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Abstract

Background: Liquid chromatography coupled to mass spectrometry (LCMS) has become a widely used technique
in metabolomics research for differential profiling, the broad screening of biomolecular constituents across multiple
samples to diagnose phenotypic differences and elucidate relevant features. However, a significant limitation in
LCMS-based metabolomics is the high-throughput data processing required for robust statistical analysis and data
modeling for large numbers of samples with hundreds of unique chemical species.

Results: To address this problem, we developed Haystack, a web-based tool designed to visualize, parse, filter, and
extract significant features from LCMS datasets rapidly and efficiently. Haystack runs in a browser environment with
an intuitive graphical user interface that provides both display and data processing options. Total ion
chromatograms (TICs) and base peak chromatograms (BPCs) are automatically displayed, along with time-resolved
mass spectra and extracted ion chromatograms (EICs) over any mass range. Output files in the common .csv
format can be saved for further statistical analysis or customized graphing. Haystack’s core function is a flexible
binning procedure that converts the mass dimension of the chromatogram into a set of interval variables that can
uniquely identify a sample. Binned mass data can be analyzed by exploratory methods such as principal
component analysis (PCA) to model class assignment and identify discriminatory features. The validity of this
approach is demonstrated by comparison of a dataset from plants grown at two light conditions with manual and
automated peak detection methods. Haystack successfully predicted class assignment based on PCA and cluster
analysis, and identified discriminatory features based on analysis of EICs of significant bins.

Conclusion: Haystack, a new online tool for rapid processing and analysis of LCMS-based metabolomics data is
described. It offers users a range of data visualization options and supports non-biased differential profiling studies through
a unique and flexible binning function that provides an alternative to conventional peak deconvolution analysis methods.

Introduction
Untargeted metabolomics has become an increasingly
powerful tool to investigate biological systems [1-3]. This
approach typically employs gas or liquid chromatography
combined with mass spectrometry or nuclear magnetic
resonance to survey the metabolome and identify features
associated with the genotype and/or biological state of the
organism [4,5]. Multivariate statistical analysis is then used
to model classes and identify important metabolites [6,7].

Similar to other omics disciplines, untargeted metabo-
lomics requires analysis of large multidimensional data-
sets containing many independent variables [8]. Liquid
chromatography-mass spectrometry (LCMS) is the most
common analytical platform for these types of studies
since it provides the highest sensitivity and broadest
coverage of the metabolome [9,10]. LCMS data contain
a wealth of information about a sample since metabo-
lites can be diagnosed by both retention time and mass
over charge (m/z) properties. However, mining LCMS
data for important features represents a major bottle-
neck in metabolomics research. Metabolites that could
identify and classify different phenotypes or conditions
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can easily be missed if they occur in relatively low abun-
dance. Given the enormous range and variability asso-
ciated with metabolomic data, identifying a distinctive
but weak signal from the data pool presents a formid-
able challenge [11]. Manual identification of these meta-
bolites can be a cumbersome and error-prone task when
dealing with large metabolomic studies that involve
multiple files and groups.
Efficient and streamlined metabolomics experiments

require that data processing be automated with compu-
tational tools. A number of server and software applica-
tions exist for analysis of metabolomic LCMS data that
can help with data pre-processing, visualization, feature
detection, and statistical analysis [12-18]. However,
there is still a need for flexible web-based custom data
visualization and processing tools for researchers in the
life and health sciences.
In this paper we introduce Haystack, a versatile web-

based tool for processing and analysis of LCMS-based
metabolomics data. Haystack features traditional LCMS
data processing options along with a unique and fast bin
analysis for group classification and possible biomarker
identification. It has an intuitive graphical interface and
does not require technical expertise in command line pro-
gramming languages such as R. Raw data files can be
uploaded in one of several common formats, including
mzData, mzML, mzXML and NetCDF through Haystack’s
browser interface [10,19]. Haystack can perform a variety
of tasks on full-scan LCMS data, including automatic dis-
play of the total ion chromatogram (TIC) and base peak
chromatogram (BPC), and user-specified display of time-
resolved mass spectra and extracted ion chromatograms
(EICs) over any mass range. Haystack produces output
files of every process in the common .csv format that can
be used for further statistical analysis or customized
graphing using numerous software/server applications.
The core function of Haystack is a flexible binning pro-

