3F3 G7JZP3

Cluster-6 511

Q7A617 Q8NX32 Q6GA25 Q6GHP8 Q5HGP4 QIPN78 Q49WW9 P33664 Q4L5N8 Q97D53 Q5HQO5 Q8CSX5 031726 Q9ZHA4 VEDRF7
M5CFXT M5CAM2 M5C720 M5C185 M5CGP5 M5C589 M5C753 A2QZQ7 KOK866 N4UAJ2 N4U7Z5 N4UTH6 Q4WQY8 GOBMIO ESE686
E9F2R7 BOY585 SOESD8 SOE4X8 SOE174 SOEL60 E4VEP8 E4VE87 U4LLI8 N1SBH2 N1S1T2 NTRPAT N1RS78 N1SBA6 V2WQU2 V2XKE2
L8WTK6 L8WJY6 FARH14 Q8TFET MTWHU6 MTWAS8 K1Q401 K1R9J5 K1QCA2 K1Q8Q1 K1PMS4 K1RX04 K1QWKO K1QE27 K1QDM4
K1QKDO S4PM90 E1ZWT8 E12ZD9 E2BAT2 E2B8J4 E2BOK7 FAWZP2 G6DFM6 R1TEWWO U6C8D7 G4U403 U3UB68 U3UB71 G4U404
G4U402 U3UB86 B3WFP2 V6QDX8 I7RCW2 T5HR61 T4H7F2 TACHL1 T4RCH9 17QE77 T3BR38 T3X6WO L8N092 U6SRD9Y V6Y557
T3LRV7 T2XUBS5 17WJ04 T354X4 17R676 SAMEX3 ESVKZ1 VE6QRD2 T3L2F0 T2WMR3 TOSSX7 T4QDE8 R5TX08 H8WGE4 IBHA90 T3P4N3
G6GIOT H8WGES T4NRV4 T3BGHO T3MXD3 T3N9N4 I8FOW9 T3VTX7 T3HSI4 M7NA89 VAQ2MO T4Z017 T2Y6R3 T4AC54 T4JL39
T5AW43 T3FJR6 H8WGE6 T2TES3 T3WQ59 S4LT46 12HQTS T4JIA9 K1LKKT U4Z1T7 S7J0ES5 T4SIKS U1SVL4 T3M974 T3TCO3 U4TFMS5
VOYARS5 K478D3 T3JCJS5 T4XU61 T2THC2 16KRF8 V6X444 T3MQZ8 H8WGE2 T4DJWO UTURF7 T4QEB3 H3UJI9 T4AVYO T35A%
D5MWS7 I7RQN7 T2Y3J2 I8HK20 T4VQUE T2VWA2 T3U4V0 I7NMN7 I3RYX9 T4YBC3 T35U48 S3FZ67 M1E4WS ESVEHT T4EYI7 T3YAB4
T4WEJ8 18JLR4 RAYVC2 L8PW18 T3FDX0 U2G960 S4MIC4 T3CFI8 SORGQI T4KB56 S4MUDS 18R624 S7IVW3 H2CEH3 T3AKJ9 T3C4F9
V8G4P8 T4NJO3 T2TWX1 U7PCJ6 S97033 1724V8 T3AMA3 TAGLAS T4PHK4 V6QRF3 T3JQC7 132976 T3C1U6 R7LI33 T3GSF7 RoYU61
T3WGI6 S4LUD9 T3VEH2 T3D776 T3ZWS1 16J528 TACLTE T412Y2 V6XI18 T4KEL9 T4FBY8 E5VASO TANKES T4HAPS S4AM8Y6 VBA3QS5
T4DD15 I18A9I5 U4YDV5 I7NP16 T3HCY2 T2YTP4 SSMWO00 T4MMS52 T4TYC3 T5LL74 131532 SALFA3 17U727 T3QSF5 131AJ6 I7RTJ4
T3LMQ3 U4X425 T3G5B3 T4W8X6 T4HAZ4 H8EFD2 TOCRLO T2UFK7 T3VESO T2VBQ4 U4X657 T4ALCO T3XVF5 T4FIE9 V7Q487 TOACN3
