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Abstract

Background: Motif discovery is the problem of finding recurring patterns in biological data. Patterns can be sequential,
mainly when discovered in DNA sequences. They can also be structural (e.g. when discovering RNA motifs). Finding
common structural patterns helps to gain a better understanding of the mechanism of action (e.g. post-transcriptional
regulation). Unlike DNA motifs, which are sequentially conserved, RNA motifs exhibit conservation in structure, which
may be common even if the sequences are different. Over the past few years, hundreds of algorithms have been
developed to solve the sequential motif discovery problem, while less work has been done for the structural case.

Methods: In this paper, we survey, classify, and compare different algorithms that solve the structural motif
discovery problem, where the underlying sequences may be different. We highlight their strengths and
weaknesses. We start by proposing a benchmark dataset and a measurement tool that can be used to evaluate
different motif discovery approaches. Then, we proceed by proposing our experimental setup. Finally, results are
obtained using the proposed benchmark to compare available tools. To the best of our knowledge, this is the first
attempt to compare tools solely designed for structural motif discovery.

Results: Results show that the accuracy of discovered motifs is relatively low. The results also suggest a
complementary behavior among tools where some tools perform well on simple structures, while other tools are
better for complex structures.

Conclusions: We have classified and evaluated the performance of available structural motif discovery tools. In
addition, we have proposed a benchmark dataset with tools that can be used to evaluate newly developed tools.

Introduction
Finding recurring patterns, motifs, in biological data gives
an indication of important functional or structural roles.
Motifs can be either sequential or structural. Motifs are
represented as sequences when they represent repeated
patterns in biological sequences. Motifs are structural
when they represent patterns of conserved base pairs (e.g.
RNA secondary structures) [1,2]. Knowing structural
motifs in RNA leads to a better understanding of the
mechanisms of action. Unlike DNA motifs, which are
sequentially conserved, RNA motifs may share a common
structure even in the case of low sequence similarity.

Many algorithms have been devised to solve the structural
motif discovery problem. However, due to the lack of a
gold standard benchmark, little work has been done to
evaluate their performance. A survey of different structural
RNA motif discovery algorithms can be found in [3]. The
structural motif discovery problem should not be confused
with the two close problems: RNA structure prediction
and RNA consensus structure prediction [4]. In the for-
mer, it is required to predict the secondary structure of a
single RNA sequence. In general, the predicted structure
minimizes the total free energy. While in the later, it is
required to find a list of base pairs that can simultaneously
be formed in a set of related RNA sequences. In this case,
it is generally assumed that sequences are evolutionary
related and share a similar overall fold. Evolutionary con-
servation information is utilized to improve the accuracy
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of structure prediction process. In this paper, we focus on
structural motif discovery, where the goal is to discover
repeated patterns in RNA secondary structures. The paper
is organized as follows. In the following section, the motif
discovery problem is formulated. Next, the basics of RNA
secondary structures are presented including: common
representations and free energy models that are used to
evaluate the stability of an RNA structure. Then, we survey
and classify motif discovery algorithms and discuss their
advantages and limitations. We proceed by proposing a
benchmark and a tool for evaluating the performance of
motif discovery algorithms. Finally, our experimental
setup and comparative results are presented and discussed.

Motif discovery
The structural motif discovery problem can be formu-
lated as follows: Given a set of RNA sequences S, it is
required to find common structural motifs that are
responsible for the function or regulation of the RNA
sequences. In general the motif discovery problem is a
challenging problem: The motif may not be present in
all input sequences. In real situations, unrelated
sequences may be included by mistake. Then, only a
subset of the given sequences can share a common
motif. In other situations the input sequences may be
related, but there is no common single motif for all of
them. This happens when sequences are functionally
related but belong to different structural classes. For N
sequences, there are 2N subsets of sequences that need
to be examined to find a motif. Hundreds of algorithms
and tools have been published to tackle motif discovery
in the sequential case. However, less work has been
done for structural motif discovery. The structural case
is more difficult than the sequential case because
motifs may share a common structure even if their
underlying sequences are different.

Preliminaries
RNA secondary structures
RNA is found as a single strand where individual bases
can bond with each other forming base pairs [5]. Bond-
ing makes RNA fold into a structure called secondary
structure. There are different rules for base paring [5]. A
Waston-Crick base pair is formed when A bonds with U
through a double hydrogen bond or when G bonds with
C through a triple hydrogen bond. A wobble base pair is
formed when G bonds with U by a single hydrogen bond.
There are other pairing rules such as G-A and U-C pairs,
but they are relatively rare [5]. RNA secondary structures
can be interacting or non-interacting. In an interacting
structure, base pairs may be formed from bases that
belong to different strands (inter-molecular). In a non-
interacting RNA structure, all base pairs are formed by
bases in the same strand (intra-molecular).