cedure that converts the mass dimension of the chromato-
gram into a set of interval variables that can uniquely
identify a sample. Each bin has a specific mass range with
the value of the total intensity of all ions within that range.
Bin results are displayed visually as a histogram and can
be downloaded in .csv format for further analysis. Binning
is a common form of preprocessing for data sets with high
dimensionality and is particularly well suited for mass
spectrometry data [20,21]. Binning can streamline and
simplify the analysis of LCMS-based metabolomic data by
reducing its dimensionality [21]. Another advantage of
binning is that mass peaks are not tied to retention time
indices, and thus represent an unbiased data matrix of all
masses in the sample. This allows the user to extract
quantitative information from LCMS chromatograms
without requiring initial peak deconvolution, a process
that is often hindered by poor chromatographic resolution

and weak signals. However, chromatographic peaks can be
recovered in Haystack as latent variables in EIC plots.
In this paper we demonstrate Haystack’s main features

and show how it can be used to process LCMS data to
identify important features and determine group assign-
ment with comparable accuracy to peak detection meth-
ods using the popular XCMS tool.

Methods
Technical description
Haystack is a web-based server located at http://binf-
app.host.ualr.edu/haystack/. It uses the scripting lan-
guages Perl and R and a website interface powered by
PHP. Data storage and user information are handled by
the MySQL database. Raw LCMS data saved in several
common file formats including mzData, mzML, mzXML
and netCDF are uploaded directly through Haystack’s
browser interface. The initial file parsing and TIC and
BPC outputs are created by the XCMS R package. The
graphical outputs, EIC, and bin analysis are produced by
XCMS and MetaboAnalyst R packages [14,16]. A Perl
mission control system was implemented to dynamically
optimize server resources and performance. All results
can be downloaded via comma separated (.csv) files. Sig-
maplot 11.0 (Systat Software) was used to generate cus-
tomized graphs from output files.

Sample preparation
Tomato plants (Solanum lycopersicon) were grown for
6 weeks in a growth chamber under fluorescent lights
at either 100 (low light, LL) or 700 (high light, HL)
µmol m-2 s-1 photosynthetically active radiation (PAR).
The cultivar used was the high pigment-2 dark green
(hp-2dg) mutant strain. For LCMS analysis three inde-
pendent samples from four plants per treatment were
taken for a total of 12 biological replicates for each
treatment group. One LL sample was lost during pre-
paration and so the LL dataset consists of 11 samples.
Leaf tissue samples (1.2 cm2) were frozen in in liquid
nitrogen and freeze dried. Samples were extracted in
80% methanol with glass bead homogenization fol-
lowed by sonication and filtration. Extracts were dried
and concentrated 10-fold prior to analysis.

LCMS analysis
Samples were analyzed by LCMS using an Agilent 1100
HPLC / MSD-VI Ion Trap mass spectrometer with an
electrospray ionization (ESI) source. A 250 × 4.6 mm
C18 column (Alltech Prevail™) was used with a linear
mobile phase gradient consisting of water/0.1% formic
acid and methanol. The mass spectrometer was operated
in negative ion mode with a dry gas temperature of
350 °C, nebulizer pressure 40 psi, and flow rate 10 liters
min-1. The trap parameters were set at a scan range of
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100-1500 m/z; accumulation time 100 ms, target mass
300 m/z, compound stability 50%, and trap drive 50%.
Mass spectra were collected in profile mode. Chromato-
gram files were saved in netCDF format from DataAnaly-
sis for LC/MSD Trap Version 5.2 (Agilent Technologies).

Peak analysis
Peaks were extracted from total ion chromatograms
either manually or with the R-based version of XCMS
[14]. Manual peak extraction was performed with the
Agilent DataAnalysis LC/MSD Trap Software package, v.
5.2. A list of 69 ion peaks common to all samples was
obtained by manually scanning total ion chromatograms
of representative samples. Extracted ion chromatograms
were generated and peak areas were obtained by integra-
tion. Both procedures produced a peak table used for
subsequent statistical analysis.

Statistical analysis
Peak data from manual and XCMS peak processing and
bin intensity data from Haystack were analyzed using the
web-based statistical package MetaboAnalyst 2.0 (http://
www.metaboanalyst.ca) [16,22]. Pre-processing steps
included filtering, sum normalization, log(2) transforma-
tion, and autoscaling. Univariate (fold-change, t-tests, vol-
cano plots) and multivariate (HCA, PCA, PLS-DA)
analyses were performed on all data sets.

