Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

BMC
Bioinformatics

PROCEEDINGS Open Access

Assembling contigs in draft genomes using
reversals and block-interchanges

Chi-Long Li, Kun-Tze Chen, Chin Lung Lu"

From RECOMB-seq: Third Annual Recomb Satellite Workshop on Massively Parallel Sequencing

Beijing, China. 11-12 April 2013

Abstract

performance between our program and SIS is increasing.

The techniques of next generation sequencing allow an increasing number of draft genomes to be produced
rapidly in a decreasing cost. However, these draft genomes usually are just partially sequenced as collections of
unassembled contigs, which cannot be used directly by currently existing algorithms for studying their genome
rearrangements and phylogeny reconstruction. In this work, we study the one-sided block (or contig) ordering
problem with weighted reversal and block-interchange distance. Given a partially assembled genome 77 and a
completely assembled genome o, the problem is to find an optimal ordering to assemble (i.e, order and orient)
the contigs of 7 such that the rearrangement distance measured by reversals and block-interchanges (also called
generalized transpositions) with the weight ratio 1:2 between the assembled contigs of 77 and o is minimized. In
addition to genome rearrangements and phylogeny reconstruction, the one-sided block ordering problem
particularly has a useful application in genome resequencing, because its algorithms can be used to assemble the
contigs of a draft genome 77 based on a reference genome o. By using permutation groups, we design an efficient
algorithm to solve this one-sided block ordering problem in O (8n) time, where n is the number of genes or
markers and ¢ is the number of used reversals and block-interchanges. We also show that the assembly of the
partially assembled genome can be done in O (n) time and its weighted rearrangement distance from the
completely assembled genome can be calculated in advance in O (n) time. Finally, we have implemented our
algorithm into a program and used some simulated datasets to compare its accuracy performance to a currently
existing similar tool, called SIS that was implemented by a heuristic algorithm that considers only reversals, on
assembling the contigs in draft genomes based on their reference genomes. Our experimental results have shown
that the accuracy performance of our program is better than that of SIS, when the number of reversals and
transpositions involved in the rearrangement events between the complete genomes of 77 and o is increased. In
particular, if there are more transpositions involved in the rearrangement events, then the gap of accuracy

Background

The techniques of next generation sequencing have
greatly advanced in the past decade [1-3], which allows
an increasing number of draft genomes to be produced
rapidly in a decreasing cost. Usually, these draft gen-
omes are partially sequenced, leading to their published
genomes as collections of unassembled contigs (short
for contiguous fragments). These draft genomes in con-
tig form, however, can not be used immediately in some

* Correspondence: cllu@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Hsinchu
30013, Taiwan

(BioMVed Central

bioinformatics applications, such as the study of genome
rearrangements, which requires the completely
assembled genomes to calculate their rearrangement dis-
tances [4]. To adequately address this issue, Gaul and
Blanchette [5] introduced and studied the so-called
block ordering problem defined as follows. Given two
partially assembled genomes, with each representing as
an unordered set of blocks, the block ordering problem
is to assemble (i.e., order and orient) the blocks of the
two genomes such that the distance of genome rearran-
gements between the two assembled genomes is mini-
mized. The blocks mentioned above are the contigs,

© 2013 Li et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:cllu@cs.nthu.edu.tw
http://creativecommons.org/licenses/by/2.0

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

each of which can be represented by an ordered list of
genes or markers. In their work [5], Gaul and Blanchette
proposed a linear-time algorithm to solve the block
ordering problem if the problem is further simplified to
maximize the number of cycles in the breakpoint graph
corresponding to the assembled genomes. The rationale
behind this modification is totally based on a result
obtained by Bourque and Pevzner [6], showing that the
reversal distance between two assembled genomes can
be approximated well by maximizing the number of
cycles in their corresponding breakpoint graph. Actually,
in addition to the number of cycles, the number of hur-
dles, as well as the presence of a fortress or not, is also
important and needed for determining the actual rever-
sal distance [7]. Therefore, it is still a challenge to effi-
ciently solve the block ordering problem by optimizing
the true rearrangement distance.