Definition: Secondary structure
Given an RNA sequence R = {r1r2...rn} of length n, the sec-
ondary structure S of R is a set of base pairs (ri, rj), where
1 ≤ i <j ≤ n, that satisfies the following two criteria [5]:
(1) Each base is paired at most once.
(2) If (ri, rj), (rk, rl) Î S, then i <k <j ⇔ i <l <j. This is

called the nested criterion.
The criteria above may be rarely violated in RNA sec-

ondary structures. If the first one is not satisfied, then a
base triple may happen. If the second is not satisfied,
then a pseudoknot may exist [5].

RNA representations
There are different ways to represent RNA secondary
structures. Some popular RNA representations are:
Dot-bracket notation
RNA secondary structure can be represented as a string of
length n over the alphabet Σ = {(, ., ), [,]}. This representa-
tion is known as dot-bracket notation (DBN), or nested
parenthesis. Initially, proposed in [6], base pairs are repre-
sented using matched brackets. A base pair (ri, rj) is repre-
sented by an opening bracket at position i and a closing
bracket at position j. Unpaired bases are represented by
dots. Pseudoknots are represented using square or curly
bracket. Sometimes square bracket are used to represent
inter-molecular base pairs. An example of bracket notation
representations of the secondary structures of Figure 1 are
shown in Figure 2.
Planar graph
RNA secondary structure can be represented as a planar
graph [6], also known as bond representation. The graph is
a simple approximation of the RNA secondary structure
in two dimensions. As shown in Figure 3, the planar graph
may include the following different types of loops in the
secondary structure:

• Hairpin loop: a loop that contains exactly one base
pair.
• Staked pair: a set of consecutive base pairs.
• Internal loop: a loop with two base pairs and at
least one unpaired base on each side of the loop.
• Bulge: Like an internal loop, a bulge has two base
pairs but with only one side of the loop having an
unpaired bases.
• Multi-loop: any loop with three or more base pairs.
• External base: any unpaired base not contained in
a loop. A set of consecutive external bases form an
external element.

RNA expression
RNA secondary structures can be represented as an
expression of the following six types of terms [1]:

• H5 and H3: to represent the beginning and end of
an intra-molecular stem.
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• I5 and I3: to represent the beginning and end of an
inter-molecular stem for interacting molecules.
• SS: to represented a single stranded region
(unpaired).
• BR: to indicate a move between RNA sub-patterns
in case of interacting patterns.

Each term can be followed by tuple (x, y) to indicate the
minimum and maximum length, respectively. Figure 4
shows the RNA expressions for the structures in Figure 1,
where each term has a defined length.
Component-based representation
RNA secondary structures can be represented by com-
ponents [1]. In this representation, a pattern can be
defined by three parts: (1) its length, (2) the intra-mole-
cular (INTRAM) component (3) the inter-molecular
(INTERM) component if interacting. An interacting pat-
tern consists of more than one sub-patterns. In general
P = {p1, p2, ..., pm}, each pj = (lenj, {INTERM1,
INTERM2, ..., INTERMr}, {INTRAM1, INTRAM2, ...,
INTRAMq}) for 1 <j ≤ m. If the pattern is not interact-
ing, when is m = 1, it will only have INTRAM
component.

Components are defined by the length of their open-
ing and closing brackets and by their relative location in
the pattern. The component-based representation of the
structures in Figure 1 are shown in Figure 5.
Covariance model
Covariance model (CM) [7] is a probabilistic model for
describing a sequence alignment and a consensus second-
ary structure for a set of RNA sequences. It is represented
as an ordered binary tree of different types of nodes: begin
(S), pair (P), left singlet (L), right singlet (R), and bifurca-
tion (B). Each node can have different number of states to
allow insertions, deletions, and mismatches. CM is a gener-
alization of the hidden Markov models with two additional
states. The match pairwise state allows the emission of a
pair of symbols, while the bifurcation state allows multiple
helices. The CM works only for non-interacting RNA
sequence from the 5’ end to the 3’ end. Figure 6 shows an
example of a CM for the non-interacting RNA in Figure 1.
Connectivity table
RNA secondary structure can be represented as a table
called connectivity table (CT). The table is formatted as
follows:

• The first line shows the number of bases in the
sequence and the name of the structure.
• Each following line provides information about one
base pairs as follows:

- base index.
- base.
- next index.

Figure 1 RNA Secondary Structures. RNA Secondary Structures. Left: non-interacting RNA (only intra-molecular base pairs). Right: interacting
RNA (with inter-molecular base pairs).

Figure 2 Bracket notation. Bracket notation for the structures in
Figure 1.
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- previous index.
- index of the base to which it is paired. Zero for
no pairing.
- Natural numbering.

Figure 3 Planar graph representation. RNA various loop types in planar graph representation.

Figure 4 RNA expression. RNA expression for the structures in
Figure 1.
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Figure 7 shows an example of connectivity table for
the non-interacting RNA in Figure 1.
Arc representation
In this representation, a base pair is represented as an
arc connecting the two bonded bases. The secondary
structure is a set of overlapping or parallel arcs [8]. An
example of this representation is shown in Figure 8.