T2ZM17 T4PGA8 H8WGET I7VUNG U5U549 R7A750 H8WGE7 T3DF94 G1E8V8 T3GST2 T4SHI2 T2ZH17 TOR613 17VYZ3 T3KF92 R7C1G9
T3IGAG 14XC66 VEX9T4 R7HW39 T4MBIO T3XKW1T T4Y5N2 T2XHU3 T3QS5L5 I7MWS9 T4BN13 T4KWO 16JVS5 T3R8P5 E5VZ21 TALTW2
T3Z9W4 TAKN38 T4UDD8 U2TN14 T3CSY2 R7JC65 U2ALGH I1615F4 T3RUH4 I8CF83 17UBQS T4VCDO 1757M9 16JYZ9 M7N823 T4UP53
T3F035 S4LPW8 T4Z8T3 A3QVH2 T4LEJ2 T35X82 I8DF43 17T5Y8 T3TNO5 T31G28 T4TK70 17UQD4 T4HVY2 T2V0S5 T4X5MO T3YD82
T4XHQ3 I18K1U9 T4RCM6 T4D1R6 T4TG37 T3UBO7 V8Q506 T2VNC8 S4LZS5 U4XJ65 T4USIT T3K8P4 T4EF23 T4DZY7 J7FRV9O VOXQP2
T3VIET T2Z762 TABBSO T3GBZ7 TOAKRS 172279 T3YY69 M5R626 T3AWT7 S7TNEL4 M5RDU4 18SCA2 V7ZZF7 T2QPY1 TOD1C8 R5Z7A9
T3XRL3 T3HPCO S6JJKO T4SVW1 T4FZI2 UGEKIO T3P2U8 H8WGE9 T3EALO T2QKY1T UTVRDS5 S4LAY4 T3AOK2 V6YE28 T3W8C7 F8NA39
T4C5U1 I7YR63 T4G7WO l61lJT T3PG48 M7XKG4 TODFK8 T45873 HBEJX8 I7S5R1 16KQ20 T2WY85 VAT5T1 T2UPRT S6IKA9 17Q253
17X2J1 V8PVES I8FEL5 T3J5E0 TARUP8 T4Y0J7 S5DK30 S7K1S3 T4VUXS5 I18BK88 T3NLY3 ESWXX9 T3L1J7 18P8LS5 T3UHH4 G4EZC6
T3K913 T4FKU8 T3QZJ3 BOW2C5 I7WSU8 U4YZ68 T4QHQ3 T2X3N3 T4WXI7 S6KOBO 16HRL7 17Z9E2 17RSM8 T3DUHS U4YKES T3M949
VOWZK8 T5AYI3 I7V8ES8 T3PWT2 TAMUD1T T4LWE3 T4PUB2 M1LQ69 16ZLM4 T4IMK7 T2R5W8 TOA454 18U5CO M1Z571 T2TN13
H8WGES T4ZA62 T4JOP9 VATXP2 S4MAR9 T3R3Y4 R6A7E1 R6QFK7 I8HIHS5 T4E5P6 17T8U6 T3ENB4 S6F922 T3FBQ3 J9S5G3 H8WGE3
[7PV33 U4XYD8 T2WCS4 F6F5H9 F6FANT FO6F865 L7VU04 KOLRI8 F6FD51 F8EL4T G2PUB7 G2RJ98 FAE312 F6BKT6 FAEKTS E6RICO
S5P4Q8 10F413 Q3ICN9 13VS24 F2NJT7 NOD000 G25U96 MIT8B1 F2JS63 S5J299 B3PFWO L8AB38 S4X6W3 USL7H1T MOTBKO MITONS
G2SHNS E8VCU6 Q3A0CT 1622M4 F2NUQ6 FOTO09 F8CWY2 12AZ79 12AZ80 USMNG8 G2TJWO E0TU44 S6FHGO F8ES76 U5Y2D7
B7GFB8 NOD971 G2MRU7 F2LWH8 K4FQYO 10U612 GOIFRS DORGB3 KOAYI8 SOA483 FORTV1 G7MCNO 14B8C3 C7ZWD5 E3E197 S6FK09
H1XUB2 K4MD70 DIRPK8 GOH8L2 F3ZT38 USRXN4 JOGXTO 17J6X7