In the literature, many different kinds of genome rear-
rangements have been extensively studied [4], such as
reversal (also called inversion), transposition and block-
interchange (also called generalized transposition), translo-
cation, fusion and fission. Reversal affects a segment on a
chromosome by reversing this segment as well as exchan-
ging its strands. Transposition rearranges a chromosome
by interchanging its two adjacent and nonoverlapping seg-
ments. Block-interchange is a generalized transposition
that exchanges two nonoverlapping but not necessarily
adjacent segments on a chromosome. Translocation acts
on two chromosomes by exchanging their the end frag-
ments. Fusion is a special translocation that joins two
chromosomes into one and fission is also a special translo-
cation that splits a chromosome into two. In this study, we
consider a variant of the block ordering problem, in which
one of the two input genomes is still partially assembled
but the other is completely assembled, with optimizing the
genome rearrangement distance measured by weighted
reversals and block-interchanges, whose weights are 1 and
2, respectively. For distinguishing this special block order-
ing problem from the original one, we call it as one-sided
block (or contig) ordering problem. In fact, an efficient
algorithm to solve the one-sided block ordering problem
has a useful application in genome resequencing [8,9],
because the reference genome for resequencing organisms
can serve as the completely assembled genome in the one-
sided block ordering problem and the contigs of partially
assembled resequencing genome can then be assembled
together into one or several scaffolds based on the refer-
ence genome. From this respect, the one-sided block
ordering problem can be considered as a kind of contig
scaffolding (or assembly) problem that aims to use genome
rearrangements to create contig scaffolds for a draft gen-
ome based on a reference genome.

Currently, several contig scaffolding tools based on the
reference genomes have been developed, such as Projector

Page 2 of 13

2 [10], OSLay [11], ABACAS [12], Mauve Aligner [13],
fillScaffolds [14], r2cat [15] and SIS [16]. Among these
contig scaffolding tools, both SIS and fillScaffolds use the
concept of genome rearrangements to generate contig
scaffolds for a draft genome. SIS deals with only reversals,
while in addition to reversals, fillScaffolds considers other
rearrangements, such as transpositions and translocations
(including fissions and fusions). Basically, SIS was dedi-
cated to creating the contig scaffolds for prokaryotic draft
genomes by heuristically searching for their inversion sig-
natures, where an inversion signature is a pair of adjacent
genes or markers appearing along a contig such that they
form a breakpoint and are also located in different tran-
scriptional strands. As for fillScaffolds, it used the tradi-
tional technique of breakpoint graphs to assemble the
contigs of draft genomes. In the study by Dias and collea-
gues [16], they have used real prokaryotic draft genomes
to demonstrate that SIS had the best overall accuracy
performance when compared to the other tools we men-
tioned above.

In this study, we utilize permutation groups in algebra,
instead of the breakpoint graphs used by Gaul and
Blanchette [5], to design an efficient algorithm, whose
time complexity is O (§n), for solving the one-sided
block ordering problem with weighted reversal and
block-interchange distance, where # is the number of
genes or markers and ¢ is the number of reversals and
block-interchanges used to transform the assembly of
the partially assembled genome (i.e., draft genome) into
the completely assembled genome (i.e., reference gen-
ome). In particular, we also show that the assembly of
the partially assembled genome can be done in O (n)
time and its weighted reversal and block-interchange
distance from the completely assembled genome can be
calculated in advance in O (n) time. In addition, we
have implemented our algorithm into a program and
used some simulated datasets to compare its accuracy
performance to SIS on assembling the contigs in the
draft genomes based on their reference genomes. Our
experimental results have shown that the averaged nor-
malized contig mis-join errors of our program are lower
than those of SIS, when the number of reversals and
transpositions involved in the rearrangement events
between the complete genomes of the partially and
completely assembled organisms is increased. In particu-
lar, if there are more transpositions involved in the rear-
rangement events, then the gap of accuracy performance
between our program and SIS is increasing.

Preliminaries

One-sided block ordering problem

In the following, we dedicate ourselves to linear, uni-
chromosomal genomes. With a slight modification, how-
ever, our algorithmic result can still apply to circular,

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

uni-chromosomal genomes, or to multi-chromosomal
genomes with linear or circular chromosomes in a chro-
mosome-by-chromosome manner. Once completely
assembled, a uni-chromosomal genome can be repre-
sented by a signed permutation of n integers between 1
and #, with each integer representing a gene or marker
and its associated sign indicating the strandedness of
the corresponding gene or marker. If the genome is par-
tially assembled, then it will be represented by an unor-
dered set of blocks, where a block B of size k, denoted
by B = [by, by, ..., byl, is an ordered list of k signed inte-
gers. Let B = [—by, —bp_1, ...
of B. Given an unordered set of m blocks, say
B ={B1, By, ..., By}, corresponding to a partially
assembled genome, an ordering (or assembly) of B is an
ordered list of m blocks in which each block B; or its
reverse B; appears exactly once, where 1 < i < m. For
instance, suppose that B={Bi B, B3} ={[1,4],(3,2],[-5,6l}.
Then (By, Bs, By) = ([1, 4], [-5, 6], [3, 2]) and (B4, -Bs, By) =
([1, 4], [-6, 5], [3, 2]) are two orderings of /3 . Basically, each
ordering of B induces (or defines) a signed permutation of
size n, which is obtained by concatenating the blocks in
this ordered list. For instance, the ordering (B3, B3, B;) in
the above exemplified B induces the signed permutation
(1, 4, -5, 6, 3, 2), which simply is denoted by B; ® B; ©® B,.
Clearly, the permutation induced by an ordering of B
corresponds to an assembly of the blocks in . Now, the
one-sided block ordering problem we study in this paper is
formally defined as follows:

, —b;] denote the reverse

One-sided block ordering problem with reversal and
block-interchange distance

Input: A partially assembled genome 7 and a comple-
tely assembled genome o.