Free energy models
The stability of RNA structures is determined by their
free energy. Stable structures have the lowest free energy
values. In this section, we discuss well-known models
that are used to calculate the free energy.
Base pair energy model
The simplest energy model considers individual base pairs.
It either maximizes the number of base pairs or uses the

sum of free energies of individual Waston-Crick base pairs
[9,10]. Waston-Crick free energy between base i and base j
is denoted as e(i, j) and it is based on the type of bonded
bases. The bond is called internal, if the bases are on the
same RNA strand, otherwise it is called external. The
energy functions for internal and external bonds may be
equal. For any secondary structure S, the total energy is
the sum of e(i, j) over all pairs as follows [11]:

Ep(S) =
∑

(i,j)∈S
e(i, j)

Although this model is simple, it is known to be inac-
curate [12]. The base pair maximization model does not
yield biologically relevant structures. This is because: it
ignores stacking base pairs, it dose not consider loop
sizes, and it has no special scoring of multi-loops.
Stacked pair energies
The stacked pair model [13,14] assigns energy Es to a
base pair (i, j) Î S if and only if (i + 1, j − 1) Î S. The
total energy under this model is given as follows:

Es(S) =
∑

(i,j)∈S
EsSi+1,j−1

Where Si+1,j−1 = 1 if the pair (i + 1, j − 1) Î S, Si+1,j−1 =
0 otherwise. The total number of consecutive base pairs

Figure 5 Component-Based representation. Component-Based
representation.

Figure 6 Covariance model. Covariance model: ordered binary tree (right) and the internal states (left) for parts of the non-interacting structure
in Figure 1.
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is called the stacking size. Single base pairs are not con-
sidered as stacks, so the staking size is at least 2.
Loop energy model
The loop energy model, also called the nearest neighbor
model [15], considers the free energy of the different types
of loops, including: free energy of externally interacting
loops. Under this model, the free energy of a secondary
structure is the sum of free energies of all of its compo-
nent loops. This model appears to be more accurate espe-
cially for RNA molecules with length ≥ 150 [12]. The
contribution of each loop type is determined as follows:

• Hairpin loop: the energy contribution of a hairpin
loop is determined by two elements. First, the number
of unpaired bases forming the loop. Second, the

contribution of the terminal mismatch, which are the
two bases adjacent to the closing base pair.
• Staked pair: the energy contribution of a stacked
pair is determined by the type and order of base
pairs.
• Bulge: the energy contribution of a bulge loop is
determined by the length of the unpaired bases
forming the bulge and the two closing base pairs.
• Internal loop: the energy contribution of an inter-
nal loop is determined by the length of the unpaired
bases forming the loop and the four unpaired bases
adjacent to the opening and closing base pairs.
• Multi-loop: the energy contribution of a multi-loop
is a function of many factors, including: number of
helices and the optimal configuration of free ends
and terminal mismatches.

Classification of RNA motif discovery algorithms
There are many approaches to solve the structural motif
discovery problem. In this section, we classify the different
approaches that solve this problem. Based on how the
search space is explored, we classify the approaches into
two main classes: enumerative approaches and heuristics
approaches. In enumerative approaches, the search space
is exhaustively explored in order to discover overrepre-
sented motifs. Algorithms in this class can be further
divided into: dynamic programming-based approaches
(DP), data structures-based approaches (DS), and graph-
based approaches (GB). On the other hand, in heuristic
approaches, only promising regions of the search are
explored. Examples of algorithms in this class include:
Expectation maximization and evolutionary algorithms. In
addition, there are other heuristics specifically designed to
tackle the motif discovery problem.

Enumerative approaches
• Dynamic programming approaches
Dynamic programming is a well-known algorithm design
technique. It is based on the observation that within opti-
mal solutions there exist optimal solutions to subpro-
blems. Most motif discovery algorithms in this class rely
on extending Sankoff’s algorithm [16] for simultaneous
folding and aligning RNA sequences. The algorithm
combines the recurrences of sequence alignment and
folding algorithms. Given two sequences, it finds two
structures and an alignment such that the energy and
alignment score are optimal. The two structures need to
show the same kind of branching. This should also be
reflected in the alignment where branches are aligned to
each other.
FOLDALIGN [17-19] is a DP-based motif discovery tool

for two sequences. The first implementation of FOLDA-
LIGN [17] starts with pairwise alignments using a simple
extension to Sankoff’s algorithm. Instead of minimizing

Figure 7 Connectivity table. Connectivity table for the non-
interacting structure in Figure 1.

