
RESEARCH Open Access

GAM-NGS: genomic assemblies merger for next
generation sequencing
Riccardo Vicedomini1,2*, Francesco Vezzi3, Simone Scalabrin2, Lars Arvestad4,3, Alberto Policriti1,2

From Ninth Annual Meeting of the Italian Society of Bioinformatics (BITS)
Catania, Sicily. 2-4 May 2012

Abstract

Background: In recent years more than 20 assemblers have been proposed to tackle the hard task of assembling
NGS data. A common heuristic when assembling a genome is to use several assemblers and then select the best
assembly according to some criteria. However, recent results clearly show that some assemblers lead to better
statistics than others on specific regions but are outperformed on other regions or on different evaluation
measures. To limit these problems we developed GAM-NGS (Genomic Assemblies Merger for Next Generation
Sequencing), whose primary goal is to merge two or more assemblies in order to enhance contiguity and
correctness of both. GAM-NGS does not rely on global alignment: regions of the two assemblies representing the
same genomic locus (called blocks) are identified through reads’ alignments and stored in a weighted graph.
The merging phase is carried out with the help of this weighted graph that allows an optimal resolution of local
problematic regions.

Results: GAM-NGS has been tested on six different datasets and compared to other assembly reconciliation tools.
The availability of a reference sequence for three of them allowed us to show how GAM-NGS is a tool able to
output an improved reliable set of sequences. GAM-NGS is also a very efficient tool able to merge assemblies
using substantially less computational resources than comparable tools. In order to achieve such goals, GAM-NGS
avoids global alignment between contigs, making its strategy unique among other assembly reconciliation tools.

Conclusions: The difficulty to obtain correct and reliable assemblies using a single assembler is forcing the
introduction of new algorithms able to enhance de novo assemblies. GAM-NGS is a tool able to merge two or
more assemblies in order to improve contiguity and correctness. It can be used on all NGS-based assembly
projects and it shows its full potential with multi-library Illumina-based projects. With more than 20 available
assemblers it is hard to select the best tool. In this context we propose a tool that improves assemblies (and, as a
by-product, perhaps even assemblers) by merging them and selecting the generating that is most likely to be
correct.

Background
The advent of Next Generation Sequencing (NGS) tech-
nologies made possible to sequence virtually all the
organisms of the biosphere [1]. NGS technologies are
characterized by extremely high data production which
makes it affordable to obtain high coverage of any
organism.

The ability to produce high sequence coverage for lots
of genomes paved the way to a large number of de novo
assembly projects [2,3]. Despite this, it is now commonly
accepted that de novo assembly with short reads is more
difficult than de novo assembly with long Sanger reads
[4]. Short read length and reduced insert size made cor-
rect assembling and positioning of repeats a very crucial
and delicate issue. Even though some papers presented
high quality assemblies based on NGS data (see [5,6]),
de novo assembly, especially for large eukaryote gen-
omes, is still a holy grail [7,8].

* Correspondence: rvicedomini@appliedgenomics.org
1Department of Mathematics and Computer Science, University of Udine,
33100 Udine, Italy
Full list of author information is available at the end of the article

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

© 2013 Vicedomini et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:rvicedomini@appliedgenomics.org
http://creativecommons.org/licenses/by/2.0

Recently, several evaluations have been presented, try-
ing to rank assemblers’ performances on different data-
sets: Assemblathon [9] and GAGE [10] are among the
most important ones. As a byproduct, these “competi-
tions” showed that it is extremely difficult to establish
the best assembler. Each dataset is characterized by dif-
ferent peculiarities and the heuristics implemented by a
single assembler are usually only partially able to solve
the raised issues.
An interesting strategy to improve de novo assemblies

has been proposed and goes under the name of assembly
reconciliation [11,12]. The goal of assembly reconciliation
is to merge the assemblies produced by different tools
while detecting possible mis-assemblies and isolating pro-
blematic regions. Such a strategy has already been pro-
posed for Sanger-based assemblies and one of the goals of
this paper is to study its adaptation to NGS data.
Zimin et al. in [11] presented Reconciliator, which is

based on an iteration of errors identification and correc-
tion, and merging phases. Using the so called CE statistics
[11] they identify regions likely to contain errors in the
assemblies. After this, a global alignment between the two
assemblies is performed. In order to avoid problems with
repeats, alignment is performed using seeds unique in
both the reference and the query sequences. At this point
areas marked as problematic are solved using the assem-
bler with better CE statistics and possible gaps in the
assemblies are filled. The last step consists in the valida-
tion of the merged assembly.
Casagrande and colleagues in [12] proposed GAM

(GAM-NGS’s ancestor), a tool similar to Reconciliator,
but able to avoid the global alignment step. In order to
identify similar sequences they searched for areas
assembled by the same reads. Subsequently the notion
of “block” is introduced to evaluate sensible local align-
ments and a graph is built to describe global relation-
ships between the two assemblies. When confronted
with problematic regions (e.g., loops and bifurcations in
the graph), GAM uses one of the assemblies as guide.
Both Reconciliator and GAM have advantages/disad-

vantages on one another (e.g., GAM does not need a glo-
bal alignment while Reconciliator does, however GAM
was not able to detect and correct mis-assemblies).
Nevertheless, both tools share the limitation that they are
tailored for Sanger-based assemblers. As an example,
they both need a layout file (usually an afg file) describing
for each read the (unique) position where it has been
used. In NGS assemblers, such a layout file is provided
by a small minority of tools (e.g., Velvet, Ray and
SUTTA). Moreover, another limit of both tools is the
fact that the two input assemblies must have been pro-
duced using the same set of reads.
Recently, two new tools appeared, tackling the pro-

blem of assembly reconciliation using NGS-like datasets:

GAA [13] and ZORRO [14]. The former one performs a
global alignment between two assemblies (using BLAT).
The alignment is used to build the so called Accordance
Graph in order to merge the assemblies. In the merging
phase reads are used to solve possible inconsistent links
in order to output a correct assembly. The latter one,
ZORRO [14], performs a first error correction phase
directly on the original contigs and then a global align-
ment using nucmer. The alignment is used to order con-
tigs and deriving a consensus sequence. The main
drawback of both GAA and ZORRO is the mandatory
global alignment phase between the assemblies, which is
not only a computational expensive step, but, in pre-
sence of ortholog and paralog sequences, it may produce
a large number of false links affecting merging perfor-
mances. Morover, GAA focuses more on avoiding mis-
assemblies’ introduction than correcting them, while
ZORRO is explicitly designed for short genomes (as size
increases, merging is not feasible).
Other tools that belong to the assembly reconciliation

family are MAIA [15], e-RGA [16], and the Velvet’s
Columbus module. However, they focus more on enhan-
cing de novo assembly results guided by a reference
sequence belonging to closely related species, than on
pure reconciling de novo assemblies.
With this picture in mind we developed GAM-NGS

(Genomic Assemblies Merger for Next Generation
Sequencing) whose primary goal is to merge two assem-
blies in order to enhance contiguity and possibly correct-
ness. GAM-NGS does not need global alignment between
contigs, making it unique among assembly reconciliation
tools. In this way not only a computationally expensive
and error prone alignment phase is avoided, but also
much more information is used (total read length is
usually one or two order of magnitude higher than the
mere assembly’s length). Read alignments allow the identi-
fication of regions reconstructed with the same reads, thus
isolating natural candidates to represent the same genomic
locus. GAM-NGS merge-phase is guided by an Assemblies
Graph (AG). AG is a weighted graph and this is another
specific feature of our tool. Weights indicate the likelihood
that a link is part of a correct path. AG allows GAM-NGS
to identify genomic regions in which assemblies contradict
each other (loops, bifurcations, etc.). In all these situations
weights are locally used to output the most reliable
sequence, given the information in AG.
GAM-NGS requires as input two assemblies and a

SAM-compatible alignment (e.g., obtained with BWA [17],
ERNE [18]) for each input read library and each assembly.
GAM-NGS can also work with assemblies obtained using
different datasets, as long as the set of reads aligned on the
assemblies is the same. It is important to note that, map-
ping reads back to the assembly is practically a mandatory
phase for a large number of downstream analyses (e.g.,

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 2 of 18

SNP calling, repeat analyses, etc.) and therefore represents
no extra cost.
We tested GAM-NGS on six datasets. We used three

GAGE datasets [10] in order to evaluate GAM-NGS and
to compare it with other assembly reconciliators (i.e.,
GAA and ZORRO). Moreover, in order to show GAM-
NGS data and “biological” scalability, we tested it on three
large plant datasets: a Prunus persica genome (227 Mbp,
double haploid), a Populus nigra genome (423 Mbp, het-
erozygous) and a Picea abies genome (20 Gbp, diploid and
highly repetitive). GAM-NGS turned out to be able to cor-
rectly merge these assemblies, significantly improving the
results achievable using only one assembler. Statistics
computed on GAM-NGS outputs show comparable
results with respect to other assembly reconciliation tools.
Nevertheless, GAM-NGS is always the fastest and the
least computationally demanding tool, which makes
GAM-NGS the best candidate for large datasets.