Output: Find an ordering of 7 such that the rearran-
gement distance measured by reversals and block-
interchanges with the weight ratio 1:2 between the
permutation induced by the ordering of 7 and o is
minimized.

As discussed in our previous study [17], it is biologi-
cally meaningful to assign twice the weight to block-
interchanges than to reversals, due to the observation
from the biological data that transpositions occur with
about half the frequency of reversals [18].

Permutation groups

Permutation groups have been proven to be a very use-
ful tool in the studies of genome rearrangements [17].
Below, we recall some useful definitions, notations and
properties borrowed form our previous work [17]. Basi-
cally, given a set E = {1, 2, ..., n}, a permutation is
defined to be a one-to-one function from E into itself
and usually expressed as a product of cycles in the study

Page 3 of 13

of genome rearrangements. For instance, 7 = (1)(3, 2) is
a product of two cycles to represent a permutation of
E = {1, 2, 3} and means that 7z(1) = 1, 77(2) = 3 and 7(3) =
2. The elements in a cycle can be arranged in any cyclic
order and hence the cycle (3, 2) in the permutation
exemplified above can be rewritten as (2, 3). Moreover, if
the cycles in a permutation are all disjoint (i.e., no com-
mon element in any two cycles), then the product of these
cycles is called the cycle decomposition of the permutation.
In fact, a permutation in the cycle decomposition can be
used to model a genome containing several circular chro-
mosomes, with each disjoint cycle representing a circular
chromosome. Notice that in the rest of this article, we say
“cycle in a permutation” to mean “cycle in the cycle
decomposition of this permutation” for simplicity, unless
otherwise specified. A cycle with k elements is further
called a k-cycle. In convention, the 1-cycles in a permuta-
tion are not written explicitly since their elements are
fixed in the permutation. For instance, the above exempli-
fied permutation 7 can be written as 7 = (2, 3). If the
cycles in a permutation are all 1-cycles, then this permuta-
tion is called an identify permutation and denoted by 1.
Suppose that @ and f are two permutations of E. Then
their product of, also called their composition, defines a
permutation of E satisfying of(x) = a(B(x)) for all x € E.
If both o and f are disjoint, then o8 = Bo. If o = 1, then
a is called the inverse of B, denoted by B, and vice versa.
Moreover, the conjugation of B by a, denoted by « - 3, is
defined to be the permutation algofl. It can be verified
that if y = B(x), then a(y) = aB(x) = afo ' olx) = o - Blax
(x)). Hence, o - 8 can be obtained from f3 by just changing
its element x with o(x). In other words, if 8 = (by, by, ...,
by), then o - B = (a(by), aby), ..., aby)).

It is a fact that every permutation can be expressed
into a product of 2-cycles, in which 1-cycles are still
written implicitly. Given a permutation « of E, its norm,
denoted by ||||, is defined to be the minimum number,
say k, such that a can be expressed as a product of k 2-
cycles. In the cycle decomposition of o, let n.(c) denote
the number of its disjoint cycles, notably including the
1-cycles not written explicitly. Given two permutations
o and 8 of E, « is said to divide 3, denoted by o|B, if
and only if ||Ba*|| = ||B|| - ||@||. In our previous work
[17], it has been shown that ||e|| = |E| - n.(cx) and for
any k elements in E, say a,, ay, ..., d;, they all appear in
a cycle of « in the ordering of a;, a,, ..., a if and only if
(a1, azy ..., i) | O

Let o = (ay, a,) be a 2-cycle and B be an arbitrary per-
mutation of E. If ¢|B, that is, both a; and a, appear in
the same cycle of 3, then the composition o3, as well as
Ba, has the effect of fission by breaking this cycle into
two smaller cycles. For instance, let o = (1, 3) and 8 =
(1, 2, 3, 4). Then |, since both 1 and 3 are in the

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

cycle (1, 2, 3, 4), and off = (1, 2)(3, 4) and B = (4, 1)
(2, 3). On the other hand, if « {8, that is, a; and a,
appear in different cycles of 8, then o3, as well as fBa,
has the effect of fusion by joining the two cycles into a
bigger cycle. For example, if o = (1, 3) and 8 = (1, 2)(3,
4), then a1 B and, as a result, &8 = (1, 2, 3, 4) and
Bo = (2, 1, 4, 3).