Results
Haystack is a web-based server designed to store, display,
extract, process, and export LCMS-based metabolomic
data. It also can process GCMS data. It has an intuitive

browser interface and requires no command line opera-
tions, only the ability to use a typical webpage form. Users
must register to set up an account. All user files are
confidential.
Figure 1 shows a summary workflow of data processing

steps in Haystack. Raw LCMS data can be saved in sev-
eral common export formats including netCDF, mzData,
mzML, and mzXML. Files are then uploaded into a user
database directly through Haystack’s browser interface.
Files are stored and organized within projects and can be
added or deleted as desired. Visualization and processing
operations are arranged as tabs within a project. Graphi-
cal outputs are displayed as .png files that can be viewed
in the browser or saved. Haystack displays the TIC and
BPC plots automatically (Figure 2). In many applications
involving LCMS data, it is often desirable to display the
BPC plot since it contains less baseline noise than the
TIC plot. The output of these processes are stored as .csv
files within a project.
Users can generate EICs over any specified mass range by

clicking on the ‘Generate EIC’ tab and entering the starting
and ending masses. Users can also generate time-resolved
averaged mass spectra by clicking on the ‘Generate Mass
Spectra’ tab and entering the starting and ending times.
Haystack displays the EIC and MS plots and provides a .csv
export option so data can be imported into a spreadsheet
program such as Excel. Figure 3 provides an example of
three EICs for the mass ranges 743-744, 707-708, and 608-
610 and their corresponding mass spectra. The peaks at
11.46, 16.74, and 25.89 min were subsequently identified as
the flavonoids caffeoylglucaric acid, 3-O-caffeoylquinic acid
(chlorogenic acid), and quercetin-3-O-rutinoside (rutin),

Figure 1 Workflow of LCMS data processing with Haystack.
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respectively. The mass specta of caffeoylglucaric acid and
chlorogenic acid show the monoisotopic ions (m/z 371,
353) as well as a dimeric species [2M-1] (m/z 743, 707)
whereas the mass spectrum of rutin shows only the monoi-
sotopic ion (m/z 609). Users can generate as many EICs
and mass spectra as desired, which allows easy comparison
of multiple EICs from different samples. If a single file bin
analysis is performed, the EICs for all bins are automatically
generated and can be downloaded as a zip file, thus provid-
ing another data pool that can be mined for peak features.
However, it is important to note that a small bin size will
result in a large number of EIC files.
The bin feature of Haystack parses full-scan LCMS

data into uniform bins over any specified mass range.
To perform a bin analysis, users simply click on the ‘Bin

Analysis’ tab and enter the bin size. There is also an
option to perform a group bin analysis on all files within
a project. Haystack returns the total intensity for each
bin and displays the results graphically as a histogram.
Bin results and can also be downloaded as a .csv file for
easy import into a spreadsheet program for display, sort-
ing, and statistical analysis. Figure 4 shows an example
of a data set that was analyzed with six different bin
sizes (50, 20, 10, 5, 2, 1). The total number of bins (N)
is given by the formula: N =

(
mass range

)
/ (bin size)

It can be seen that there is very little increase in reso-
lution below a bin size of 2. Therefore, we used a bin
size of 2 for all subsequent analyses.
Bin results can be used to explore properties of the

data, identify important features, and model group

Figure 2 Representative TIC and BPC plots of LCMS data from a tomato leaf sample.

Figure 3 Representative EICs and mass spectra from a tomato leaf sample. EICs were generated in Haystack for mass ranges 743-744 (A),
707-708 (B), and 608-610 (C). Mass spectra are shown for time ranges 11.4-11.5 min (D), 16.7-16.8 min (E), and 25.8-25.9 min (F).
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assignment. Binning generates a set of interval, non-zero
variables in the mass dimension that can be analyzed by
univariate (fold change, ANOVA) as well as multivariate
(PCA, HCA, PLS-DA) statistical tests. This provides a
faster method for processing LCMS data for single or
multiple group analysis compared to peak deconvolution
methods.
To demonstrate this idea we analyzed metabolite pro-

