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Background
Identifying molecular regulators underlying condition-
specific transcriptional responses is essential for our
understanding of their underlying molecular mechan-
isms. So far, there have been several computational
methods developed for this purpose. Specifically, four
major algorithms, TFact [1], RIF [2], CSA [3], and
DRrank [4], were released one after another. Each of
these algorithms has its own features and evaluation
strategies. Thus, these methods should be systematically
evaluated so that the users can make the most appropri-
ate method selection for their practical application
needs.

Materials and methods
In this work, we evaluated the four algorithms using
Escherichia coli transcription network models and syn-
thetic expression datasets that were generated by SynT-
ReN [5] and GeneNetWeaver [6]. Specifically, we
developed a simulation-based schema to evaluate each
algorithm according to operatively defined, known “differ-
ential regulators.” In addition, we tested each method’s
robustness against its key parameter(s) and explored fac-
tors that influence algorithm performance in general.

Results
We found that TFact and DRrank stood out as the best
methods in terms of both accuracy and robustness. In
total, there were seven cases in which one single regulator
was artificially perturbed. TFact attained the closest
approximation four times, while DRrank had the best

performance the other three times. In another 15 scenar-
ios in which there were perturbations of multiple regula-
tors, DRrank was ranked on average the best algorithm,
while TFact had the second-place rank. Based on these
observations, TFact and DRrank may each be best applied
to different circumstances: TFact is better used for single
regulator implication, while DRrank is better for multiple
regulators’ simultaneous perturbation. In general, we
observed that algorithms’ performances were negatively
correlated with the number of regulation links per target,
which may indicate that independent regulators are easier
to recover than synergistic ones.

Conclusions
This work represents a preliminary benchmarking eva-
luation of four major currently-available algorithms for
differential regulator identification. According to our
simulation-based evaluation paradigm, two of the pub-
lished algorithms, TFact and DRrank, are more robust
than the other two. Further evaluation is needed, such as
applying them to specific human disease expression data-
sets under different conditions or different platforms.
Furthermore, these algorithms may be extended to
rapidly emerging next-generation sequencing (NGS) data.
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