A model for representing DNA molecules

As mentioned before, a permutation in the form of the
cycle decomposition can be used to model a genome con-
taining multiple chromosomes (or a chromosome with
multiple contigs), with each cycle representing a chromo-
some (or contig). To facilitate modelling the rearrange-
ment of reversals using the permutation groups, however,
we need to use two cycles to represent a chromosome,
with one cycle representing a strand of the chromosome
and the other representing the complementary strand. For
this purpose, we first let E = {-1,1,-2, 2, ..., -n, -n} and I =
(1, -1)(2, -2) ... (n, -n). We then use an admissible cycle,
which is a cycle containing no i and its opposite -i simulta-
neously for some i ¢ E, to represent a chromosomal
strand, say 7%, and use 7~ = T - (7*)"!, which is the
reverse complement of ", to represent the opposite strand
of n*. As demonstrated in our previous work [17], it
is useful to represent a double stranded chromosome
by the product of its two strands 7" and 5, that is,
7 =m*nm" =m nt, because a reversal (respectively,
block-interchange) acting on this DNA molecule can be
mimicked by multiplying two (respectively, four) 2-cycles
with 7, as described in the following lemmas.

Lemma 1 ([17]) Let w = n*mr denote a double stranded
DNA and let x and y be two elements in E. If (x,y) t 7,
that is, x and y are in the different strands of m, then the
effect of (nl'(y), nl'(x))(x, y)7t is a reversal acting on 1.

Lemma 2 ([17]) Let 7 = n'mr denote a double stranded
DNA and let u, v, x and y be four elements in E. If (x, u,
¥, V)|, that is, x, u, y and v appear in the same strand of
in this order, then the effect of (nl'(v), nl'(u)) (nT'(y), T (x))
(&, v)(%, y)1r is a block-interchange acting on 1.

Moreover, as described in the following lemma, we
have shown in [17] that given two different DNA mole-
cules 7 and o, every cycle o in (the cycle decomposition
of) o' always has a mate cycle (zI') - o' that also
appears in o7 ' In fact, o and (#T) - o in o' are
each other’s mate cycle.

Lemma 3 ([17]) Let m and o be two different double-
stranded DNA molecules. If o is a cycle in o™, then
(nl) - o is also a cycle in o

An efficient algorithm for the one-sided block ordering
problem

To clarify our algorithm, we start with defining some
notations. Let o denote an arbitrary linear DNA

Page 4 of 13

molecule (or contig). As mentioned previously, it is
represented by the product of its two strands o and o,
that is, o = o', If o contains k genes (or markers), we
also denote its " by (o' [1], @"[2], ..., a"[k]), where &
“[4] is the i-th gene in ¢, and its o by (o [1], [2], ...,
o [k]). By convention, o'[1] and a[1] are called as tails
of a. Let 7 = mym, ... 7, be a linear, uni-chromosomal
genome that is partially assembled into m contigs m,
T3, «oy Ty €ach with #; genes, and 6 = (1, 2, ..., n) be a
linear, uni-chromosomal genome that is assembled com-
pletely. Let C={cx=n+k+1:0<k<2m-1} U {-¢c, = -n
-k-1:0< k < 2m - 1} be a set of 4m distinct integers,
called caps, which are different from those genes in E. Let
F=EUC and T=(1, —-1)(2, =2) ... (n+2m, —n — 2m).
For the purpose of designing our algorithm later, we add
four caps €2(i—1), C2(i-1)+1, —C€2(i-1) and -c(;-1y+1 to the
ends of each contig 7;, where 1 < i < m, leading to a cap-
ping contig 7; with 7;*[1] = ca(i—1), 7 [j] = 7;[j — 1], for
2<j<m+1, 77 [ni+2] = ey, 77 (1] = Dleaionyn), 27 [l =77 [- 1]
for2<j<m+1,and 77 [n; +2] = f‘(cz(i,l)). Moreover,
we insert -1 dummy contigs without any genes (i.e., null
contigs) 0y, O3, .., O, into 0, where the original contig in
0 becomes 07 now, and add four caps ¢y.1) Ca(-1)+1, ~C2(:-1)
and -¢y(;.1)41 to the ends of each contig o; to obtain a cap-
ping contig 6;, where 6;"[1] = cai-1), 6] [j] = o' [j — 1]
for 2<j<m+1,6/[n+2] = ca-1yer, 671 = Fleai-1yn), 67] = o7 i = 1]
for2<j < m; +1,and 6, [n; + 2] = ['(ca(i-1))- Notice that
the purpose of adding caps to the ends of the contigs is to
serve as delimiters when we use permutation groups to
model translocations of multiple contigs later. We denote
the capping 7 and 0 by 7 and &, respectively. To distin-
guish the four caps in a capping contig, say 7;, we call the
left caps 7;"[1] and 7, [1] as 5’ caps and the right caps
7 [ni +2] and 7, [n; + 2] as 3 caps.