files from tomato plants grown under either high light
(HL) or low light (LL) conditions (see Methods for
details). Samples were prepared from 12 HL samples and
11 LL samples and investigated by LCMS over a mass
range of m/z 100-1500. Figure 5 shows a representative
TIC and bin histogram from each group. Clear differ-
ences in the intensity of several peaks can be observed in
the chromatograms of the two samples. However, the bin
results provide a quantitative “fingerprint” that can be
analyzed by chemometric methods to reveal important
and often more subtle features. Sorting bin results pro-
vides a snapshot of major features. For example, the mass
range 608-610 had the highest intensity in the HL sam-
ple, whereas the mass range 370-372 had the highest
intensity in the LL sample. EICs of these bins identified a
peak at 25.8 minutes corresponding to rutin for mass

range 608-610 and a series of peaks between 8.8 and 11.5
minutes corresponding to isomers of caffeoylglucaric
acid for mass range 370-372 (Figure 3). The masses of
other high intensity bins are indicated in Figure 5B.
To test the functionality of Haystack to model class

assignment and identify discriminatory features, we used
principal component analysis (PCA) to compare the
results of bin analysis with manual and automated peak
detection methods. For manual peak detection we gener-
ated EICs for 69 unique ion peaks in HL and LL samples
and integrated the corresponding peaks using Agilent’s
DataAnalysis Version 5.2 software. For automated peak
processing we used the command line version of the
open source software XCMS to generate 664 peaks using
a peak deconvolution procedure with a default bin size of
0.1. All data sets used in this study are available in Addi-
tional file 1.
For each data processing method, we imported the

results into MetaboAnalyst 2.0 for statistical analysis
[22]. Since, as with many types of chemometric data,
binned LCMS data contains a significant amount of
baseline noise, removing constant or very weak variables
generally improves the analysis [23,24]. Using the inter-
quartile range filter option, MetaboAnalyst removed

Figure 4 Bin histograms of LCMS data generated by Haystack for a tomato leaf sample with bin sizes of 50, 20, 10, 5, 2, and 1.
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25% of the variables (176 out of 700), most of which
were at the high and low ends of the mass range and
contained mostly baseline signal.
The data were normalized prior to MVA by dividing

each variable by the total bin intensity for the sample
(sum normalization) to correct for differences in tissue
mass between HL and LL samples. The data then were
log transformed and autoscaled to improve normality
and satisfy equal variance to make features more

comparable. The current version of Haystack uses these
pre-processing steps as default options for PCA.
PCA score plots for the three data processing methods

are shown in Figure 6. Each method clearly separated
the HL and LL groups along the first PCA axis. There
was more scatter observed in the Haystack data as com-
pared with the two peak detection methods, which may
be explained by greater variance in binned data since all
masses are included in the data set. However, the overall

Figure 5 Comparison of TICs (A) and bin histograms (B) from representative LL and HL samples. A bin size of 2 was used in this
example. High intensity mass bins are indicated.
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pattern in PCA score plots was similar in all three
methods, suggesting that binned data can be used to
model group assignment with comparable accuracy to
peak detection methods despite a large number of neu-
tral variables.
Multivariate data can also be used to identify discrimi-

natory features. We applied hierarchical cluster analysis
(HCA) to each of the three data processing methods to
evaluate patterns in the data, and the results were visua-
lized by heatmaps (Figure 7). All three methods pro-
duced similar patterns, with HL and LL samples clearly
resolved into separate clusters as expected from PCA.
Variables were also separated into two major clusters
corresponding to the two sample groups. One interest-
ing discrepancy we observed was a greater fraction of
variables shown as upregulated in LL samples in the
Haystack data set as compared to the two peak detec-
tion methods. Although we cannot fully explain this

observation, we postulate that the sum normalization
pre-processing step may have caused a higher percen-
tage of neutral variables to appear as upregulated in LL
samples in the Haystack data set as compared to the
other two methods.
To further explore the utility of binned data to iden-

tify important features, we examined the top 30 PCA
loadings in HL and LL groups for each data processing
method. We determined retention times from the EICs
of significant bins to compare bin results with peak
detection results. Peaks were tentatively identified wher-
ever possible based on results of two recent surveys of
the tomato fruit metabolome [25,26] as well as MS/MS
analysis of selected ions (data not shown). Features were
classified as either upregulated or downregulated in HL
samples based on normalized mean data. A subset of 19
features were identified as highly discriminatory in at
least two of the data processing methods. Figure 8

Figure 6 PCA score plots of LCMS data from LL and HL samples processed using Haystack (A), XCMS (B), or manual extraction (C). The
number of variables included in the analysis is indicated above each figure.