Methods
GAM-NGS’s main idea is to identify highly similar frag-
ments between two assemblies, searching for regions shar-
ing a large amount of mapped reads. The assumption is
that areas built using the same reads most likely represent
the same genomic locus.
The vast majority of NGS assemblers does not return a

layout file as output (i.e., a file, usually in afg format, listing
along the assembly the reads used and their positions). In
order to overcome this limit, GAM-NGS approximates
the layout file using reads aligned back to the assembly: an
analysis step almost mandatory in all de novo assembly
projects. Such an approximation may turn out errors
prone: as an example, consider a genome containing
(almost) perfectly duplicated regions. In such a case geno-
mic read belonging to any two repeated sequences will be
randomly assigned to one of the two copies. In order to
keep problems related with repeats, at least partially,
under control, GAM-NGS uses only reads aligning to a
single position (a.k.a. uniquely aligned), discarding all
reads that have two or more high scoring alignments (a.k.
a. ambiguously aligned).
As a matter of fact, since assemblers implement different

heuristics (if this was not the case, merging would be tri-
vial), they may contradict each other by inverting
sequences’ order or erroneously merging (e.g., scaffolding)
sequences belonging to different genomic regions. Thus, it
is compulsory to identify these situations and, possibly,
solve them. To address this problem we used a graph
structure (dubbed Assemblies Graph or AG) recording
and weighting the most probable order relation among
regions, blocks, where the same reads are mapped.
Once AG is built, GAM-NGS identifies “problematic”

regions, signalled by specific sub-graph structures. Such
local problems are solved by selecting the path in the

graph that maximizes a set of measurable and local fea-
tures, suggesting the assembly’s correctness. Some of
these features are borrowed from [19] and are computed
using pairing information coming from aligned paired-
end and possibly mate-pair reads libraries. If there is not
enough evidence to decide on assembly correctness (e.g.,
weights are too close to each other), we chose to be as
conservative as possible, electing one of the sequences as
master, the other one, therefore, becoming the slave. In
the following sections we will denote the master assembly
as M and the slave one as S.
After this last phase, GAM-NGS visits the simplified

graph, merges contigs finding a consensus sequence and
finally outputs the improved assembly.

Definitions
Let Σ be an alphabet and Σ* be the set of finite-length
strings from Σ. For every s Î Σ* we will denote by |s|
the number of characters in s. In our context reads and
contigs are elements of Σ*, where Σ = {A, C, T, G, N}.
With R = {r1, r2, ..., rn} we denote the set of reads
aligned against both M and S, which are the master and
slave assemblies, respectively. Usually R is the set, or a
subset, of reads used to assemble both M and S and its
elements may belong to different paired read and mate
pair libraries. However, alignments of reads belonging to
different libraries should be provided into separate align-
ment files, in order to exploit the information of differ-
ent inserts’ sizes.
Let r1, r2 be two reads aligned against the same contig

C (with C belonging to either M or S). For i Î {1, 2}, let
begin(ri) and end(ri) be the positions in C where the first
and last base of ri are aligned, respectively. Therefore,
we can assume begin(ri) <end(ri), for i Î {1, 2}. We say
that r1 and r2 are adjacent if and only if begin(r2) ≤ end
(r1)+1 and begin(r1) ≤ end(r2) + 1.
Given a contig C belonging to assembly A, a frame over

A is defined as a sequence of reads r1, ..., rn mapped
against A where ri, ri+1 are adjacent for i = 1, ..., n - 1.
Thus, a frame F can be identified by the contig where its
reads are aligned and the interval [begin(F), end(F)],
where begin(F) = min{begin(ri)|i = 1, ..., n} and end(F) =
max{end(ri)|i = 1, ..., n}. Moreover, we define the length
of a frame F as |F| = end(F) - begin(F) + 1.
Given two different assemblies M and S, we define a

block B as a pair of frames (one over M and one over S)
consisting of the same sequence of reads r1, ..., rn, and
the size of the block as the number of reads it is com-
posed of. If the majority of the reads ri are aligned with
opposite orientations on the two frames, we say that B is
discordant. Otherwise, we say that B is concordant. We
are interested in finding blocks where the reads’ sequence
(the frame) is as long as possible. Ideally, blocks should
represent those fragments of the considered genome

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 3 of 18

which have been built in accordance by both the
assemblies.
In the following we will first explain how blocks are built

from alignments and then we will show how blocks are fil-
tered in order to avoid spurious blocks produced as conse-
quence of the existence of similar genomic regions. After
this we will illustrate the Assembly Graph construction,
the handling of the problematic regions identified on the
graph and, lastly, how the merging phase is carried out.

Blocks construction
The first, and most computational demanding, step of
GAM-NGS’s outer algorithm is the identification and con-
struction of blocks between assemblies M and S. The basic
input format are BAM files (i.e. file in the, by now, stan-
dard alignment format). Alignments are assumed to be
ordered by their contig identifier and by the alignment
position.
The procedure starts by loading into a hash table H

all the reads uniquely mapped on M (memorizing only
the strictly necessary data). Once H has been popu-
lated, uniquely mapped reads on S are processed. In
particular, for each read r, we perform the following
steps:

• if r is not present in H , we will not use it for
blocks construction;
• if r is adjacent to a previously created block B (i.e.,
adjacent to a read contained in both its frames),
then B is extended using r;
• otherwise, a new block, started by the single read r,
is built.

Storing in main memory all the alignments of M and
going through all the alignments of S may easily become
a major computational stumbling block. For this reason
we carefully designed the data structures and the rela-
tive manipulation algorithm. Each uniquely aligned read
requires only 21 bytes: 8 bytes for its identifier, 4 bytes
for contig’s identifier, starting and ending position, and
1 byte for mapping orientation (reverse complemented
or original strand). Moreover, we decided to store them
in a memory efficient hash table such as Google’s Spar-
seHash [20], which is characterized by a 2 bits overhead
per entry.
For each processed read r mapped on a contig C of an

assembly A, we define the scope of r as the set of blocks
whose frame on C is adjacent to r. We exploit the fact that
input alignments are ordered, during the blocks construc-
tion phase: if a block B is “out of scope” for the current
processed read r then B will not be successively altered. If
the size of B is higher than a user predefined threshold
Bmin then B is saved into secondary memory and main
memory space is released. Otherwise, B is discarded. The

rationale behind the Bmin threshold is that blocks consist-
ing of only few reads are likely to be a consequence of
alignment errors or chimeric sequences.

Blocks filtering
A typical problem common to all assembly reconciliation
tools, is that, especially with highly repetitive genomes, it
may happen to merge similar regions belonging to differ-
ent genomic areas (such a problem is also common
among de novo assemblers). In particular, GAM-NGS may
build blocks between regions that attract the same reads
only because they are similar (note that perfect genomic
repeats are not a problem because in this case reads will
be ambiguously aligned). This situation not only compli-
cates Assemblies Graph’s structure, but it also suggests the
presence of problematic regions (i.e., errors) in sequences
that are, in fact, correct. To limit this problem, GAM-
NGS runs two additional filtering steps before the graph
construction: one based on depth-of-coverage analysis, and
the other one on block-length considerations.
More specifically, considering a block B with frames

FM, FS, on M and S, respectively, GAM-NGS computes
for each frame two different types of coverages: a block
coverage BC and a global coverage GC. For instance,
considering the frame on the master assembly FM, let
RFM be the set of all reads uniquely aligned on FM,
while let be RBM the set of reads uniquely aligned on FM
and used as part of block B. Clearly, RBM ⊆ RFM . More-
over, we define the block coverage of FM as

BCFM =

∑
r∈RBM

|r|
|FM| .

and the global coverage of FM as

GCFM =

∑
r∈RFM

|r|
|FM| .

At this point, GAM-NGS keeps only blocks satisfying
the following condition:

max
{
BCFM

GCFM
,
BCFS

GCFS

}
≥ Tc,

where Tc is a user defined real number in the interval
[0, 1]. The idea is to get rid of blocks built using a low
amount of reads compared to the number of mapped
reads on both frame intervals (see Figure 1).
We decided to use the maximum between the two

ratios in order to avoid the removal of blocks corre-
sponding to heterozygous regions: it may happen that
one assembler returns both alleles while the other
returns only one of them. In this case, the proportion of
reads used in the block should be close to 1 and 0.5,
respectively.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 4 of 18

The second filtering step is based on the length of
block’s frames. In particular, given a block B composed
of frames FMi , FSj on contigs Mi Î M and Sj Î S
respectively, B is retained if

|FMi | ≥ min{0.3 · |Mi|,Tl} ∨ |FSj | ≥ min{0.3 · |Sj|,Tl},

where Tl is a user-defined threshold. Nevertheless,
when this condition is not satisfied we still retain the
block if any of the following conditions is satisfied: there
are other blocks between Mi and Sj satisfying the condi-
tion or this is the only block between the two contigs.
The rationale is, again, to discard blocks that are likely
to be consequences of wrong alignments or chimeric
regions, while keeping small blocks that can still witness
insertions or deletions by one of the two assemblies.