Given an integer x in E that is contained in a contig
o = "o with k genes (or markers), we define a func-
tion char(x, &) below to represent the character of x in
the capping contig § = 4+*4~ that is obtained by adding
four caps from C to the ends of .

C5, ifx=a*[1] orx=a[1]
(that is, xis a 5’ cap in @).
C3,ifk#0and (x=a&*[k+2]orx=a"[k+2])
(that is, « is not null and x is a 3’ cap in &).
N3,ifk=0and (x =a&*|k+2] orx=a [k+2])
(that is, « is null and x is the 3’ cap in @).
T, ifk#0and (x=a*[2] orx=a"[2])
(that is, « is not null and x is a tail in «).
O, otherwise.

char (x, @) =

In addition, we define 5cap(x, &) to be the 5’ cap in
the strand of & that contains x. For convenience, we
extend the definitions above from the capping contig to
the capping genome. For instance, given a capping

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

genome, say 7, char(x, 7) denotes the character of x
in a capping contig #; of 7 that contains x, and
5cap(x, 7) denotes the 5’ cap of the strand in 7; con-
taining «, that is, char(x, 7) = char(x, #;) and
5cap(x, 7) = 5cap(x, 7;). In our previous work [17],
we have shown the following lemma.

Lemma 4 ([17]) For a capping genome 7t and yx ¢ E, if
char (x,##) = C3 (respectively, T), then char(#T (x),#) is
T (respectively, C3) and if char(x,) = O (respectively,
N3 and CS5), then char(ﬁf(x),ﬁ) is O (respectively, N3
and C5).

Basically, we design our algorithm to solve the one-
sided block ordering problem by dealing with the con-
tigs of the capping genome 7 as if they were linear
chromosomes. Let ¢; = (x,) and ¢; = (4, v) be two 2-
cycles with character pairs of (non-C5, non-C5) and
(C5, C5), respectively, and let ¢| = (#T(y), AT (x)) and
¢, = (AT (v), #T (1)) Notice that the character pair of
¢, is (C5, C5) by Lemma 4. In our previous study
[17], we have proven that performing a translocation
T on 7 can be mimicked by the composition of
cycicacint(ie, T =cyciccr), if (x wiz, (v VI, (x y) 17
and (x,f‘(y)) 17 (i.e., x and u, as well as y and v, lie
in the same contig stand in 7, but x and y appear in
the different contigs in 7). Moreover, if the character
pair of ¢1 is in CEpair = {(C3, C3), (C3, N3), (T, T), (T, N3), (N3, N3)},
then 7 acts on 7 by exchanging the two caps of some
contig in 7 with the two caps of another contig and, as
a result, leaves the original genome 7 unaffected.
Notice that the character pair of ¢ also belongs to
CEpair and that of ¢, is (C5, C5) according to Lemma
4. Furthermore, if ¢1 is a 2-cycle of character pair (T,
C3) (respectively, (O, N3)), then performing T on 7
becomes a fusion (respectively, fission) to act on m.
Hence, we have the following lemma, where it can be
verified that ﬁf(scap(x, 7)) = 5cap(ﬁf(x), #) and and
#T(5cap(y, 7)) = 5cap(#T(y), #)-

Lemma 5 ([17]) Let ¢, = (x, y) denote a 2-cycle with
char (x, #)=T and char (y, #7)=C3 , and let
¢ = (AT (y), AT @), ¢ = (#T (), 7T)
#T(5cap(x, #))), #T(5cap(x, #)))- If (x, y) 17 and
(x, T(y)) 17, then the effect of ¢,cic2017 is a fusion
that acts on 1w by concatenating the contig containing y
with the contig containing x.

It is not hard to see that the permutation induced by an
ordering of the uncapped genome 7 can be considered as
the result of applying consecutive m - 1 fusions to the m
contigs in 77. Based on the above discussion, it can be rea-

lized that our purpose is to find 7 - 1 translocations to act
on # such that their rearrangement effects on the original

and

Page 5 of 13

7 are m - 1 fusions and the genome rearrangement dis-
tance measured by weighted reversals and block-inter-
changes between the resulting assembly of the contigs in 7
and o is minimum. In Algorithm 1 below, we describe our
algorithm for efficiently solving the one-sided block order-
ing problem, where reversals are weighted one and block-
interchanges are weighted two. Basically, we try to derive
m - 1 fusions from 57! to act on i in Algorithm 1.

Algorithm 1

Input: A partially assembled, linear, uni-chromosomal
genome 7 = 7177, ... 7T,, and a completely assembled, lin-
ear, uni-chromosomal genome o = 0;.