Figure 8 Arc representation. Arc representation.
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the total cost of the alignment and the energy of the struc-
ture, the proposed extension maximizes the alignment
similarity and the number of base pairs that are formed in
the two aligned sequences. The time complexity is
reduced by not allowing branching structures. After the
initial pairwise alignments are computed, they are aligned
with all individual sequences. The algorithm proceeds by
following a greedy (progressive) approach by aligning tri-
plet alignments to every individual sequence and so on. In
order to obtain an alignment of size r, only alignments
between a single sequence and an r − 1 sequences are con-
sidered. After each round only the best 30 alignments are
retained to generate r + 1 alignments. For each round r,
the few best alignments are taken and their score versus
length is calculated. Scores are plotted as a function of r.
The algorithm then stops at the round for which the rate
of change decreases. Finally, the best five scored align-
ments from r and r − 1 sequences are considered. In sub-
sequent implementations of FOLDALIGN [18,19], the
basic algorithm was improved to deal with branched struc-
tures and to use a lightweight energy model.
SLASH [20] is an approach for the discovery of hairpin

motifs in unaligned sequences based on two approaches:
FOLDALIGN [21] and COVE [7]. FOLDALIGN is used to
find local alignments in RNA sequences. Then COVE’s
model is trained on that alignment.
• Data structures-based approaches
Motif discovery algorithms can use data structures to
accelerate the access and retrieval of words. Mauri and
Pavesi [22] presented an algorithm using affix trees data
structures for the discovery of hairpins, bulges and internal
loops in RNA. An affix tree is a data structure that stores
information about a given string and its reverse. The pro-
posed algorithm has two inputs. First, a set of RNA
sequences (denoted as S). Second, the minimum number
of sequences in which a motif can appear (denoted as q).
In addition, it has two optional inputs: the maximum
value of loop size and the maximum number of unpaired
bases that can form internal loops and bulges. The basic
idea is to start by building an affix tree. From the affix tree
all substrings of length l are identified. Substrings appear-
ing in at least q sequences are then progressively expanded
by adding one base pair or an unpaired base. The pro-
posed algorithm terminates when motifs can not be
expanded. Motifs are then evaluated to determine their
free energy. A motif is reported only if its energy satisfies a
given threshold.
Seed [23] uses another data structures, namely suffix

arrays, for the discovery of structural motifs. In the algo-
rithm one of the input sequences is considered as a seed.
The data structure is then used to store the seed
sequence and its reverse. The algorithm proceeds by list-
ing all stems in the seed sequence. This is done by look-
ing at complementary regions. Stems that appear in a

number of sequences with frequency above a predefined
threshold are kept for further processing. Then, base
pairs in the listed motifs are replaced with the actual base
pairs occurring in the seed sequence. Finally, multi-stem
motifs are constructed by combining two motifs.
Depending on the positions of the two motifs, they can
be either nested in each other or put next to one another
(adjacent relationship). The combination can result in
different structures such as bulges, internal loops and
multi-loops. In fact, the motifs capture both sequence
and secondary structure information. They are ranked
based on free energy.
• Graph-based approaches
comRNA [24] is a graph-based approach that can find
pseudoknots. It starts by finding all possible stable stems
of length L in each sequence using a branch and bound
approach. The stability of a stem is evaluated based on
stacking energy. Bulges and internal loops are not allowed
at this stage. Next, the similarity between each stem pair is
computed. Then, an n − partite undirected weighted con-
nectivity graph is created. Nodes in the graph represent
stems, while edge represent similarity values between
them. The graph is partitioned to n parts, where each part
consists of stems belonging in the same sequences. The
final step is to find all conserved stems that are common
to multiple sequences. In graph theory, this corresponds
to finding a set of maximum cliques. A clique is a com-
plete sub-graph where every node is connected to every
other node. After that, a graph technique similar to topo-
logical sort is applied to find the best assemblies of stems.
Finally, the highest ranking motifs are reported.
RNAmine [25] uses graph mining algorithm to discover

motifs shared by a subset of different RNA sequences. An
RNA sequence and its secondary structure is represented
as a directed labeled graph, called stem graph. In a stem
graph, a node denotes a stem and an edge denotes the
relative positions of two stems. Initially, candidate stems
are derived from McCaskill’s algorithm [26] using Vienna
package [27]. Stems shorter than a given threshold are dis-
carded. The algorithm exhaustively enumerates stem pat-
terns using a branch and bound algorithm. A pattern
needs to satisfy three constraints: (1) A pattern that exist
in at least m stem graphs, (2) A pattern should form a cli-
que, and (3) It must not be a general pattern.

Heuristic approaches
• Evolutionary algorithms
Evolutionary computation algorithms are based on biolo-
gical evolution concepts such as natural selection, survi-
val of the fittest, and reproduction to search for an
optimal solution. The main components of evolutionary
algorithms are: solution representation, fitness function,
population initialization, selection, and reproduction
operators. RNAGA [28] uses genetic algorithms (GA) to
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find common secondary structures in a set of homolo-
gues RNA sequences.
In RNAGA, GA is applied at different levels. A GA is

applied to each sequence to get a set of stable struc-
tures. The fitness of a secondary structure is based on
its free energy. Then, for each sequence, the resulting
set of stable structures are evaluated to determine their
conservation among different sequences. Using the con-
servation score as a measure of fitness, a GA is applied
again to the set of stable structures. Finally, the GA ter-
minates when maximum number of generations is
reached.
GPRM [29] uses genetic programming (GP) to find

structural motifs in RNA. The algorithm requires two
sets of inputs: a set of co-regulated RNAs, called the
positive set, and a set of randomly generated sequences,
called the negative set. The initial population of motifs
is generated based on a user-defined parameters: num-
ber of segment in a motif and the range of segment
length. A segment is either Waston-Crick base pairs or
unpaired bases. Individuals are evaluated based on F-
score, which is a function of sensitivity and positive pre-
dictive values. The sets of positive and negative
sequences are used in calculating the score.
GeRNAMo [30] also uses a GP to find RNA motifs.