Assemblies graph construction
For each assembly, we can define a block order relative
to an assembly exploiting frames’ order along its contigs.
In particular, consider an assembly A and two blocks B1

and B2 with frames FA1 and FA2 , respectively, both on A.
We say that B1 comes before B2 with respect to A if and
only if both FA1 and FA2 lie on the same contig CA and

FA1 comes before FA2 (i.e., begin(FA1) <begin(F
A
2)) and

there is no frame FA3 lying over CA for which FA1 comes

before FA3 and FA3 comes before FA2 .
It is important to point out that this block order

strictly depends on the considered assembly, since the
same genomic region may have been reconstructed on
opposite strands in the input assemblies. Thus, there
may be cases where B1 comes before B2 with respect to
M, but B2 comes before B1 with respect to S. In this
scenario, block orders of the two assemblies may contra-
dict each other (leading to cycles in AG) even when
there is no contradiction at all.
Our goal is to determine a consistent order of blocks

among each contig of both the assemblies. To facilitate
that, we build a Contigs Graph (CG) which consists of a

vertex VMi for each contig Mi Î M and a vertex VSj for
each contig Sj Î S. Two vertices VU and VW are con-
nected by an undirected edge if and only if U and W
belong to different assemblies and have at least one
block over them.
For each edge e connecting two vertices VMi , VSj , we

assign the weight

we = max
(

r+

r+ + r−
,

r−

r+ + r−

)
,

where r+ and r- are the number of reads belonging to
concordant and discordant blocks between Mi and Sj,
respectively. For each vertex V the weight wV is then
computed, corresponding to the mean of its incident
edges’ weights (this mean is weighted on the overall size
of all blocks connecting two contigs). The main idea is
that edges’ weights will have a value close to one when
the majority of the reads composing the blocks are
mapped either with the same orientation or with the
opposite orientation. In the former case contigs will
most likely have the same orientation, while in the latter
case one of the two contigs must be complemented and
reversed.
In more detail, let Q be the set of processed vertices.

At first, for each connected component of CG, we insert
into Q a vertex V which maximizes wV and we set the
original blocks’ order for V’s contig. Then, we repeat the
following steps until all vertices of the graph belong to
Q :

• Pick V ∈ Q with largest wV;
• Let adj(V) be the set of the vertexes adjacent to V.
For each vertex VU Î adj(V), we set the order of
blocks on U depending on whether the majority of
reads belongs to concordant or discordant blocks
and according to blocks’ order of V’s contig;
• adj(V)’s elements are added to Q and we remove
V’s incident edges from the graph, updating vertices’
weights.

Figure 1 Blocks construction and coverage filtering. Blocks are identified by regions belonging to M and S that share a relatively high
amount of mapped reads. In this figure, blue reads identify clusters of adjacent reads that are uniquely mapped in the same contig of both the
assemblies. Moreover, GAM-NGS discards blocks like B3 that contains a small amount of shared reads compared to the number of reads aligned
in the same regions (e.g., in B3 these are less than 35% and this block may create a wrong link between contigs).

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 5 of 18

The rationale behind this heuristic is that, at each
iteration, we set the order of the blocks over one of the
contigs for which we have the clearest evidence. How-
ever, this is a simple (yet effective) procedure to com-
pute a consistent blocks’ order among the assemblies
and we plan to improve it in order to have a higher
guarantee of avoiding the introduction of “false contra-
dictions” (i.e., cycles) in AG.
With the updated blocks order we are now able to

build the Assemblies Graph (AG): a node VB is added
for each block B, while edges connect blocks that share
at least one frame on the same contig. In particular, if a
block B1 comes before a block B2 with respect to M or
S we put a directed edge from VB1 to VB2 (see Figure
2). Notice that, since we are considering the merging of
two assemblies, each node cannot have an input or out-
put degree strictly greater than two.
Moreover, during AG construction, we add to each

edge a weight characterized by a series of features that
are evaluated within the region relative to the blocks
related to the vertices connected by the edge.
Let VB1 , VB2 be two nodes linked by an edge (i.e., B1

comes before B2 on a contig C of either one of M and S).
Let F1 and F2 be, respectively, their frames on C. Then, we
compute the number of reads that have a correctly placed
pair (or mate) that spans the gap between F1 and F2 and
the number of reads that are expected to have their pair
(or mate) correctly placed and crossing over F1 and F2
which is unmapped or mapped to a different sequence. In
particular, a read r’, mapped on a contig C, has a correctly
placed pair (or mate) r“ if begin(r“) is inside the region
[begin(r’) + (m - 3 · sd), begin(r’) + (m + 3 · sd)] and |C| ≥
begin(r’) + (m + 3 · sd), where m and sd are the mean and
the standard deviation of the insert size of the library,
respectively. Furthermore, we also compute values such as
coverage and number of wrongly oriented pairs (or

mates). These weights are used to determine the likelihood
that a link represents a correct path allowing us to take
motivated decisions in case of problematic regions wit-
nessed by non-linear graphs (i.e., bubbles, bifurcations,
etc.).
Every path in AG corresponds to a sequence of blocks

such that every pair of consecutive blocks lies on the same
assembled sequence for at least one assembly. Thus, we
can exploit AG to integrate or extend contigs.
Also, it is important to notice that if we consider AG

disregarding edges’ orientation, more than a single con-
nected component can be present. We exploited this fact
implementing GAM-NGS in a way that it can correct and
merge contigs handling single connected components in
parallel.

Handling problematic regions
Even if we build AG using the previously described
method, block orders suggested by assemblies may con-
tradict each other. For instance, suppose two blocks lie
on a single contig in both the assemblies with opposite
order with respect to M and S. This scenario will lead
to a cycle in AG. Moreover, strongly connected compo-
nents (SCC) containing at least two nodes denote a
situation where M and S disagree on the order of some
blocks. To find these kind of contradictions we used
Tarjan’s algorithm [21] to determine SCC in linear time
while visiting AG.
Another possible problem is represented by divergent

paths that may indicate situations where assemblies
locally behaved differently: one assembler extended a
sequence in a different way with respect to the other. In
particular, we can exploit edges’ weights to perform
choices that are locally optimal (e.g., in the presence of a
bifurcation the path minimizing the evidence of mis-
assemblies will be chosen) in order to output a correct

Figure 2 Assemblies Graph construction. A simple example of AG construction: B1 comes before B2 in both S1 and M1 so a directed edge

connects VB1 and VB2 . The same also applies for VB2 and VB3 , since B2 comes before B3 in S1. Moreover, an edge is added between VB3

and VB4 as B3 comes before B4 in M2.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 6 of 18

sequence. In situations where weights/features do not
allow us to take a position (e.g. similar weights), we
decided to be as conservative as possible, trusting only
contigs belonging to the master assembly.
Among the various graph structures generated by dis-

cordant assemblies, bubbles and forks are the most com-
mon ones (see Figures 3 and Figure 4). Bubbles consist
of a path that first diverges and then converges back.
Forks, instead, contain only divergent or convergent
paths. We can spot and distinguish these two structures
with a simple depth-first traversal of AG. Such struc-
tures can nest in highly complex scenarios and, at this
stage, we decided to deal only with graphs for which we
have a good guarantee that they will be handled cor-
rectly. In particular, we took care only of cycles invol-
ving exactly two nodes and bifurcations not involving
any bubble.
Handling cycles involving exactly two nodes
Cycles involving only two nodes may indicate inversions
along the same contig in both M and S. To solve this
particular kind of loop we can exploit mate-pair and
pair-end reads’ orientation. In [19] it has been shown
how the use of mate-pair-happiness [22] is one of the
best methodologies to detect mis-assemblies.
If the graph is indeed the result of two inverted blocks

in one of the two assemblies, contigs pairs will be
mapped with the correct orientation in only one of the
two (see Figure 3). Hence, if we are able to find a mini-
mum number of reads that are aligned properly in one
contig and with the wrong orientation in the other one,
we can include the correct sequence in the improved
assembly. Otherwise, we chose to directly output the
sequence of the master assembly.

Handling bifurcations
Graphs containing bifurcations may signify biological
repeats or mis-assemblies. We will only show how we han-
dle nodes with output degree equal to two, since nodes
with input degree equal to two can be treated symmetri-
cally. Let B be a block such that VB has two outgoing
edges to VBM and VBS . Let Mi Î M be the contig shared
between B and BM, and Sj Î S be the contig between B
and BS. In order to solve this scenario we focus on where
reads placed on frames defined by B have their respective
paired read (or mate): do they end up in BM or BS? See
Figure 4 for an illustration of this case. Let nM and nS
count the number of mates mapped to BM’s and BS’s
frame, respectively. Given a read library with mean insert
size m and standard deviation s, we define uM (respectively
uS) as the number of reads mapped on the frame defined
by B such that their pair/mate, accordingly to library
orientation, is not aligned within a region of length m + 3 ·
s (i.e., insert size spanning) in BM’s frame on Mi (respec-
tively, in BS’s frame on Sj). If Mi (or Sj) is so short that it is
included within the insert size spanning of a read place-
ment, then that read is not used to compute uM (or uS).
For instance, if we find that

nM
uM

≥ TU ∧ nS
uS

≤ TL,

where TU >TL are two threshold values in [0, 1], we
may be able to spot a mis-assembly in Sj. Conversely, if
we find that

nS
uS

≥ TU ∧ nM
uM

≤ TL,

Figure 3 Handling 2-node cycles in Assemblies Graph. A 2-node cycle in AG witness a putative inversion along a single contig in M and S. If
there actually is an inversion, then mate-pair reads are aligned with the wrong orientation in one of the two contigs. We can use this
information to provide in output a correct sequence (the blue one in the picture).

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 7 of 18

we may be able to spot a mis-assembly in Mi, as in
Figure 4(b). If we are not in any of the two previous
situations, it might mean that either blocks are too dis-
tant to let us discover the mis-assembly or B has been
built due to a repetitive sequence. In this case, to avoid
the introduction of errors in the improved assembly, we
do not risk resolving the bifurcation and instead simply
output the master’s contigs.