Output: An optimally assembled genome of 7,
denoted by assembly(m), and the weighted reversal and
block-interchange distance A(rr, 0) between assembly(r)
and o.

1: Add m - 1 null contigs 02,03, ..
that 0 = 0102...0p.

Obtain 7 = .7%17%2 SN
ping 7 and o.

2: Compute 57! and #T .

3: /* To perform cap exchanges */

., 0 into o such

Ay and 6 = 616, ... Gy by cap-

Let i = 0.
while there are x and y in a cycle of 57! such that
(char(x, 7), char(y, 7)) € CEpair do
Leti=1i+ 1.
Find x and y in a cycle of G7-! with
(char(x,), char(y, 7)) € CEpair.
Let y = (#T(5cap(y, #)), #T (5cap(x, #))) (AT (),
5cap(y, 7)) (x, y), 5cap(y, 7)) (x, y).
Calculate new # = xi#, new #T = Xi;%f‘ and

1 -1,-1

new 6~ =67y

end while
4: /* To find consecutive m - 1 fusions */

Let i = 0.
while there are two adjacent elements x and y in a
cycle of 57~1 such that (char(x, #), char(y, #)) = (T, C3)
and (x, y) 17 do
Leti=i+1.
Find two adjacent elements x and y in a cycle of
&#-1 such that (char(x, #), char(y, #)) = (T, C3)
and (x, y)1 7.
Let 7, = (AT (5cap(y, #)), #T(5cap(x, 4))) (AT (),
5cap(y, 7)) (x, ¥), 5cap(y, 7)) (x ¥).
Calculate new # = 1,7, new #T = riﬁf and new

GRT =6,
end while
while i < m - 1 do

Leti=1i+1.

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

Find two adjacent elements x and y in a cycle of
671 such that (char(x, #), char(y, #)) = (T, C3)
and (x, y)|7.
Find the strand of a different contig in 7 with at
least a non-cap integer and its 3’ cap, say z, dif-
ferent from y.
Let 7 = (#T(2), #T (x)) (AT (2), #T M) (v, A(w 2).-
Calculate new 7 = ;t, new #T = fiﬁf and new
6t =6a"1g

end while

Let assembly(ir) denote the assembled contig in cur-

rent 7 whose caps are removed.

5: /* To find reversals */

Let n, = 0.
while there are two adjacent elements x and y in a
cycle of 6#-1 such that (x, T'(y))|7 do
Let n, =n, +1.
Find two adjacent elements x and y in a cycle of
671 such that (x, T(y))|7-

Let yn, = (AT (), AT())(x, »)-
Calculate new # =y 7, new AT = ynyﬁﬁ and

A A 1 A A 71 71
new o7 o Vu, -
end while

6: /* To find block-interchanges */

Let ng = 0.

while 677! #1 do
Let ng =ng+1.
Choose any two adjacent elements x and y in a
cycle of 571
Find two adjacent integers u and v in a cycle of
677 1(x, y) such that (u, v) 1 (x, y)7.
Let f = (AT (v), AT () (AT (), 7T () (u,)(x, ¥)-
Calculate new 7 = B, 7, new AT = ynﬁj%f‘\ and
new 67271 = &7%71,3,1;1.

end while

7: Output assembly(rr) and A(w, o) =n, +2ng.

Below, we consider an example to clarify Algorithm
1. Let 7 = {[1, 4], [-5, 6], [3, 2]} and 0 = {[1, 2, ..., 6]}
be the input linear, uni-chromosomal genomes of
Algorithm 1. In our algorithm, these two genomes will
be further represented by 7 = (1, 4)(-4, -1)(-5, 6)(-6, 5)
(3, 2)(-2, -3) and 0 = (1, 2, ..., 6)(-6, -5, ..., -1). First of
all, we add two null contigs into ¢ and cap all the con-
tigs in 7 and o in a way such that

#=(7,1, 4, 8)(~8, —4, —1, =7)(9, =5, 6, 10)(—10, =6, 5, =9) (11, 3, 2, 12)(~12, =2, =3, —11)