Cluster-7 73

Q99044 QO8AB7 M5C1X8 Q5MBH7 F8Q492 KOMEY3 ATCNP4 Q6YA64 EOWEST B8PJH3 B8PB64 Q1AIM3 R7SP52 R7SWM9 013448
Q8TFM1 D7F485 Q8X1W3 E1CGD5 QOUVT6 C5HL42 QIUVTS QEVMBI Q6VMB8 Q69AX8 KIHJU4 16V2C5 R7RXX6 Q2V0Z9 BODC12
S4VMI6 BODD15 V5G506 F8P308 Q5MBH2 Q5MBH3 Q5MBHT Q5MBH6 S8FIE4 Q12571 D8QME3 Q96VAS D7F484 HOLVX1T B2DFUT
QO8AC2 ABN4D0O QO8ACT QOBACH ABN3PS5 ABN8B42 S4VGX6 USQBI8 U5QBJ2 USQEWIS USQBEO USQEN9 U5QBDS5 USQEVE USQEN2
V2YDW2 V2X2N8 V2X7U4 V2Y5W2 U3PH31 M2QK34 M2QJCO 013422 Q5MP11 S4VGN3 S7Q2E4 M7Y5L1 R7W718
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Table 9 Classification of UniProt sequences with our method for those annotated as Laccases with homology or pre-

dicted level evidence in UniProt KB database. (Continued)

Cluster-8 95 Q03966 Q12719 Q99055 Q99056 B2WJB9 R1EUQ8 R1GA89 F8QG75 KOMFHI KOMELE ATYJE8 M7SKKO M7S5CO HEBQP7 Q50H77
M7SF91 R7SVI6 L7IRR7 A2QS62 A2QW24 A2QL29 G2WZW4 GANOV4 013456 L7I0R6 K1Y862 E1CGD6 G7X777 KOMGJ2 N4U4G9
G3XU06 G3YCK7 Q6VMB6 KIHG94 KIHRWS Q8TGI3 M7TM62 M7UCN4 M7TD67 RIP950 V5GEHT ESEF39 F8PBO6 BTNEYO G2XUR3
E9EKY1 G2YUE6 G2XZ63 COSND1 Q5MBHO AOZXN9 N4UQV6 N4VSN9 N4VL55 S8ED94 SOE275 R8BAMG Q7S6W1 Q754C0 ATYJFO
B6Q5M9 A8Y7S9 QO8AB9 A8N4I7 HOET37 G3FGX5 HOEM62 N1RP79 BSMHG8 FOXG23 FOXIC5 Q3KRP1T V2Y238 V2X382 V2XTJ5
V2WXK7 V2X4B3 E7AIS4 ATYJEQ M2RE78 L2GCR5 L2FPB4 M2QYC3 M2QK38 ROAGKO 12FSES E6ZSD5 BSG551 FAS552 FARZ56 F4RZ43

F4R9G7 JOWOJ5 Q5K7H5 S3BV84

Cluster-9 61

Q2RBK2 Q2QYS3 G5EGX4 J3PI40 B2VSS7 M5CEU4 R1GKT9 R1EPH7 KOFSV2 F8PY37 KOMFI2 KOMH70 Q50H78 R7TOU4 R7T217 L7J9Q6

A2QB61 L7IKL2 G7XIZ1 M7TSRS M7UW45 BOCT29 BODS50 BODZT1 BOE060 FBNWN9 G2XZH4 G2Y1J7 Q5MBH3 KOGTRO N1QF47
HOET20 FOXK69 B5G553 Q8TFE2 B5G555 V2X3Y4 013421 C5HL41 FARZGS S7PZA1 S7QCZ9 K1PTU8 M7YKQS M8AWG S1SMV4
STRWHS5 STRU27 S1SIK3 T5FBY6 V7A306 TS5EGQ4 TSGFQ3 T5FTT4 TSEBW6 T51E49 T5FRA3 VZDNX4 T5F756 T5IM14 T5IKC4