Merging
After solving problematic regions in AG, we can visit max-
imal disjoint paths in order to produce a draft alignment
of contigs belonging to different assemblies. Such align-
ment is based on reads mapping and might be inaccurate
(e.g., regions having low identity). Therefore, we perform a
semi-global alignment algorithm [23] (a banded variant to
save memory) to make sure that contigs have a high simi-
larity (i.e., at least an identity of 95%) and should be
merged.
We decided not to return a consensus, since there is

no guarantee that it would be better than the two origi-
nal sequences. Therefore, we decided to output the
sequence belonging to the assembly that locally shows
the best CE statistics [11] for insert sizes.
We also tried to avoid the introduction of duplicated

regions, closing a gap between two contigs of M linked by
a contig of S if and only if semi-global alignments on both
ends of the region do not drop below 95% identity (see
Figure 5).
After this phase, we obtain a set of merged contigs

that we called paired contigs. To obtain the final
improved assembly we simply output this set along with
contigs of M that were not involved in any merge.

Results and discussion
Validation of GAM-NGS’s output has been performed
on public data, for which results obtained by various
assemblers are public as well. In particular, we chose
three real datasets (i.e., Staphylococcus aureus,

Rhodobacter sphaeroides and human chromosome 14)
downloaded from GAGE [10] website [24] (see Table 1)
for which a reference genome is available. Moreover, we
chose to test GAM-NGS on larger datasets such as Pru-
nus persica, Populus nigra and Picea abies, in order to
show our tool’s scalability.
It is also important to point out that datasets provided

by GAGE represent a useful instrument to evaluate
GAM-NGS for a number of different reasons. First,
GAGE provides state of the art datasets formed by sev-
eral paired end and mate pairs libraries. Second, it pro-
vides highly reliable reference assemblies suitable for
benchmarking. Third, a suite of reusable scripts is avail-
able for computing assembly metrics.
Reads available for each public dataset were error-cor-

rected using both Quake and the Allpaths-LG error cor-
rector. We chose to use the Allpaths-LG error-corrected
reads.
Since GAM-NGS (as well as GAA) follows a master/

slave approach and many assemblies are available for
each GAGE datasets, we had to decide which assemblies
should be merged and which should be elected as
master.
Evaluating de novo assemblies in absence of a reference

sequence is as difficult as de novo assembly itself. As an
example, consider that Assemblathon 2 [25] required
more than a year to evaluate submitted assemblies.
GAGE datasets gave us the possibility to choose the two
best assemblies accordingly to GAGE evaluation, how-
ever we decided to be as realistic as possible and to avoid
the use of the available reference sequence. To the best
of our knowledge, the only methodology available to
evaluate assemblies in absence either of a reference
sequence or of external-validation-data (e.g., fosmid ends,
physical maps, etc.) is based on Feature Response Curve-
analysis (FRCurve-analysis) [19]. Recently, a novel tool
dubbed FRCbam [26], designed for computing a FRCurve
from NGS-datasets, has been presented. Results summar-
ized in [26] show that FRCbam is able to effectively detect

Figure 4 Handling bifurcations in Assemblies Graph. Bifurcations in AG, may spot biological repeats or mis-assemblies. In panel (a), paired reads do
not solve the bifurcation and we might face a biological repeat. In panel (b), paired reads on M1 might help us to spot a mis-join in the assembly.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 8 of 18

mis-assemblies. FRCbam enabled us to evaluate a de novo
assembly using only an alignment file (given in SAM/
BAM format) of a set of reads (usually the same reads
used in the assembly), which is also the same input
required by GAM-NGS.
For each GAGE dataset we plotted the FRCurve [19]

using FRCbam . Then we chose to merge the two assem-
blies having the steepest curves (i.e., few negative features
in the longest contigs) and whole length close to the gen-
ome size. As expected by the results shown in [26], we
were always able to choose assemblies that, using GAGE’s
evaluation scripts, were characterized by good statistics
such as number of errors and corrected NG50 (i.e., NG50
of the assemblies broken in correspondence of each mis-
assembly). All experiments were performed using both
combinations of master/slave assemblies. We also decided
to follow a common “bad practice” electing as best assem-
blies those characterized by the longest NG50 (without
any consideration on the number of errors) and run
GAM, GAA and ZORRO to merge them.
As far as the three larger datasets were concerned, we

merged assemblies obtained with CLC [27] and ABySS
[28] for Prunus persica and Populus nigra, while we used
GAM-NGS with a whole genome shotgun assembly and a
series of fosmid-pools assemblies (all assembled with CLC
assembler) for Picea abies that, to the best of our knowl-
edge, represents the largest ever sequenced genome.
GAM-NGS’s performance rely on the choice of several

parameters: the minimum number of reads per block

Bmin, the threshold Tc related to blocks’ coverage filter-
ing, the minimum block’s length threshold Tl.
Low values of Bmin increase the number of blocks

which leads to a larger memory requirement and to a
potentially more complex Assemblies Graph. Moreover,
high values of Tc or Tl allow us to filter more blocks,
running the risk of discarding significant blocks, while
with low values we might keep blocks due to repeats
that will complicate AG’s structure. We decided to set
Bmin = 10, Tc = 0.75 and Tl = 200 bp for all experiments
on bacteria. Instead, for human chr14, we set Bmin = 50,
Tc = 0.75 and Tl = 500 bp.
To evaluate correctness, we computed statistics using

the same analysis script used in [10] and available for
downloading at [24]. In particular, N50 sizes were com-
puted based on the known size of the genome (NG50)
and only contigs longer than 200 bp were used for the
computations. As a consequence of the absence of a
reference sequence in the case of the three new plants
genomes we simply returned statistics showing the
improvements in contiguity.
All experiments were performed on a 16 CPU

machine with 128 GB of RAM, with the only exception
of Picea abies where we used a machine equipped with
32 CPUs and 2 TB of RAM. A brief description of the
commands we used to carry out the merging on all the
datasets can be found as supplementary material (see
Additional file 1). GAM-NGS was always executed tak-
ing advantage of all available CPUs. GAA and ZORRO

Table 1 Reference genomes and libraries for public datasets (Allpaths-LG corrected)

Organism Genome length (bp) Library Avg Read length (bp) Insert size (bp) Coverage

S. aureus 2,903,081 Fragment 101 180 29X

Short jump 96 3500 32X

R. sphaeroides 4,603,060 Fragment 101 180 31X

Short jump 101 3500 29X

Human chr14 88,289,540 Fragment 101 180 39X

Short jump 96 3000 12X

Long jump 96 35000 0.2X

Figure 5 GAM-NGS’s merging phase. During the merging phase, we fill the gaps between contigs in M and we extend a contig of M only if
the corresponding sequence in S is longer and semi-global alignments at any end do not drop below 95% identity. Moreover, for regions
defined by a block, we output the frame with better CE statistics.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 9 of 18

are designed as single-core programs. For this reason,
we reported both CPU and wall clock times for each
experiment. Moreover, GAA’s internal call to BLAT is
specified with the parameter -fastMap which requires
input sequences to have contigs shorter than 5 Kbp.
Thus, in each experiment, we had to manually run
BLAT, providing its output to GAA’s call. As we will
show later, GAM-NGS was the fastest tool on the lar-
gest GAGE dataset (human chromosome 14).
Time of alignment was added to GAM-NGS’ time but

we would like to emphasize that read alignment is often
required in downstream analyses and is also needed when
FRCbam [26] is used to evaluate assemblies’ correctness.

Evaluation and validation on GAGE datasets
Given the availability of a reference sequence, GAGE
datasets allowed us to compute the actual number of
errors within an assembly. We compared GAM-NGS
with GAA [13] and ZORRO [14] in order to obtain a
comparison of assembly reconciliation tools as fair as
possible and we used the same scripts used by Salzberg
and colleagues in [10], downloadable from [24].
Staphylococcus aureus
For Staphylococcus aureus’ dataset we chose to merge the
assemblies of Allpaths-LG and MSR-CA. Looking at their
FRCurves in Figure 6, they seem to be the best two assem-
blies for this dataset (SGA looks steeper, however its short
contigs contains many issues according to our analysis).
This situation is also confirmed by GAGE analysis, as both
Allpaths-LG and MSR-CA assemblies have a low number
of errors and a large corrected NG50.
As shown in Table 2, using Allpaths-LG as master

assembly, GAM-NGS was able to increase Allpaths-LG’s

NG50 by ~40 Kbp and to decrease the number of com-
pressed regions. Table 2 shows us that GAA behaved bet-
ter as far as compressed reference bases and corrected
NG50 are concerned (GAA’s corrected NG50 is ~5Kbp
longer than GAM-NGS one). However, GAA is affected
by duplication events and, more importantly, Table 3
shows that it contains one misjoin more than GAM-
NGS. ZORRO, instead, returned a lower NG50 (about
half, compared to GAM-NGS and GAA) and a lower cor-
rected NG50. Moreover, ZORRO’s output contains more
misjoins than GAM-NGS.
Using MSR-CA in place of Allpaths-LG as master

assembly, GAM-NGS was able to increase NG50 by ~30
Kbp and provide a better corrected NG50 with respect to
the other tools. Moreover, GAM-NGS was able to correct
the master assembly problematic regions, as GAM-NGS
output has a lower number of misjoins than MSR-CA.
GAA, instead, using MSR-CA as master assembly, per-
formed better as far as compressed reference bases are
concerned but returned a higher number of misjoins and
indels compared to GAM-NGS. In this case ZORRO
returned the minimum number of misjoins among the
three tools but it is also the one with the assembly charac-
terized by the lowest NG50 and the lowest corrected
NG50.
In Table 2 we summarize the results of merging the

assemblies characterized by the largest NG50 (i.e., Allpaths-
LG and SOAPdenovo), without considering assemblies’
correctness. The purpose of this test is to demonstrate how
important the input assembly choice is. In particular, when
using SOAPdenovo as master (i.e., assembly with largest
NG50) and Allpaths-LG as slave, all the three assemblies
reconciliation tools return an assembly characterized by a