Unlike GPRM, where the initial motifs are randomly gen-
erated, GeRNAMo starts with a set of suboptimal sec-
ondary structures. First, a preprocessing step takes place
where input sequences are broken into subsequeces ran-
ging between a user-defined minimum and maximum
lengths. Then for each subsequence, RNAsubopt [31] is
used to find the suboptimal secondary structure based on
thermodynamics evaluation. The output of RNAsubopt is
then used to build an array that stores all the information
of the suboptimal secondary structures. GP is then
applied with a fitness function that favors motifs that are
common to the majority of input sequences.
• Expectation maximization
Expectation maximization (EM) is a statistical method
for parameter estimation in the case of incomplete data.
CMfinder [32] is an RNA motif discovery algorithm that
is based on expectation maximization (EM) and covar-
iance model RNA representation. The algorithm starts
by finding strong motif candidates. Those are the ones
with more stable structure. For each input sequence, the
minimum free energy of all subsequences is computed.
Top ranking candidates are then chosen and compared
at base level. The algorithm proceeds by constructing an
initial alignment from similar candidates. The initial
alignment is used as a seed for the EM algorithm. Then,
EM takes place twice: First, to refine the initial align-
ment. Second, to scan each sequence looking for hits,
where top hits are treated as candidates. Finally, motifs
are merged to produce the final result.

RNApromo [33] is another EM-based method for
identifying RNA motifs. It starts with a set of RNA
sequences and a set of suggested secondary structures.
The motif prediction algorithm is composed of two
main parts. In the first part, several heuristics are
employed to identify good motif candidates. In the sec-
ond part, candidates are refined using an EM algorithm.
• Other heuristics
These are other algorithms that are specially designed to
solve the motif discovery problem. RNAProfile [34] is
composed of two steps. In the first step, a simple heuris-
tic is used to extract a set of candidate regions from
each sequence. Each region is associated with an opti-
mal secondary structure. The heuristic then selects the
regions whose predicted optimal secondary structures
have exactly h hairpins. The second step involves group-
ing regions by progressively aligning profiles. Groups are
scored based on the quality of the multiple alignment
that is built from regions in the same group. The
method requires one parameter, which is the number of
hairpins in a motif. Table 1 summarizes different struc-
tural motif discovery algorithms.

Advantages and limitations
There are many challenges facing the motif discovery algo-
rithms: The ability to discover complex structures, includ-
ing pseudoknots, the ability to deal with large datasets,
scalability, and also the ability to distinguish biologically
significant motifs. On one hand, according to the so far
reviewed methods, dynamic programming based algo-
rithms do not allow branching structures in order to
reduce time complexity. Consequently, they are limited to
very conserved stem-loops and are only suitable for small
datasets. On the other hand, some data structure based-
algorithms (e.g. Seed) and heuristics-based algorithms (e.g.
CMfinder, RNApromo, and RNAProfile) can discover
multi-loops. Graph theoretical algorithms (e.g. comRNA
and RNAmine) can find pseudoknots and can discover
multiple motifs from different families (e.g. RNAmine).
However, they have non-polynomial time complexity
because all algorithms are mapped to the clique finding
algorithm, which is well-known to be NP-complete [35].
Evolutionary algorithms can deal with more complex sec-
ondary structures. Unfortunately, they are computationally
demanding for large datasets and they may produce differ-
ent results when run multiple times on the same data.
Table 2 summarizes the advantages and limitations of the
different motif discovery approaches.

Proposed benchmarks
Motivated by the lack of a ‘gold standard’ benchmark,
we propose a benchmark that can be used to assess the
performance of structural motif discovery tools. The
benchmark is specifically designed to highlight the
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different challenges of the motif discovery problem. The
complexity of the RNA secondary structures depends on
the number loops and the type of loops. Changing these
two parameters can vary the complexity of the structure.
Thus, based on the complexity of the allowed RNA sec-
ondary structures, the benchmark can be divided into
the following datasets, ranging from low complexity to
high complexity structures:

• Ref.1 contains three RNA families: Iron response ele-
ment I (IRE), Histone 3’ UTR stem-loop (Histone3),

and Selenocysteine insertion sequence 1 (SECIS I).
These families have simple secondary structures that
are composed of a few number of loops and loop types
(1 to 2).
• Ref.2 contains three RNA families: FMN riboswitch,
glmS ribozyme, and Lysine riboswitch. These families
have more complex secondary structures that are com-
posed of a higher number of loops (5 to 7) and loop
types (2 to 3).
• Ref.3 contains three RNA families: Enteroviral 3’
UTR element (Entero_OriR), Metazoan signal recogni-
tion particle RNA (Metazoa_SRP), and Bacterial
RNase P class B (RNaseP_bact_b). These families have
complex secondary structures that are composed of a
large number of loops (8-17) and loop types (4-5).