Page 6 of 13

and -0 12 6 8)(=8 —6 =5 .., =L =7)(9, 10)(-10, ~9) (11, 12)(~12, -1},
Next, we compute 7' =@ 9(-1 =33 12)(-2 ~1)(5 =5, 10, §)(~4, ~6. -9, 6),
It can be found that 10 and 8 are in a cycle of current
6#~1 with (char (10, #), char(8, 7)) = (C3, C3) € CEpair.
We perform a cap exchange on 7 by multiplying
(#T(5cap(8, #)), (AT (5cap(8, #)), #T (5cap(10, #))) (RT(8),
5cap(8, 7)) (10, 8) = (—8, —10) (—4, —6) (9,7) (10,8)
5cap(8, 7)) (10, 8) = (-8, 10)(4, —6) (9 7) (10,8)
with 7, resulting in new - 0105 6908 6802 2,
In addition, we have new -
It can be observed that 5 and 10 are in the same
cycle of 5#~1! with satisfying that char(— —5, 7) =T,
char(10, 7) = C3 and (-5, 10) 17 (
are in different contigs in current 7). Therefore, we
perform a fusion on #, by multiplying
#T(5cap(=5, #))) (#T(10), #T(5cap(=5, #))) (AT (10),
5cap(10, 7)) (=5, 10) =, 5cap(10, 7)) (=5, 10) =
(=10, —8)(—4, —9)(9,7)(—5,10) with #, to obtain
new
Moreover, we have new &= 91 -6 1) (-2 -1 -5) (-4 0,
in which 3 and 12 form a (T, C3) pair but they belong
to the same contig strand in 7, that is, (3, 12)|7. In
this case, 7 has a contig strand (7, 1, 4, -5, 6, 8)
whose 3’ cap is 8 that is different from 12. Hence, we
multiply (nI‘(S), nF(3)) (nF(S)
with 7 to obtain new «eisseosns s s nomen o e
and new 6#7'=(2 4)(~1, -3)(5, =5)(~4, 6)(3, 8)(~2, —6).
Notice that -4 and 6 are adjacent in a cycle of current
67! and they are in different strands in current 7

— (2)1, -3)(3, 12) (<2, ~11)(5, =5, 10) (=4, -5, 6)(9, 7)(~10, -8)

since -5 and 10

#=(7,1,4, =5, 6, 8) (=8, —6, 5, —4, —1, =7)(9,10) (=10, —9) (11, 3, 2, 12)(~12, 2, =3 —11),

#F(12)) (12, 8)(3, 8) = (-6, ~11) (=6, ~2) (12, 8) (3, 8)

since (—4, T'(6))|#. Thus, we can find a reversal,
which is (#T(6), #T(—4))(=4, 6) = (5, —=5)(—4,6),
from &7-1 to transform # into (7, 1, 4, 5, 6, 3, 2, 8)
(-8, -2, -3, -6, -5, -4, -1, -7) (9, 10) (-10, -9) (11, 12)
(-12, -11). After that, we have new
671 =(2, 4) (-1, -3) (3, 8) (=2, —6), which can
serve as a block-interchange to further transform 7
into (7, 1, 2, 3, 4, 5, 6, 8)(-8, -6, -5, -4, -3, -2, -1, -7)
(9, 10) (-10, -9) (11, 12) (-12, -11), which is equal to
6. As a result, we obtain an ordering ([1,4], [-5, 6],
[3,2]) of m whose induced permutation [1,4] ® [-5, 6]
® [3,2] = (1, 4, -5, 6, 3, 2) can be transformed into the
permutation (1, 2, ..., 6) of o using a reversal and a
block-interchange (i.e., A(r, 0) = 3).

Actually, after running the step 3 of Algorithm 1, it can
be verified according to the capping of 7 and ¢ and
Lemma 3 that for any two adjacent elements x and y in a
cycle of #5-1 with (char(x, 7), char(y, 7)) = (T, C3),
if (x, y) 17, then (x,T'(y)) { # . Moreover, the operation

5 = (AT(2), #T(x)) (AT (2), #T () (1 2)(x, z) used in
the step 4 of Algorithm 1 acts on 7 still as a fusion of 7,
as explained as follows. Notice that (x, y)|77, meaning

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

that x and y are in the same cycle of # and hence
5cap(x, 7) = 5cap(y, 7). It can be verified that (5cap(y, #),
5cap(z, #)) =1, 5cap(z #)) =1. Since (x, y)|7, we have
and hence
5cap(#l’(x),#)) = 1. It is not hard to see that
(#T(2), #T(®)#ET(2), #T(1) = GT @), #T())(#T@), 2T(). Thus, 1; can be

(#T(), 2T ()7 (5cap(#T(2), #), 5cap(#T(y), #))(5cap(#T(2), #),

rewritten as T = a1, where o = (5cap(AT (2), #),
5cap(z, 7))(x, z), 5cap(z, 7))(x, z2) and « = Gap(ETE), #),
5cap(z, 7))(y, 2), 5cap(z, 7))(y, z). It can be verified
that e = (5cap(@1#T(2), 1), Scap(iaT(y), 7)) (@#T(2), 1w T () (5cap(z, a1#),
5cap(y, @17))(y, z). By Lemma 5, as well as the pre-
vious discussion, it can be realized that ¢, acts on # as a
fusion of m and &, continues to act on a7 as a cap
exchange. As a result, the rearrangement effect of acting
7; on 7 is still equivalent to a fusion acting on 7. The
above discussion indicates that a fusion to 7 can be
mimicked by a translocation 7, which acts on 7 as a
fusion of m, followed by zero or more translocations act-
ing on t7 as cap exchanges.