Cluster- 110 A2XCN6 A2Y9C5 Q5ZCW1 A2Y9C2 Q67812 J3NMB3 J3PEHO J3P582 B2WH6 C1GYT7 B2VX28 C1GNR8 M5CEU4 M5BXM9 M5C753

10 F2RX26 F2RR98 F25L00 F2SMD3 D7F613 L71Q72 L7535 L7J2C5 L7INP2 L7IQT5 G2WRK6 G4N3F5 GANSTO G4MYQ1 L7I6M2 L71J97
L71L92 L7IKQ9 L7INY7 K1X050 G7XK56 N4U815 N4UI3T A9XCN9 KOI2L7 M7UWA45 DAAUP2 E9FCN3 C9S5U1 N4V8A2 N4VOM8 SOECYO
C5H3G0 SOE4X8 SODPV4 Q7S1M8 DADAZ3 E4AVETO C1GIKE C1GFF8 C1G7M9 COSBX8 HOEWH4 N1S5Q4 QS8TFE3 Q8TFE4 Q8TFE2
V2X2V9 V2XU47 F2PUBO F8WTI5 Q2HBWA4 L2G1J4 L8WJY6 L8WN49 L8WY78 L8XTE3 FARHUO FARNV7 F4R859 FARZHO FAR860 F4S2L7
F4RH14 F4RRN3 Q8TFET S3D280 K1Q1LO K1Q8Q1 K1RX04 E2ANM3 E1ZWT9 E2AKSO E2BNZ3 BOXBY5 BOWW28 B7YZT1 A1Z6F4
FAWZ78 G6D2R8 M7YWY1 M8A4CO MBALF7 M7YKQS5 G7K780 M8AS44 M8C210 M8BZH5 N1QX28 M8C8G7 D7LZX9 B5SBQ1 A3IX38

Q8XPV6 G7Z7N4

Cluster- 40

051423 Q92HU9 C5PJ66 L7JBX6 G2WR51 L7IH98 J3KH83 E9ELE3 L8WLAT M1VWOO0 K1R9J5 KIPMS4 K1QP95 E1ZWT9 G7KE42 G7KBW6

11 G7ILB5 G7L9F5 G7J6C9 G3FF67 M8BJM6 N1R3Q4 N1TQWOT N1R3U3 BOGF92 BII2G5 BII6LO BOHHVZ D7M229 U4T622 S7J8T8 S7TKUM4
T5KCD3 S7TXNT FS5ANG6 S7KHJ6 FOSOK4 FOYDAT F4AHEFO F8C682

have also provided the codes used to develop the cluster-
ing and classification approach as an open source package
available at https://github.com/tweirick/SubClPred.

Conclusion

In this work, we present a systematic computational
approach to identify Laccase subtypes. First, a novel clus-
tering method is developed to group the Laccase subtypes
using the experimental data available in UniprotKB. Then
a classification method is developed based on machine
learning approach to generalize the functions of Laccases
in each class. These identified groups can be a useful
resource to the biologists to study the characterization of
Laccases, particularly for researchers in the biofuel area.

Availability

LacSubPred, the web resource developed form this
study, is freely available at http://lacsubpred.bioinfo.ucr.
edu/.

Additional material

Additional file 2: P-values designating the statistical significance of one
cluster over the other based on amino acid composition differences;
values calculated using the standard t-test.

Additional file 3: P-values designating the statistical significance of one
cluster over the other based on protein physicochemical property
differences; values calculated using the standard t-test.

Additional file 1: Domain maps for each of the Laccase subtypes cluster
generated using doMosaics (http://www.domosaics.net/).
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