Figure 6 FRCurve of Staphylococcus aureus’ assemblies. Allpaths-LG and MSR-CA assemblies reach earlier a coverage close to 100% with the
smallest number of features and, thus, they where chosen to be merged.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 10 of 18

corrected NG50 lower than master’s one. Using Allpaths-
LG as master, GAA and ZORRO returned a large number
of duplicated regions (providing an assembly much longer
than the reference) and they both introduced more misjoins
than GAM-NGS.
Table 4 shows running times of the three assembly

reconciliation tools. If we consider the CPU time, then
GAM-NGS is definitely affected by the required reads
alignment phase. Instead, if we consider wall time,
GAM-NGS ’s performance is in line with the other
tools.
Rhodobacter sphaeroides
For Rhodobacter sphaeroides’ dataset we chose to merge
Allpaths-LG and MSR-CA assemblies. Looking at their
FRCurves in Figure 7, they seem the best two assemblies
to be merged. CABOG and Bambus2 also provide sharp
FRCurves on this dataset, however both assemblies are
characterized by a large number of short contigs with
many features (i.e., long tail), and they both fail to fully
assemble the genome, as the total assembly’s length is
approximately 90% of the expected one. For these reasons
we discarded CABOG and Bambus2.
As shown in Table 5, using Allpaths-LG as master

assembly, we were able to increase its NG50 by ~10 Kbp.
While GAA behaved better than GAM-NGS in terms of
corrected NG50 as its value is ~3Kbp longer, our tool

behaved slightly better with consideration of duplication
and compression events. Also in this case, ZORRO has
worse performance among tested tools in terms of conti-
guity (both NG50 and corrected NG50). More impor-
tantly, Table 6 shows that both GAM-NGS and GAA
were able to lower the number of misjoins, while ZORRO
introduced a relocation.
When using MSR-CA as master assembly, GAM-NGS

was able to increase MSR-CA’s NG50 by ~27 Kbp, pro-
viding a longer corrected NG50 with respect to the two
merged assemblies. Also with this master/slave combi-
nation, GAA’s assembly is characterized by a corrected
NG50 slightly better than GAM-NGS’s one. Both GAM-
NGS and GAA introduced one additional misjoin with
respect to MSR-CA, while ZORRO was able to correct
the master assembly.
Table 5 and Table 6 also show the results of merging

the assemblies with the highest NG50 (i.e., Bambus2
and SOAPdenovo). GAM-NGS and GAA have very
similar statistics and for both of them the difference
between the NG50 and its corrected value is substantial.
ZORRO, instead, tends to output a highly fragmented
assembly lowering the number of indels but without
correcting any misjoin.
Table 7 shows running times of the three assembly

reconciliation tools. Also in this dataset, if we consider

Table 2 GAGE statistics (contiguity, duplication and compression) on Staphylococcus aureus.

Assembler Ctg
num

NG50
(kb)

NG50 corr.
(kb)

Assembly size
(%)

Chaff size
(%)

Unaligned ref
(%)

Unaligned asm
(%)

Dupl
(%)

Comp
(%)

Allpaths-LG 60 96.74 66.23 98.88 0.03 0.61 0.01 0.04 1.26

MSR-CA 94 59.15 48.23 98.60 0.01 1.28 0.00 0.71 0.88

Allpaths-LG + MSR-CA

GAM-NGS 44 141.54 75.82 100.49 0.00 0.44 0.01 0.26 0.99

GAA 40 139.48 80.68 99.52 0.03 0.37 0.01 0.32 0.88

ZORRO 81 74.68 62.85 99.70 0.16 0.32 0.04 0.59 0.88

MSR-CA + Allpaths-LG

GAM-NGS 66 90.47 66.44 100.21 0.01 1.01 0.00 2.03 0.89

GAA 53 131.65 64.43 100.66 0.01 0.95 0.00 1.90 0.79

ZORRO 80 74.64 62.85 99.63 0.14 0.32 0.05 0.53 1.11

Allpaths-LG 60 96.74 66.23 98.88 0.03 0.61 0.01 0.04 1.26

SOAPdenovo 107 288.18 62.68 100.55 0.34 0.22 0.02 1.66 1.45

Allpaths-LG + SOAPdenovo

GAM-NGS 56 107.12 69.39 99.52 0.03 0.56 0.01 0.34 1.26

GAA 40 255.66 83.67 108.10 0.06 0.25 0.01 2.78 1.31

ZORRO 104 76.94 65.83 105.59 0.31 0.15 0.10 5.19 1.36

SOAPdenovo + Allpaths-LG

GAM-NGS 93 288.18 62.68 100.92 0.32 0.20 0.02 1.88 1.40

GAA 74 294.96 62.87 101.92 0.34 0.16 0.02 2.62 1.37

ZORRO 107 76.94 62.68 105.63 0.29 0.16 0.09 5.17 1.50

For each assembler we report the number of contigs greater than 200 bp (Ctg), the NG50, the corrected NG50 (NG50 computed breaking the assembly at each
error), assembly’s total length, the percentage of short (Chaff) contigs, the length of reference’s regions which cannot be found in the assembly (Unaligned ref),
the length of assembly’s regions that cannot be found in the reference (Unaligned asm), the percentage of duplicated (Dupl) and compressed (Comp) regions in
the assembly. All the percentages in the table are computed with respect to the true genome size.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 11 of 18

the CPU time, then GAM-NGS is definitely affected by
the required reads alignment phase and requires much
more time than GAA and ZORRO. If we consider wall
time, instead, GAM-NGS runs in less than 8 minutes,
comparable, if not better, than the other tools.
Human chromosome 14
These first two bacteria datasets are small and time might
not be considered an issue (each assembly reconciliation
tool was able to run in reasonable time). The third GAGE
dataset on which we tested our tool was the human chro-
mosome 14 (characterized by an ungapped 88 Mbp size).
This dataset is not only ~20 times larger than the other
two, but it is also more complex (e.g., containing repeats,
afflicted by heterozygosity). Moreover, in this scenario
GAM-NGS starts to show its real potential: assembling
large datasets using a relatively low amount of resources,
while preserving correctness.
ZORRO output is not shown in Table 8 as, after two

weeks of computation, it was not able to provide an out-
put. Thus, we limit our evaluation to only GAM-NGS and
GAA.
For this dataset we chose to merge Allpaths-LG and

CABOG assemblies. Looking at their FRCurves in Figure 8,
they are clearly the best two assemblies to be merged.
GAGE’s statistics also show that Allpaths-LG and CABOG
assemblers produce the best two assemblies for this dataset
(i.e., highest NG50 and low number of misjoins).
Table 9 shows how, using Allpaths-LG as master assem-

bly, GAM-NGS was able to increase NG50 by ~ 32 Kbp
and the corrected NG50 by ~ 6 Kbp. GAA returned better
NG50 values but it produced more duplicated regions and
it was afflicted by a larger amount of misjoins and indels
compared to GAM-NGS.
We also want to point out that the corrected NG50 is

certainly an important statistic to evaluate the improve-
ment of a merge with respect to the master assembly
but it only indicates whether the longest contigs are
affected by errors and does not tell how the assembler
behaves on short contigs (which are also important to
assess assemblies’ quality, as FRCurve demonstrates).
We finally plot the FRCurve to globally estimate the
quality of the merged assemblies. Figure 9 shows that
GAM-NGS globally behaved better and, in particular,
seems to introduce less features (especially in the short-
est contigs of the assembly).
Table 10 shows running times of the two assembly

reconciliation tools used with this dataset. GAM-NGS
required about 1 hour to accomplish its task (reads’ align-
ments included), while GAA required about 13 hours
(manually running multiple BLAT alignments in parallel).
This characteristic may not be very important for

short genomes but, as the size increases, it becomes of
crucial importance. As we will show in the tests on
some large plant genomes, GAM-NGS is able to merge

Table 3 GAGE statistics (SNPs, indels and misjoins) on
Staphylococcus aureus.

Assembler SNPs Indels < 5
bp

Indels ≥ 5
bp

Misjoins Inv Reloc

Allpaths-LG 79 4 12 4 0 4

MSR-CA 191 23 10 13 6 7

Allpaths-LG + MSR-CA

GAM-NGS 137 9 15 5 0 5

GAA 145 8 16 6 0 6

ZORRO 133 12 8 6 2 4

MSR-CA + Allpaths-LG

GAM-NGS 214 19 10 9 2 7

GAA 206 22 15 11 2 9

ZORRO 262 24 9 7 4 3

Allpaths-LG 79 4 12 4 0 4

SOAPdenovo 247 25 31 15 1 14

Allpaths-LG + SOAPdenovo

GAM-NGS 88 5 14 4 0 4

GAA 100 9 19 10 1 9

ZORRO 227 19 12 6 1 5

SOAPdenovo+ Allpaths-LG

GAM-NGS 304 27 29 15 1 14

GAA 314 32 30 12 1 11

ZORRO 299 28 11 13 2 11

For each assembly we show the number of SNPs, the number of indels
shorter than 5 bp and greater (or equal) than 5 bp. The number of misjoins is
computed as the sum of inversions (parts of contigs reversed with respect to
the reference genome) and relocations (rearrangements moving a contig
within/between chromosomes).