Figure 7 Hierarchical cluster analysis of data from Haystack (A), XCMS (B), and manual extraction (C) methods. Pearson’s correlation for
measure of similarity and Ward’s linkage algorithm for clustering were used to generate heatmaps in MetaboAnalyst 2.0.
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shows a graphic comparison of the results. The EICs
from a representative LL and HL sample for the mass
bins in Haystack of each of the corresponding features
in Figure 8 is available in Additional file 2.
Although there was good agreement between the three

methods, five of the 19 features fell outside of the top
30 PCA loadings in the Haystack analysis. Inspection of
the corresponding EICs showed that these bins con-
tained additional peaks to the feature of interest. For
example, both manual and XCMS processing methods
identified a peak at 25.2 min with m/z 725.6 that was
strongly upregulated in HL samples and was annotated
as kaempferol rutinoside pentoside based on published
reports [25,26]. The corresponding bin for the mass
range 724-726 contained an additional prominent peak
at 29.1 min that was present in both LL and HL sam-
ples. Consequently, the total bin intensity was not signif-
icantly different between the sample groups. Thus, bins
containing multiple peaks may not be able to identify

discriminatory features. However, both manual and
XCMS processing methods also failed to identify several
features that were successfully identified by Haystack.
We conclude that binning was as effective as peak
detection methods in detecting significant features.
Volcano plots provide another useful way to identify fea-

tures that show large differences between groups. Figure 9
shows a volcano plot of bin results from HL and LL sam-
ples. Mass bins that show both large magnitude fold-
changes and high statistical significance are indicated on
the graph. Investigation of the EICs of significant bins
were used to identify peaks according to their retention
times and mass spectra. We should note that some signifi-
cant bins may represent the same metabolite feature. For
example, mass bins 354-356 and 706-708 both contained a
prominent extracted ion peak at 16.7 min that was identi-
fied as chlorogenic acid (Figure 3). As stated above, such
highly correlated bins are most likely due to common ions
in the mass spectra of individual metabolites. Raw bin data

Figure 8 Comparison of significant features identified by PCA loadings in Haystack, XCMS, and manual extraction. Features were
identified as either downregulated or upregulated in HL samples. Features that were not present in the top 30 PCA loadings are listed as Not
Identified.
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cannot distinguish ions that belong to the same metabo-
lite. However, we observed that automated peak detection
methods also produced a large number of highly corre-
lated redundant variables.
Figure 10 shows an example of how bin analysis can be

used to pinpoint significant features. Mass bin m/z 208-
210 was revealed by volcano plot analysis to be highly
represented in LL samples, and this was confirmed by
box plot analysis of bin intensity data (Figure 10C). The
corresponding overlaid EICs revealed a prominent peak
at 3.6 minutes in LL samples which was barely detectable
in HL samples (Figure 10A). This peak was identified a
D-glucaric acid based on its early elution time and
a monoisotopic mass of 209 for the deprotonated ion.
D-glucaric acid and its hydroxycinnamate ester caffeoyl-
glucaric acid have been reported in leaves of tomato and
Cestrum euanthes, a related solanaceous species [27-29].
To our knowledge this is the first report that D-glucaric

acid may be a biomarker of LL growth conditions in
plants.
A large number of known metabolites were found to

be upregulated in HL plants, primarily flavonoids and
other phenolic compounds. For example, volcano plot
analysis and PCA loadings revealed mass bin m/z 592-
594 to be a highly significant feature of HL samples.
The EIC of this bin showed a prominent peak at 28.3
min in HL samples but a very weak signal in LL samples
(Figure 10B), and this was confirmed by box plot analy-
sis of bin intensity data (Figure 10D). This peak was
subsequently identified as the flavonoid kaempferol 3-O-
rutinoside based on MS/MS analysis which produced a
daughter ion with m/z 286 corresponding to kaempferol
aglycone and a neutral loss fragment of 308 correspond-
ing the to disaccharide rutinose [25,26]. Kaempferol gly-
cosides have previously been observed to be induced by
HL in leaves of tomato and bilberry and therefore may

Figure 9 Volcano plot of bin results comparing HL and LL samples. Green symbols indicate mass bins that were significantly
downregulated while red symbols indicate mass bins that were significantly upregulated in HL samples (p<1e-10). Significant bins that were
upregulated or downregulated by at least 4-fold are indicated.
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represent a biomarker of HL growth conditions in
higher plants [30-32].