The datasets were retrieved from the Rfam database
[36,37]. Figure 9 describes the benchmark generation
process. For each family, seed alignments were consid-
ered as the motif. From the seed sequences, all sequences
with motifs appearing in the reverse complement were

Table 1 Structural motif discovery algorithms.

Tool Class Website

FOLDALIGN [17] EN [40]

Based on Sankoff’s algorithm. It maximizes alignment similarity and number of base pairs formed in 2 aligned sequences.

SLASH [20] EN NA

Uses FOLDALIGN to find local alignments in RNA sequences. Then COVE [41], to build a SCFG model from the local alignments.

Mauri & Pavesi [22] EN NA

Uses Affix trees for the discovery of hairpins, bulges and internal loops in RNA. Substrings of certain length appearing in at least q sequences are
found and expanded.

Seed [23] EN [42]

Uses suffix arrays to induce motifs from the seed sequence. Data structures are used to store the seed sequence, its reverse, and the input
sequences.

comRNA [24] EN [43]

Uses an n − partite undirected weighted connectivity graph to represent stems and their similarity. The problem of finding motifs is mapped to
finding a set of maximum cliques. A graph technique similar to topological sort is applied to find the best assemblies of stems.

RNAmine [25] EN [44]

Uses a graph mining algorithm to find conserved stems.

RNAGA [28] HU NA

Genetic algorithm is applied at different levels. First it is applied on each sequence to get a set of stable structures. Then it is applied again to the
set of stable structures.

GPRM [29] HU NA

Uses genetic programming. It requires two sets of inputs: a positive set and a negative set. Individuals are evaluated based on F-score and using the
two input sets.

GeRNAMo [30] HU NA

GeRNAMo applies genetic programming on the output of RNAsubopt.

CMfinder [32] HU [45]

based on expectation maximization (EM) to simultaneously align and fold sequences using covariance model of RNA motifs.

RNAProfile [34] HU [46]

Uses a heuristic to extract a set of candidate regions from each sequence. The second step involves grouping regions to find similar motifs.

RNAPromo [33] HU [47]

The motif prediction algorithm initially looks for structural elements which are common to the input RNAs, and then employs an expectation
maximization algorithm to refine the resulting probabilistic model.

EN: enumerative and HU: heuristics.

Table 2 Advantages and limitations of the surveyed
motif discovery approaches.

Approach Structures Pseudoknots Scalablity

Dynamic Programming stems no no

Data Structures-Based multi loops no yes

Graph-Based complex yes no

Evolutionary Algorithms complex yes no

Expectation maximization complex yes no
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removed. Then at most 50 accession numbers, which are
unique identifiers assigned to each biological sequence,
were chosen randomly from the remaining sequences.
For each accession number, the subsequence correspond-
ing to the motif with 200 nucleotides of flanking regions
was retrieved directly from the European Nucleotide
Archive at the European Bioinformatics Institute [38].
Flanking regions were randomly distributed between the
5’ and 3’ ends. Retrieved subsequences containing ambi-
guity letters were discarded. The generation of the
benchmark was conducted using a Java tool [39] specifi-
cally written for this task. The tool can also generate
benchmark from a flat file provided by the user in
FASTA format. Scalability can be measured by changing
the length of flanking regions.

Proposed measurement tool
To evaluate the performance of the available motif discov-
ery tools, we developed a tool [39] to measure their perfor-
mance in terms of sensitivity (Sn), specificity (Sp), and

positive predictive value (PPV). The tool computes statis-
tics for the discovered structures at the base pair level rela-
tive to the corresponding structures in the Rfam seed
alignments. A discovered base pair (i, j) is considered true
positive (TP), if it is identical to the known pair or it is
shifted by one nucleotide on one side only. In other
words, if (i, j), (i + 1, j), (i − 1, j), (i, j + 1), or (i, j − 1) is
discovered [4].
As shown in Figure 10, the tool takes as an input: Rfam

seed alignment, benchmark dataset, and the output of
the tested tool. Each motif discovery tool has its own out-
put format. For this reason, our measurement tool is
designed to take this into consideration. The tool parses
the output of each motif discovery tool and maps the
results to an object of class Motif, which is then com-
pared to the known motif represented by the Rfam seed
alignment. The tool then uses the benchmark dataset to
add any missing information in the output. RNAProfile,
for example, outputs a motif instance in each input
sequence without indicating the start and end positions

Figure 9 Benchmark generation. Benchmark generation.
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of the motif instance. Other tools do not give the original
start and end positions of the motif, instead they report
positions relative to the start of the input sequence.
Knowing the original positions is important for the sake
of comparison with known structures in the Rfam seed
alignment. Our tool is able to extract these types of miss-
ing information using the benchmark datasets.