Table 4 Assembly reconciliation tools performances on
Staphylococcus aureus.

Tool User (CPU) time Wall clock time

Allpaths-LG + MSR-CA

GAM-NGS 1h 10’ 19” + 51” 4’ 10” + 17”

GAA 1’ 20” 1’ 20”

ZORRO 3’ 04” 3’ 04”

MSR-CA + Allpaths-LG

GAM-NGS 1h 10’ 19” + 49” 4’ 10” + 17”

GAA 1’ 11” 1’ 11”

ZORRO 14’ 18” 14’ 18”

Allpaths-LG + SOAPdenovo

GAM-NGS 1h 10’ 53” + 33” 5’ 12” + 24”

GAA 5’ 04” 5’ 04”

ZORRO 7’ 08” 7’ 08”

SOAPdenovo + Allpaths-LG

GAM-NGS 1h 10’ 53” + 34” 5’ 12” + 25”

GAA 4’ 49” 4’ 49”

ZORRO 9’ 52” 9’ 52”

In GAM-NGS’s entries the first value indicates the time spent in alignment
phase, while the second one is GAM-NGS’s run time.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 12 of 18

even 20 Gbp assemblies using a relatively low amount of
memory and time.

GAM-NGS’s performances on large datasets
On small datasets, all the assembly reconciliation tools
provide an output in reasonable time. However, when we

consider the human chromosome 14 we observe how
GAA runs at least 10 times slower than GAM-NGS (if we
consider also the mandatory reads’ alignment step) while
ZORRO, after two weeks, is not even able to provide us a
partial output. This proves that the major bottleneck con-
sists in the global alignment phase of these tools.

Figure 7 FRCurve of Rhodobacter sphaeroides’ assemblies. Allpaths-LG and MSR-CA assemblies reach earlier a coverage close to 100% with
the smallest number of features and, thus, they where chosen to be merged. CABOG’s assembly seems better but provides a low coverage of
the genome and, for this reason, it was not taken into account.

Table 5 GAGE statistics (contiguity, duplication and compression) on Rhodobacter sphaeroides.

Assembler Ctg
num

NG50
(kb)

NG50 corr.
(kb)

Assembly size
(%)

Chaff size
(%)

Unaligned ref
(%)

Unaligned asm
(%)

Dupl
(%)

Comp
(%)

Allpaths-LG 204 42.45 34.42 99.68 0.01 0.45 0.01 0.38 0.31

MSR-CA 395 22.12 19.08 97.02 0.01 3.47 0.04 1.05 0.53

Allpaths-LG + MSR-CA

GAM-NGS 168 51.12 37.88 99.97 0.00 0.28 0.01 0.61 0.31

GAA 164 53.82 40.55 100.07 0.01 0.20 0.01 0.63 0.32

ZORRO 216 38.87 30.64 100.41 0.03 0.36 0.02 0.43 0.48

MSR-CA + Allpaths-LG

GAM-NGS 199 49.61 37.88 97.95 0.01 3.10 0.04 1.58 0.61

GAA 177 54.71 40.55 99.74 0.01 1.61 0.04 1.08 0.35

ZORRO 206 44.61 38.79 101.14 0.09 0.21 0.06 1.64 0.25

Bambus2 177 93.19 12.78 94.97 0.00 4.92 0.01 0.00 0.24

SOAPdenovo 202 131.68 14.34 100.29 0.44 0.76 0.01 1.30 0.46

Bambus2 + SOAPdenovo

GAM-NGS 83 149.75 14.16 98.32 0.00 3.02 0.00 1.59 0.63

GAA 100 194.16 14.74 98.35 0.13 2.28 0.01 0.63 0.58

ZORRO 711 16.56 13.18 100.48 0.89 0.66 0.25 1.05 0.59

SOAPdenovo + Bambus2

GAM-NGS 177 154.47 15.17 100.41 0.42 0.82 0.01 1.67 0.48

GAA 174 188.18 14.54 100.35 0.44 0.76 0.01 1.38 0.48

ZORRO 720 16.56 12.78 100.48 0.84 0.69 0.24 1.14 0.56

For each assembler we report the number of contigs greater than 200 bp (Ctg), the NG50, the corrected NG50 (NG50 computed breaking the assembly at each
error), assembly’s total length, the percentage of short (Chaff) contigs, the length of reference’s regions which cannot be found in the assembly (Unaligned ref),
the length of assembly’s regions that cannot be found in the reference (Unaligned asm), the percentage of duplicated (Dupl) and compressed (Comp) regions in
the assembly. All the percentages in the table are computed with respect to the true genome size.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 13 of 18

On the contrary, GAM-NGS’s approximation (using
read’s alignment back to the assemblies) coupled with the
implementation of a weighted graph, achieves similar
results in a reasonable amount of time. In order to show
GAM-NGS’s scalability, we tested it on three large plants
genomes whose sizes vary from 227 Mbp to 20 Gbp.
The first of these datasets is Prunus persica, character-

ized by a genome size of 227 Mbp. The best assemblies we
were able to compute were produced with CLC and
ABySS assemblers, which were similar in length and num-
ber of contigs. We chose to use ABySS as master, since it
was more contiguous. As shown in Table 11, we were able
to increase NG50 (of ~3 Kbp with respect to the master)
and provide a more contiguous assembly compared to
both CLC and ABySS. After mapping a 65× coverage of
Illumina paired-end reads (which required 4 hours and 37
minutes), GAM-NGS took less than 2 hours using at most
19.6 GB of RAM.
The second large dataset we used is Populus nigra, char-

acterized by a genome size of ~423 Mbp. Also in this case,
as for Prunus persica, the assemblies we had at our dispo-
sal were made with CLC and ABySS. This time, CLC’s
assembler looked better for its total length and NG50 and,
thus, we decided to use it as master. As shown in Table
11, even with this dataset, we were able to increase NG50
(by ~4 Kbp with respect to the master) and to provide a
more contiguous assembly. To perform the mandatory
alignment step we used a 80× coverage of Illumina paired-
end reads, which required about 8 hours. Then, GAM-
NGS took less than 4 hours using at most 34.5 GB of
RAM to perform the merge. In order to save memory we
could have decreased the reads coverage (at least 30× is
suggested at the cost of a lower assembly improvement).
As a demonstration of GAM-NGS’s flexibility, con-

sider that GAM-NGS has also been used to obtain an
assembly of the 20 Gbp genome of Picea abies, where
performing a global alignment is impracticable.
In this scenario, the idea was to improve a Whole

Genome Shotgun (WGS) assembly AWGS with a set of
fosmid pools FP sampled from the same genome.
Each fosmid pool was sequenced and assembled sepa-
rately using a 80× coverage. Then, the 50× coverage of
Illumina reads used to assemble AWGS has been
mapped on both AWGS and FP for the blocks con-
struction phase. GAM-NGS was able to run in less than
3 days (6 days, taking into account also the mandatory
alignment phase) using at most 612 GB of RAM. These
is certainly a low amount of resources, considering the
dataset’s size (almost a Terabyte) and that building the
WGS assembly took one week and required more than
1 TB of RAM. Furthermore, GAM-NGS was able to
increase the assembly length by 1.4 Gbp of the esti-
mated genome size with a NG50 that was 1.42 times
greater than the one of the WGS assembly (data not yet

Table 6 GAGE statistics (SNPs, indels and misjoins) on
Rhodobacter sphaeroides.

Assembler SNPs Indels < 5
bp

Indels ≥ 5
bp

Misjoins Inv Reloc

Allpaths-LG 218 150 37 6 0 6

MSR-CA 807 179 32 9 1 8

Allpaths-LG + MSR-CA

GAM-NGS 250 157 44 5 0 5

GAA 345 162 48 5 0 5

ZORRO 263 153 35 7 0 7

MSR-CA + Allpaths-LG

GAM-NGS 842 198 46 10 1 9

GAA 802 187 49 10 1 9

ZORRO 928 215 29 7 0 7

Bambus2 189 149 363 5 0 5

SOAPdenovo 534 155 404 8 0 8

Bambus2 + SOAPdenovo

GAM-NGS 431 173 406 10 0 10

GAA 581 177 404 10 0 10

ZORRO 546 196 84 8 0 8

SOAPdenovo+ Bambus2

GAM-NGS 534 153 393 8 0 8

GAA 532 155 407 8 0 8

ZORRO 513 175 111 9 0 9

For each assembly we show the number of SNPs, the number of indels
shorter than 5 bp and greater (or equal) than 5 bp. The number of misjoins is
computed as the sum of inversions (parts of contigs reversed with respect to
the reference genome) and relocations (rearrangements moving a contig
within/between chromosomes).

Table 7 Assembly reconciliation tools performances on
Rhodobacter sphaeroides.

Tool User (CPU) time Wall clock time

Allpaths-LG + MSR-CA

GAM-NGS 1h 21’ 09” + 2’ 20” 5’ 03” + 43”

GAA 17” 17”

ZORRO 14’ 46” 14’ 46”

MSR-CA + Allpaths-LG

GAM-NGS 1h 21’ 09” + 2’ 19” 5’ 03” + 48”

GAA 19” 19”

ZORRO 16’ 15” 16’ 15”

Bambus2 + SOAPdenovo

GAM-NGS 1h 26’ 47” + 2’ 35” 5’ 53” + 1’ 13”

GAA 3’ 59” 3’ 59”

ZORRO 8’ 22” 8’ 22’

SOAPdenovo + Bambus2

GAM-NGS 1h 26’ 47” + 2’ 23” 5’ 53” + 1’ 09”

GAA 3’ 47” 3’ 47”

ZORRO 7’ 44” 7’ 44”

In GAM-NGS’s entries the first value indicates the time spent in alignment
phase, while the second one is GAM-NGS’s run time.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 14 of 18

published and not yet publicly available, we were
allowed to show only the increment of the statistics
with respect to the assembly we wanted to improve).