Discussion
A significant challenge in untargeted metabolomics is
extracting quantitative information from multidimen-
sional LCMS datasets that provides an accurate, compre-
hensive, and unbiased representation of the metabolome.
This is particularly true in plant metabolomics due to the
large number of metabolites and their inherent chemical
diversity. Plants typically contain hundreds to thousands
of unique metabolites that may be present over a large
concentration range spanning several orders of magni-
tude [4,33,34].
In this paper we present Haystack, a new easy to use

online platform for metabolomics research. Haystack is a
versatile web-based tool that can be used to visualize,
parse, and extract information from LCMS datasets
rapidly and efficiently. Raw full-scan LCMS data files in

one of several common export formats (mzData, mzML,
mzXML, NetCDF) can be easily uploaded with a few sim-
ple mouse clicks. Users can create projects for multiple file
analysis. Haystack’s server can store and process a large
number of data files, which is often necessary for metabo-
lomics studies.
Haystack automatically generates and displays the total

ion chromatogram (TIC) and base peak chromatogram
(BPC) when a file is uploaded. Users can search for target
masses and obtain extracted ion chromatograms (EICs)
with time and intensity values for any mass range. Time-
resolved mass spectra can also be generated. A graphical
output of all operations is provided, along with a .csv file
that the user can export for further analysis or custo-
mized graphing. These basic features can be used to
extract information from LCMS datasets without requir-
ing technical expertise in command line software tools.
The core function of Haystack is a flexible binning pro-

cedure that converts full-scan LCMS data into user-defined

Figure 10 Example of biomarker identification in LL and HL samples. Top Panel: EICs of mass bins m/z 208-210 (A) and m/z 592-594 (B).
Bottom Panel: Box plots of bin intensities for mass bins m/z 208-210 (C) and m/z 592-594 (D). The chemical structures and molecular formulae
are shown for the annotated peaks corresponding to D-glucaric acid (A) and kaempferol 3-O-rutinoside (B).
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mass bins. The resulting histogram provides a graphical
representation of the data akin to a “barcode” that uniquely
identifies a sample. Sorting by intensity identifies the most
abundant masses in a sample. Weak or highly redundant
variables can be removed by filtering. When comparing
multiple samples, binning creates a set of common interval
variables that can be analyzed by chemometric methods
such as PCA. A group bin analysis will automatically gen-
erate a PCA scores plot, volcano plot, and dendrogram for
a two group comparison. For further analysis, group bin
results can be imported into a variety of statistical tools.
We have found the online tool MetaboAnalyst 2.0 to be
particularly useful for analysis of binned mass data since it
provides a range of data normalization options as well as a
full suite of statistical processing functions [16,22].
The current version of Haystack does not include auto-

mated peak detection. However, the EICs of significant
bins can be analyzed “by eye” or using signal-to-noise
algorithms to identify important peaks. EICs can be gen-
erated for any bin or mass range to identify peaks of
interest. Unlike traditional MS metabolic fingerprinting
methods, which only contain data in the mass dimension,
the chromatographic peaks in binned LCMS data are
retained as latent variables, so no information is lost dur-
ing the analysis.
We show that bin analysis can be used as a fast and

practical alternative to peak detection methods to
streamline and simplify the analysis of LCMS-based
metabolomic data. Bin results are less sensitive to weak
signals, baseline noise, retention time shifts, and poor
chromatographic resolution than traditional peak detec-
tion methods, and they do not require complex filtering,
smoothing, or alignment pre-processing steps. Mass bins
provide an unbiased data matrix of all ions in a sample
since mass distributions not tied to specific retention
time indices. Unlike peak detection methods, the bin ana-
lysis implemented in HayStack has the advantage of dif-
ferentiating the samples without requiring retention time
alignment.