Experimental setup
To the best of our knowledge, this is the first comparison
between tools designed for the purpose of structural
motif discovery. For our experiment, we focus on the
tools that discover structural motifs in more than two
input sequences, where the input sequences are different,
but share a common RNA structure. Among the sur-
veyed tools, we were able to obtain six: CMfinder [32],
RNAProfile [34], RNAmine [25], comRNA [24], RNA-
Promo [33], and Seed [23]. Our first observation is that
the use of structural discovery tools often requires
knowledge of the Unix operating system. Except for
RNAmine, all the tools were available as a source code
that needs to be unpacked and compiled. Difficulties
arise when the tool depends on some old libraries. In
addition, some tools require the determination of many
parameters, especially Seed.
We were able to successfully compile and test the tools

using a 64-bit Linux based operating system with 32 GB

of RAM. All the tools were required to output up to ten
motifs. The motifs were ranked according to the score
used for each tool and the best scoring motif was com-
pared to the known structure. The results were summar-
ized by averaging statistics over secondary structures.
Running the tools with default parameters was not always
a good choice, so we had to tune parameters. The para-
meters used for each tool and each benchmark dataset
are as follows:

• CMfinder: for Ref.1, all parameters were set to the
default values. For Ref.2, the number of stem-loops was
set to two, the minimum and maximum lengths of a
motif were set to: 100 and 200, respectively. The same
parameters were used for Ref.3, except for the maxi-
mum length of a motif was set to 400 for the families
RNaseP_bact_b and Metazoa_SRP. The predictions of
Ref.2 and Ref.3 were post processed using a tool pro-
vided by CMfinder [32] where a heuristic is used to
combine multiple motifs.
• RNAProfile: for families Entero_OriR, FMN ribos-
witch, Lysine riboswitch, and glmS ribozyme the
number of hairpins was set to 4 and the minimum
and maximum length of a motif was set to 100 and
200, respectively. For the families RNaseP_bact_b and
Metazoa_SRP, the the number of hairpins was set to
5 and the minimum and maximum length of a motif

Figure 10 Measurement tool. Measurement tool.
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was set to 300 and 400 respectively. The motifs were
scored based on the average alignment score for each
structure.
• RNAmine: for Ref.1, the minimum size of stem
candidate was set to 1. For the two families in Ref.3:
RNaseP_bact_b and Metazoa_SRP, the maximum
motif size was set to 600 and 400, respectively.
• comRNA: for all the datasets, the tool was run
with the same parameter values. The minimum per-
centage of sequences in which a common structure
should occur was set to 0.7. The maximum time
allowed for structure finding with a certain stem
similarity score threshold was set to 20 minutes. The
maximum pattern search time allowed for RNA-
MOT was set to 20 seconds.
• RNApromo: for Ref.1, all parameters were set to
the default values. In Ref.2 and family Entero_OriR
of Ref.3 the minimum and maximum lengths of a
motif were set to 100 and 250 respectively. For the
remaining two Ref.3 families, the maximum length
was set to 400.
• Seed: Setting parameters for Seed was difficult.
Without proper parameter values, Seed either fills
the entire hard disk with motifs or fails to discover
motifs. For Ref.1, stem minimum length was set to 3
with maximum distance between the start and end
of a stem set to 30 for family IRE. For the other two
families in Ref.1, the stem minimum length was set
to 6 and a maximum number of stems was equal to
1. For Ref.2, the fraction of input sequences having a
motif (min-support) was set to 0.7. The stem mini-
mum length and the maximum number of stems in
a motif were set to 3 and 4, respectively. For Ref.3,
the maximum separation was set to 10, minimum
support to 0.8, stem minimum length to 3, and max-
imum number of stems to 5. For all the datasets, no
mismatches were allowed. The motifs were scored
based on the average minimum free energy for each
structure.

Comparative results
In this section, we show and discuss the results obtained
when testing the available tools using our proposed
benchmark. Results are obtained for sensitivity (Sn),
positive predictive value (PPV) and specificity (Sp). All
tools are able to discover motifs in all benchmark data-
sets, except for comRNA, which is able to discover
motifs in two families only, RNaseP_bact_b and glmS
ribozyme. Part of this could be due to using the defaults
for the minimum similarity score between two stems. In
addition, the threshold on the percentage of sequences
in which a common structure should appear is higher
than the threshold used in [24,32].

Figure 11 summarizes the results over the three accu-
racy measures averaged over all benchmark datasets.
The figure shows that in general the accuracy of motif
discovery tools is low. The average Sn of current tools
over all datasets is 0.27 and average PPV is 0.31. CMfin-
der performs better than all the other tools in terms of
Sn and PPV. While Seed has the best Sp.
The tools were evaluated based on the complexity of

the RNA structures. Figure 12, 13, and 14 present the
results for Sn, PPV, and Sp respectively for the three dif-
ferent levels of structure complexity. As for the simple
structures, Ref.1, Seed and CMfinder have the best accu-
racy in terms of all measures. This indicates that the
two tools are able to discover more simple motifs than
the other tools. The accuracy of the rest of the tools is
much lower.
For the more complex structures, Ref.2, CMfinder