Conclusions and future work
GAM-NGS is a de novo graph-based assembler which is
able to merge assemblies using a (relatively) low amount
of computational resources. Its strength relies on the fact
that it does not need a global alignment to be performed
and that makes our strategy unique among the other
assembly reconciliation tools. In fact, GAM-NGS finds
regions belonging to the same DNA locus using reads
aligned back to the assembly, which is an almost manda-
tory analysis step in all de novo assembly projects. The
order in which these regions have been assembled is
exploited to build a locally weighted graph that GAM-
NGS uses to fill gaps between sequences and to correct

putative mis-assemblies. Moreover, mapping reads to the
assemblies (thus, without knowing how they have been
placed by the assemblers) may lead to complex graph
sub-structures (e.g., bubbles, bifurcations, cycles) due to
alignment errors or chimeric assembly sequences. Resol-
ving these types of sub-graphs is not a trivial task, as in
certain regions there may be lack of any possible evi-
dence. In these kind of situations (which, for instance,
represented 40% of the problematic cases for the human
GAGE’s dataset) we decided to be as conservative as pos-
sible, returning the sequences of one of the assemblies
(elected as master by the user).
In this paper we validated our tool using GAGE [10]

datasets, proving its effectiveness and reliability. Results
showed that, for each GAGE dataset, GAM-NGS was
always able to improve master assembly’s NG50 and cor-
rected NG50 (i.e., NG50 of the assembly broken in

Table 8 GAGE statistics (contiguity, duplication and compression) on human chromosome 14.

Assembler Ctg
num

NG50
(kb)

NG50 corr.
(kb)

Assembly size
(%)

Chaff size
(%)

Unaligned ref
(%)

Unaligned asm
(%)

Dupl
(%)

Comp
(%)

Allpaths-
LG

4529 27.96 15.69 78.67 0.02 20.03 0.04 0.23 2.11

CABOG 3361 35.86 18.63 80.34 0.02 19.13 0.07 0.13 1.39

Allpaths-LG + CABOG

GAM-NGS 2235 61.64 21.91 80.94 0.02 19.08 0.10 0.88 1.43

GAA 1989 69.40 23.04 82.08 0.02 18.92 0.09 1.52 1.39

CABOG + Allpaths-LG

GAM-NGS 1979 66.29 23.63 81.00 0.02 19.00 0.06 0.74 1.37

GAA 1903 70.39 23.89 81.89 0.02 18.98 0.07 1.21 1.36

For each assembler we report the number of contigs greater than 200 bp (Ctg), the NG50, the corrected NG50 (NG50 computed breaking the assembly at each
error), assembly’s total length, the percentage of short (Chaff) contigs, the length of reference’s regions which cannot be found in the assembly (Unaligned ref),
the length of assembly’s regions that cannot be found in the reference (Unaligned asm), the percentage of duplicated (Dupl) and compressed (Comp) regions in
the assembly. All the statistics were computed using the same script with the gapped reference genome (107,349,540 bp).

Figure 8 FRCurve of Human chromosome 14 assemblies. FRCurve of human chromosome 14. Allpaths-LG and CABOG contain definitely the
lowest numbers of features with respect to the other assemblers.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 15 of 18

correspondence of the errors), thus providing a globally
more correct output (even if some errors were carried by
the slave assembly). Although GAA provided better sta-
tistics in some cases, GAM-NGS gives comparable results
and offers excellent scalability. GAM-NGS yields an
improved assembly in reasonable time on large datasets
(especially if used on a multicore computer) for which

competing tools are impractical. In particular, we showed
GAM-NGS’s scalability on large (plant) datasets (genome
size up to 20 Gbp), where our tool required a low
amount of computational resources compared to the
dataset sizes and assembly requirements.
The presented algorithm performs a merge of two

assemblies, returning the sequences of one of them in

Table 9 GAGE statistics (SNPs, indels and misjoins) on human chromosome 14.

Assembler SNPs Indels < 5 bp Indels ≥ 5 bp Misjoins Inv Reloc

Allpaths-LG 55319 27563 2558 101 44 57

CABOG 81151 28438 2884 149 46 103

Allpaths-LG + CABOG

GAM-NGS 61725 29936 2950 119 32 87

GAA 63835 30151 2990 123 29 94

CABOG + Allpaths

GAM-NGS 79478 29653 3021 154 43 111

GAA 81763 29812 3008 134 31 103

For each assembly we show the number of SNPs, the number of indels shorter than 5 bp and greater (or equal) than 5 bp. The number of misjoins is computed
as the sum of inversions (parts of contigs reversed with respect to the reference genome) and relocations (rearrangements moving a contig within/between
chromosomes). All the statistics were computed using the same script with the gapped reference genome (107,349,540 bp).

Figure 9 FRCurve of assembly reconciliation tools. FRCurve of assembly reconciliation tools on human chromosome 14, using (a) Allpaths-LG
and (b) CABOG as master assembly. Despite the lower corrected NG50 (which means errors in the longest contigs), considering the whole
assembly, GAM-NGS seems to behave globally better than GAA and the input assemblies.

Table 10 Assembly reconciliation tools performances on human chromosome 14.

Tool User (CPU) time Wall clock time

Allpaths-LG + CABOG

GAM-NGS 4h 24’ 59” + 1h 14’ 41” 45’ 56” + 18’ 16”

GAA 452h 18’ 14h 16’ 4”

CABOG + Allpaths-LG

GAM-NGS 4h 24’ 59” + 1h 12’ 35” 45’ 56” + 19’ 21”

GAA 467h 40’ 13h 44’ 58’

In GAM-NGS’s entries the first value indicates the time spent in alignment phase, while the second one is GAM-NGS’s run time. Due to the size of the assemblies,
we parallelized BLAT’s execution to get GAA’s output in a reasonable time. ZORRO results are not shown due to the fact that the tool cannot run in parallel and,
after more than a week of computation, was still not able to provide an output.

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 16 of 18

those problematic regions where we are not able to deter-
mine the most correct sequence between the two assem-
blies. We plan to investigate the use of further weights in
AG that will allow us to solve more “difficult” regions,
allowing us to completely replace the master-slave approach
with a strategy that provides a more correct output.
We also plan to exploit GAM-NGS in a strategy thought

to improve and correct a Whole Genome Shotgun assem-
bly along with multiple sets of well assembled fosmid (or
BAC) pools which constitute a hierarchically simplified
version of the same genome.

Availability and requirements
GAM-NGS’s source can be freely downloaded from
http://github.com/vice87/gam-ngs. It has been written in
C++ and has been tested on Linux operating systems.

Additional material

Additional file 1: Commands run in the experiments. A brief
description of the commands we used to carry out the merging on all
the datasets.

Abbreviations
NGS: Next Generation Sequencing; AG: Assemblies Graph; CG: Contigs
Graph; WGS: Whole Genome Shotgun.

Authors’ contributions
RV, FV, SS, LA and AP equally contributed to the idea and to the design of
the algorithm and the experiments. RV developed the tool. RV and SS
performed the experiments. RV, FV, SS, LA and AP wrote the paper.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
We acknowledge support from Epigenomics Flagship Project EPIGEN. We
would also like to thank all the Spruce Assembly Project, in particular Björn
Nystedt, Anna Wetterbom, Nathaniel Street, and Prof. Joakim Lundeberg for
their constant feedback and advice. The work was partially supported by
Knut and Alice Wallenberg Foundation.

Declarations
The publication costs for this article were supported by Epigenomics
Flagship Project (Progetto Bandiera Epigenomica) EPIGEN.

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 7, 2013: Italian Society of Bioinformatics (BITS): Annual
Meeting 2012. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S7

Author details
1Department of Mathematics and Computer Science, University of Udine,
33100 Udine, Italy. 2IGA, Institute of Applied Genomics, 33100 Udine, Italy.
3KTH Royal Institute of Technology, Science for Life Laboratory, School of
Computer Science and Communication, 17121 Solna, Sweden. 4Swedish e-
Science Research Centre, Dept. of Computer Science and Numerical Analysis,
Stockholm University, 17121 Solna, Sweden.

Published: 22 April 2013

References
1. Mardis ER: The impact of next-generation sequencing technology on

genetics. Trends in genetics: TIG 2008, 24(3):133-41[http://www.ncbi.nlm.nih.
gov/pubmed/18262675].

2. Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Q: The sequence and de
novo assembly of the giant panda genome. Nature 2009, 463:311-317,
January.

3. Dalloul Ra, Long Ja, Zimin AV, Aslam L, Beal K, Ann Blomberg L, Bouffard P,
Burt DW, Crasta O, Crooijmans RPMa, Cooper K, Coulombe Ra, De S,
Delany ME, Dodgson JB, Dong JJ, Evans C, Frederickson KM, Flicek P,
Florea L, Folkerts O, Groenen MaM, Harkins TT, Herrero J, Hoffmann S,
Megens HJ, Jiang A, de Jong P, Kaiser P, Kim H, Kim KW, Kim S,
Langenberger D, Lee MK, Lee T, Mane S, Marcais G, Marz M, McElroy AP,
Modise T, Nefedov M, Notredame C, Paton IR, Payne WS, Pertea G,
Prickett D, Puiu D, Qioa D, Raineri E, Ruffier M, Salzberg SL, Schatz MC,
Scheuring C, Schmidt CJ, Schroeder S, Searle SMJ, Smith EJ, Smith J,
Sonstegard TS, Stadler PF, Tafer H, Tu ZJ, Van Tassell CP, Vilella AJ,
Williams KP, Yorke Ja, Zhang L, Zhang HB, Zhang X, Zhang Y, Reed KM:
Multi-Platform Next-Generation Sequencing of the Domestic Turkey
(Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology 2010,
8(9):e1000475.