LCMS data processing methods
Two common approaches for processing LCMS data are
manual and automated peak detection [10,24]. Manual
methods generally involve identifying peaks in the TIC
and producing extracted ion chromatograms (EICs) for
the most abundant mass in each peak. Peaks in the EICs
are then integrated, usually within the software environ-
ment of the instrument, to produce an intensity value for
each mass at a given retention time.
An unavoidable drawback with manual peak extrac-

tion is that only the most well-defined peaks of relatively
abundant metabolites are generally detected, since
minor metabolite peaks often cannot be distinguished
from baseline noise. This will result in undersampling

the data and so significant features may be missed. A
second problem arises from the fact that manual extrac-
tion within the software environment of most LCMS
instruments is time consuming and not feasible for the
sample sizes generally required for robust statistical
analysis.
The second and more widely used method of LCMS

data processing is automated peak detection. This usually
involves several pre-processing steps, such as baseline cor-
rection, noise reduction, and retention time alignment, fol-
lowed by peak deconvolution [24]. Automated detection
attempts to resolve the TIC into individual component
peaks by removing extraneous ion peaks from extracted
mass spectra. This approach has been shown to work very
well for GCMS data using peak deconvolution tools such
as AMDIS combined with data extraction and quantifica-
tion tools such as MET-IDEA [13]. However, a variety of
factors including greater retention time variation, poor
chromatographic resolution, isotopic mass spectra, and
baseline noise can all create problems with automatic peak
detection with LCMS data.
Despite these limitations, a number of software tools

are available for processing, visualization, and analysis of
LCMS data [12,17,24,35]. A popular and widely used
platform for metabolomics data analysis is XCMS [14].
Originally released as a command line tool based in R,
XCMS recently has become available in a web-based
version known as XCMS Online [18]. Both versions per-
form automated peak detection on raw full-scan LCMS
data using nonlinear retention time alignment, peak
detection, and peak matching using a second derivative
Gaussian filter. XCMS Online generates and displays
EICs, box plots, and mass spectra for all significant fea-
tures, along with fold-change data and PCA results. An
interactive cloud plot feature has been added that offers
a range of visualization options. The command line ver-
sion of XCMS provides a greater range of options for
data processing and peak analysis. However, it requires
considerably more technical expertise than XCMS
Online.
Haystack provides a more flexible data management

system than XCMS Online. Single files can be uploaded
and processed individually or in zip format for bulk file
uploads in Haystack. XCMS Online limits the basic user
to a total workspace of 2 Gb, while Haystack has an indi-
vidual file limit size of 20 Mb but does not limit total
number of files for a user. Both Haystack and XCMS
Online allow stored datasets to be edited, but HayStacks
offers greater flexibility in manipulating stored datasets.
Haystack allows the user to create projects in which files
can be uploaded. In a project the user can label files with
group names and conduct a group bin analysis. There is
even a total files list that allows group analysis to be con-
ducted across projects, thus eliminating the need to
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upload the same files into another group. XCMS Online
does not allow files between datasets to be exchanged to
form new groups when conducting a new analysis.
In this study we compared metabolite profiles of

plants grown under low and high light conditions to
generate a data set for differential profiling. Our goal
was to test whether Haystack’s bin results could accu-
rately predict group assignment and identify discrimina-
tory features in a multivariate analysis. To do this we
compared Haystack data with manual and XCMS auto-
mated peak processing using the same sample dataset.
All three methods gave similar PCA score plots and
heatmap patterns, and identified similar important vari-
ables by ANOVA, volcano plots and PCA loadings.
However, we also observed some notable discrepancies
in feature detection between the three methods. Overall,
the results appear to validate Haystack’s binning func-
tion as a means to diagnose both classes and variables
in multidimensional LCMS data.
We note that XCMS produced a high percentage

(~15%) of missing values in the peak table due to weak
or poorly resolved chromatographic peaks. This can be
a problem for modeling multivariate data using covar-
iance methods such as PCA [36]. We avoided this pro-
blem in manual analysis by deliberately excluding peaks
that were not present in at least half the samples of
each group. Similarly, all variables in Haystack’s bin ana-
lysis had a positive value, thus avoiding the missing
value problem here as well. Bins that contain mainly
baseline noise would be expected to have a weak influ-
ence on the covariance matrix, and these were largely
removed by filtering during the data pre-processing
steps in MetaboAnalyst.
We also observed that XCMS oversampled a large

number of peaks in the TIC. Oversampling results in
metabolite peaks in the TIC being represented multiple
times in the peak table as highly correlated redundant
variables. This gives an inflated estimate of the number
of unique metabolite peaks in a sample. Oversampling
was caused mainly by the default small bin size of 0.1
used in the initial data processing steps in XCMS. Thus,
certain aspects of XCMS results should be viewed with
caution.
Although binning is one of the critical steps in the auto-