appears to have the best accuracy in terms of Sn and
PPV, while the accuracy of RNAPromo and Seed in
terms of Sn is considerably low.
As for the most complex structures, Ref.3, CMfinder

has the best accuracy values in terms of Sn. The perfor-
mance of RNAmine and RNAprofile is comparable to
CMfinder. In terms of PPV, RNAmine shows the best
performance. As for Sp, Seed outperforms all the other
tools for the complex structures, Ref.2 and Ref.3.
CMfinder is the only tool that performs best for all

the complexity levels of RNA structures. This can be
attributed to the combination of rich initialization step
and EM for refining profiles. The initial candidates in
CMfinder are stable structures derived using Vienna
package and are not limited to stem loops.
Seed performs well on simple structures. However, the

performance decreases by 80%, in terms of Sn, on data-
sets with complex structure. This indicates that the sim-
ple enumeration of stem loops works well for
discovering simple structure. The later combination of
stem loops does not seem to yield real complex struc-
tures. However, the authors showed that the accuracy
can be improved when the discovered motifs are used
as constraints for MFOLD.
As for RNAProfile, in terms of Sn, it appears to per-

form better on complex structures. However, the accu-
racy decreases by 65% on benchmark datasets with
simple structure. RNAProfile follows a progressive align-
ment approach. The degradation in accuracy could be
due to the fact the dataset of complex structures have
more sequence identity than the dataset of simple struc-
tures. The figures suggest a complementary behavior
among tools.
The values obtained for Sn, PPV, and Sp are further

analyzed using statistical significance tests. Table 3 shows
the results of ANOVA test with a = 5%. The table
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Figure 11 Measurements averaged over all benchmark datasets. Sensitivity (Sn), Positive Predictive Value (PPV), and Specificity (Sp) averaged
over all benchmark datasets.

Figure 12 Measurements averaged over all simple datasets, Ref.1. Sensitivity (Sn), Positive Predictive Value (PPV), and Specificity (Sp)
averaged over all simple datasets, Ref.1.

Badr et al. BMC Bioinformatics 2013, 14(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/14/S9/S4

Page 13 of 17



Figure 13 Measurements averaged over all datasets in Ref.2. Sensitivity (Sn), Positive Predictive Value (PPV), and Specificity (Sp) averaged
over all more complex datasets, Ref.2.

Figure 14 Measurements averaged over all datasets in Ref.3. Sensitivity (Sn), Positive Predictive Value (PPV), and Specificity (Sp) averaged for
the most complex datasets, Ref.3.
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indicates a statistical significance of the comparative
results that are presented in this study.
Table 4 and Figure 15 show the running time in min-

utes per dataset type. For all the runs, the CPU time
(real) was reported using the Linux time command.
Regardless of the structure complexity, Seed has the least
time requirements. This could be due to the use of data
structures and a high minimum support threshold. For
the complex structures in Ref.2 and Ref.3, RNAprofile
was the most time consuming among all tools. This is
because the algorithm processes regions of all possible
lengths in each input sequence.

Conclusion
In this paper, we surveyed and classified different algo-
rithms that solve the structural motif discovery problem.

We explored their strengths and weaknesses. Motivated
by the lack of a gold standard to benchmark structural
motif discovery tools, we proposed a benchmark datasets
based on the complexity of the RNA structures. The
benchmark can be used to evaluate different structural
motif discovery approaches. In addition, we presented our
measurement tool that can be used by other developers to
compute the accuracy measures for their own approaches.
We used the proposed benchmark dataset to evaluate six
structural motif discovery algorithms. The obtained results
show that the accuracy levels are generally low. CMfinder
performs well regardless of the complexity of RNA struc-
tures. Some tools are more suitable to discover simple
structure, such as Seed, while others are better for the dis-
covery of complex structures, such as RNAmine and
RNAProfile. This suggests a complementary behaviour

Table 3 Results of statistical significance test with a = %5.

Measure F-calc p-value F-crit

Sn 4.68294 0.0034 2.60597

PPV 4.08559 0.0072 2.60597

Sp 6.15544 0.00024 2.44343

Table 4 Average running time (linux real time converted to minutes).

CmFinder RNAProfile RNAmine ComRNA RNAPromo Seed

Ref1 1 1.35 0.61 14.90 31.83 2.88 1.28

Ref2 34.87 351.99 7.14 41.28 18.12 3.81

Ref3 62.19 582.78 23.27 80.79 37.97 7.44

Figure 15 Running time. Average running time (linux real time converted to minutes).
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among tools. Combining the results from different tools or
from different runs of the same tool, may improve the
accuracy of structure motif discovery. This has shown to
be useful in motif discovery in the sequential case.
The performance evaluation of the tools were based

on statistical measures. For each tool, the discovered
motifs were compared to known motifs. The problem
was when a new motif was (computationally) discovered;
determining its biological significance remained a big
challenge. Different tools relied on different objective
functions to score motifs; this includes: thermodynamic
stability, alignment score, and probabilistic measures.
However, existing objective functions were unable to
captures the hidden features of biologically relevant
motifs.
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