4. Nagarajan N, Pop M: Parametric complexity of sequence assembly:
Theory and applications to next generation sequencing. Journal of
Computational Biology 2009, 16:897-908.

5. Nowrousian M, Stajich J, Chu M, Engh I, Espagne E, Halliday K,
Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Poggeler S,
Read ND, Seiler S, Smith KM, Zickler D, Kuck U, Freitag M: De novo
Assembly of a 40 Mb eukaryotic genome from short sequence reads:
Sordaria macrospora, a model organism for fungal morphogenesis. PLoS
Genet 2010 [http://dx.plos.org/10.1371/journal.pgen.1000891].

6. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes
with massively parallel short read sequencing. Genome 2010 [http://
genome.cshlp.org/content/20/2/265.full].

7. Alkan C, Sajjadian S, Eichler E: Limitations of next-generation genome
sequence assembly. Nature methods 2010, 8:61-65.

8. Birney E: Assemblies: the good, the bad, the ugly. Nature methods 2011,
8:59-60.

9. Earl Da, Bradnam K, St John J, Darling a, Lin D, Faas J, Yu HOK, Vince B,
Zerbino DR, Diekhans M, Nguyen N, Nuwantha P, Sung aWK, Ning Z,
Haimel M, Simpson JT, Fronseca Na, Birol I, Docking TR, Ho IY, Rokhsar DS,
Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelly DR,
Phillippy aM, Koren S, Yang SP, Wu W, Chou WC, Srivastava a, Shaw TI,
Ruby JG, Skewes-Cox P, Betegon M, Dimon MT, Solovyev V, Kosarev P,
Vorobyev D, Ramirez-Gonzalez R, Leggett R, MacLean D, Xia F, Luo R, L Z,
Xie Y, Liu B, Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Yin S, Sharpe T,
Hall G, Kersey PJ, Durbin R, Jackman SD, Chapman Ja, Huang X, DeRisi JL,
Caccamo M, Li Y, Jaffe DB, Green R, Haussler D, Korf I, Paten B:
Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research 2011 [http://genome.cshlp.org/cgi/
doi/10.1101/gr.126599.111].

10. Salzberg SL, Phillippy aM, Zimin aV, Puiu D, Magoc T, Koren S, Treangen T,
Schatz MC, Delcher aL, Roberts M, Marcais G, Pop M, Yorke Ja: GAGE: A
critical evaluation of genome assemblies and assembly algorithms.
Genome Research 2012 [http://genome.cshlp.org/cgi/doi/10.1101/
gr.131383.111].

Table 11 GAM-NGS’s contiguity statistics on large plants
datasets

Assembler Total Length (Kbp) Contigs N50 (bp)

Prunus persica

ABySS (M) 177,460 33,949 10,895

CLC (S) 179,151 41,684 8,654

GAM-NGS 184,735 27,445 13,410

Populus nigra

CLC (M) 339,551 104,432 6,130

ABySS (S) 296,245 83,564 5,357

GAM-NGS 359,795 78,366 10,018

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 17 of 18

http://github.com/vice87/gam-ngs
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S6-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S7
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675
http://www.ncbi.nlm.nih.gov/pubmed/18262675
http://www.ncbi.nlm.nih.gov/pubmed/20010809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20010809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20838655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20838655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19580519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19580519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20386741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20386741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20386741?dopt=Abstract
http://dx.plos.org/10.1371/journal.pgen.1000891
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://genome.cshlp.org/content/20/2/265.full
http://genome.cshlp.org/content/20/2/265.full
http://www.ncbi.nlm.nih.gov/pubmed/21102452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21102452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21191376?dopt=Abstract
http://genome.cshlp.org/cgi/doi/10.1101/gr.126599.111
http://genome.cshlp.org/cgi/doi/10.1101/gr.126599.111
http://www.ncbi.nlm.nih.gov/pubmed/22147368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22147368?dopt=Abstract
http://genome.cshlp.org/cgi/doi/10.1101/gr.131383.111
http://genome.cshlp.org/cgi/doi/10.1101/gr.131383.111

11. Zimin AV, Smith DR, Sutton G, Yorke Ja: Assembly reconciliation.
Bioinformatics (Oxford, England) 2008, 24:42-5.

12. Casagrande A, Del Fabbro C, Scalabrin S, Policriti A: GAM: Genomic
Assemblies Merger: A Graph Based Method to Integrate Different
Assemblies. 2009 IEEE International Conference on Bioinformatics and
Biomedicine 2009, 321-326 [http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5341771].

13. Yao G, Ye L, Gao H, Minx P, Warren WC, Weinstock GM: Graph accordance
of next-generation sequence assemblies. Bioinformatics 2012 [http://
bioinformatics.oxfordjournals.org/content/early/2011/10/23/bioinformatics.
btr588.abstract].

14. ZORRO. [http://lge.ibi.unicamp.br/zorro/].
15. Nijkamp J, Winterbach W, van den Broek M, Daran JM, Reinders M, de

Ridder D: Integrating genome assemblies with MAIA. Bioinformatics
(Oxford, England) 2010, 26(18):i433-i439.

16. Cattonaro F, Policriti A, Vezzi F: Enhanced reference guided assembly IEEE;
2010 [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5706540].

17. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.

18. ERNE (Extended Randomized Numerical alignEr). [http://erne.sourceforge.
net/].

19. Vezzi F, Narzisi G, Mishra B: Feature-by-Feature – Evaluating De Novo
Sequence Assembly. PLoS ONE 2012, 7(2):e31002.

20. Google’s SparseHash library. [http://code.google.com/p/sparsehash/].
21. Tarjan R: Depth-First Search and Linear Graph Algorithms. SIAM Journal

on Computing 1972, 1(2):146-160 [http://epubs.siam.org/doi/abs/10.1137/
0201010].

22. Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the
elusive mis-assembly. Genome biology 2008, 9(3):R55.

23. Ukkonen E: Algorithms for approximate string matching. Information and
Control 1985, 64(1-3):100-118, [International Conference on Foundations of
Computation Theory].

24. GAGE. [http://gage.cbcb.umd.edu].
25. Assemblathon 2. [http://assemblathon.org/].
26. Vezzi F, Narzisi G, Mishra B: Reevaluating Assembly Evaluations with

Feature Response Curves: GAGE and Assemblathons. PLoS ONE 2012,
7(12):e52210.

27. CLC de novo assembler. [http://www.clcdenovo.com/].
28. Simpson J, Wong K, Jackman S, Schein J: ABySS: A parallel assembler for

short read sequence data. Genome 2009, 1117-1123[http://genome.cshlp.
org/content/19/6/1117.short].

doi:10.1186/1471-2105-14-S7-S6
Cite this article as: Vicedomini et al.: GAM-NGS: genomic assemblies
merger for next generation sequencing. BMC Bioinformatics 2013
14(Suppl 7):S6.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Vicedomini et al. BMC Bioinformatics 2013, 14(Suppl 7):S6
http://www.biomedcentral.com/1471-2105/14/S7/S6

Page 18 of 18

http://www.ncbi.nlm.nih.gov/pubmed/18057021?dopt=Abstract
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5341771
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5341771
http://www.ncbi.nlm.nih.gov/pubmed/22025481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22025481?dopt=Abstract
http://bioinformatics.oxfordjournals.org/content/early/2011/10/23/bioinformatics.btr588.abstract
http://bioinformatics.oxfordjournals.org/content/early/2011/10/23/bioinformatics.btr588.abstract
http://bioinformatics.oxfordjournals.org/content/early/2011/10/23/bioinformatics.btr588.abstract
http://lge.ibi.unicamp.br/zorro/
http://www.ncbi.nlm.nih.gov/pubmed/20823304?dopt=Abstract
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5706540
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://erne.sourceforge.net/
http://erne.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/22319599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22319599?dopt=Abstract
http://code.google.com/p/sparsehash/
http://epubs.siam.org/doi/abs/10.1137/0201010
http://epubs.siam.org/doi/abs/10.1137/0201010
http://www.ncbi.nlm.nih.gov/pubmed/18341692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18341692?dopt=Abstract
http://gage.cbcb.umd.edu
http://assemblathon.org/
http://www.ncbi.nlm.nih.gov/pubmed/23284938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23284938?dopt=Abstract
http://www.clcdenovo.com/
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://genome.cshlp.org/content/19/6/1117.short
http://genome.cshlp.org/content/19/6/1117.short

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Definitions
	Blocks construction
	Blocks filtering
	Assemblies graph construction
	Handling problematic regions
	Handling cycles involving exactly two nodes
	Handling bifurcations

	Merging

	Results and discussion
	Evaluation and validation on GAGE datasets
	Staphylococcus aureus
	Rhodobacter sphaeroides
	Human chromosome 14

	GAM-NGS’s performances on large datasets

	Conclusions and future work
	Availability and requirements
	Abbreviations
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