mated processing of LCMS data, defining a proper bin size
is not a straightforward task [21,37]. Forcing a fixed bin
size that is either too large or too small has several disad-
vantages in peak deconvolution methods. A larger bin size
may result in poor resolution of the peaks, while a smaller
bin size may split a peak which carries a risk of oversam-
pling the data. In both cases, the outcome is a poorly
resolved peak and a less confident integration result. Some
authors have proposed variable bin sizes or overlapping
bins [14]. One of the problems with applying these

methods is the lack of information in the raw data to esti-
mate the parameters for setting these values.
Haystack allows the user to set the bin size. This makes

it easy to test different bin sizes to determine an optimal
number of variables for a particular dataset, which will
depend on the biological complexity of the sample as well
as the resolution of the mass spectrometer. Peak deconvo-
lution is not required in Haystack since bin intensity
values are not coupled to specific retention times. How-
ever, peak information can be recovered by analysis of the
time domain of relevant bins. It is inevitable that some
bins will contain multiple peaks, since the average number
of unique ion peaks increases with bin size.
It should be emphasized that Haystack is not meant to

replace conventional peak analysis. An important goal of
a metabolomics experiment is to identify all distinct che-
mical entities in a biological sample, which are best
represented by fully resolved and annotated peaks in an
LCMS chromatogram. Since binned LCMS data can only
provide intensities for specific mass ranges, subsequent
data processing is crucial to identify specific ion peaks.
Tools such as XCMS can perform global deconvolution
of LCMS datasets through peak alignment, filtering,
smoothing, etc., and XCMS Online version makes this
type of data analysis more accessible for the average user.
Table 1 provides a comparison of features in Haystack
and XCMS Online. While the latter is an extremely use-
ful tool, we believe that Haystack provides an alternative
platform with several unique advantages, particularly the
ability to process and visualize raw full-scan LCMS data
rapidly and efficiently, and more importantly its unique
bin analysis for identifying mass ranges of possible inter-
esting features. Haystack may be considered as the first
step in the data analysis pipeline to obtain a snapshot of
the data, where XCMS Online may provide a more com-
prehensive analysis of the data based on peak deconvolu-
tion. A version of Haystack that incorporates peak
detection is currently under development.

Conclusions
A major bottleneck in non-targeted metabolomics stu-
dies is processing the large amounts of data produced
by most metabolomics experiments to obtain useful bio-
logical information. In this article we present Haystack,
a novel web-based discovery tool that offers a range of
data visualization options for LCMS-based metabolo-
mics data and supports non-biased differential profiling
studies through a unique and flexible binning function.
While other software tools incorporate binning into the
initial stages of data processing, only Haystack allows
users to export and manipulate raw binned data for sta-
tistical analysis. We show that by applying standard che-
mometric analysis methods, binned data can be used to
model class assignment and elucidate significant features
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without the need for peak deconvolution. The main
advantage of this approach is that it is faster and less
prone to chromatographic errors than conventional
peak extraction methods. Furthermore, average users
can upload and process their LCMS data through Hay-
stack’s simple web interface without having technical
expertise in command line programming languages and
software tools. With additional features being engi-
neered such as peak integration and more data proces-
sing options, Haystack will become a valuable tool in
the workflow of metabolomics research.

Availability and requirements
• Project name: Haystack
• Project home page: http://binf-app.host.ualr.edu/
haystack
• Operating system(s): Platform independent
• Programming language: PHP, R, Perl, MySQL
• Other requirements: Internet browser
• License: free

List of abbreviation used
ANOVA - Analysis of Variance; BPC - Base Peak Chroma-
togram; CSV - Comma Separated Value; EIC - Extracted
Ion Chromatogram; ESI - Electrospray Ionization; HCA -
Hierarchical Cluster Analysis; LCMS - Liquid Chromato-
graphy Mass Spectrometry; MS - Mass Spectrometry;
MVA - Multivariate Analysis; PCA - Principal Component
Analysis; PLS-DA - Partial Least Squared-Discriminant
Analysis; TIC - Total Ion Chromatogram.

Additional material

Additional file 1: Supplemental information. Excel file that contains
data for 23 samples that were analyzed by the three data processing
methods used in this paper.

Additional file 2: Supplemental information. PDF file that contains EIC
plots for the 19 mass bins shown in figure 8 from a representative LL
and HL sample.
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