In the following, we prove the correctness of Algo-
rithm 1. Initially, it is not hard to see that all the 5 caps
are fixed in 6#~! and char(x, 7) # N3 for all x ¢ E.
For any element x ¢ E with char(x, ;) =T, where
1<i<m, if#71(x) #6;[1] and #71(x) # 6, [1], that
is, the 5’ cap of 7; is not equal to that of &7, then the
character of 677 1(x) in # must be C3. If any cycle in
67 ~1 contains any two elements x and y with the same
character (either T or C3) in 7, then we can extract
two 2-cycles ¢; = (x,) and ¢ = (#T(y), #T(x)) from
two mate cycles in §#~! and multiply ¢,cjcoc1 with #
to exchange the caps of the contigs containing x and y,
respectively, in 7, where ¢, = (5cap(x, 7), 5cap(y, 7))

and ¢y = (#T(5cap(y, #)), #T (5cap(x, #))). This is the
job to be performed in the step 3 in Algorithm 1. More-
over, after finishing the cap exchanges in the step 3,
each cycle in the remaining 57 -1 has at most one ele-
ment with T character and at most one element with
C3 character. In other words, after running the step 3,
there are at least 2(m-1) cycles in the resulting 571!
such that each such a cycle contains exactly one ele-
ment, say x, with (x,7) =T and exactly one element,
say y, with char(y, #) = C3, and 67~ !(x) =y. In this
case, we can further derive 2(m - 1) 2-cycles from these
cycles in g7 ~1 with each 2-cycle having a character
pair of (T, C3). Intriguingly, we shall show below that
these 2(m-1) 2-cycles with character pair (T, C3),
denoted by f1,f7, . .

an optimal ordering of such that the weighted reversal
and block-interchange distance between the permutation
induced by this ordering of 7 and o is minimum.

.+ fm-1,fy_1, can be used to obtain

Page 7 of 13

In fact, f; and f;, where 1 < k < m - 1, are derived from
two mate cycles in G7~1 and hence we call them as
mate 2-cycles below. Moreover, if f,=(x, y), then
fr=(@L@), 7T (x)).

For 1 < k < m - 1, we simply let f, = (xr, yx), where
char(xy, #) =T and char(y, #) = C3. Then f] = (AT (n), 2T (w)).
As mentioned previously, the permutation induced by
an ordering of 7 can be mimicked by performing m - 1
consecutive fusions on m that has m contigs initially.
According to Lemma 5 and our previous discussion, if
fr 17, where 1 < k < m - 1, then g.f,8fc can be applied
to # to function as a fusion of two contigs in 7, where
& = (5cap(x, #), 5cap(yi, #)) and g, = (AT (5cap(y, #)), AT (5cap(x, #))).
Notice that g; and g, are mate 2-cycles. However, not
all fi,f2,...,fm—1 cannot divide 7. Suppose that only
the first A 2-cycles fi,fa,...,fi cannot divide 7, where
0<A<m-1,thatis, ft® for 1<k <A, but fp|7 for
A+ 1 <k <m- 1. In this situation, we shall show below
that we still can use fi,f2,...,fm—1, as well as their
mate 2-cycles, to derive an optimal ordering of 7, as we
did in the step 4 in Algorithm 1.

Recall that the 5’ caps are all fixed in the beginning
671 (before the step 3 in Algorithm 1). As mentioned
before, for any translocation used to perform on 7, it
can be expressed as four 2-cycles, two with (non-C5,
non-C5) character pair and the others with (C5, C5). It
can be verified that during the process of the step 3, no
two elements x and y with char (x,7) = C5 but char
(y,7) # C5 can be found in a cycle of the 57-1[17],
that is, C5 and non-C5 elements are not mixed together
in the same cycle of 57 ~1. Actually, this property still
continues to be asserted when we later perform any
translocation on 7 to function as a fusion of 7. Let us
now pay attention on those cycles in &7 -1 with only
non-C5 elements and temporarily denote the composi-
tion of these cycles by ¢(67~1). If we still can find any
two elements x and y from a cycle in ¢(6771) such
that (#T(5cap(y, 7)), #T(5cap(x, #)))(AT(y), #T (x))(5cap(x, 7),
5cap(y, #))(x, y) is an exchange of caps when applying
it to 7, then we apply this cap exchange to # until we
cannot find any one from ¢(67~!). Finally, we denote
such a ¢(677!) without any cap exchange by
V¥ (67271). Basically, ¥(67~!) can be considered as a
permutation of E'=EU{—cyj, c2iy1 : 0<i<m—1}
(61l is
|E'| — ne(¥(67~1)) according to the formula we men-
tioned before.

Lemma 6 Let «-@lGapy. 4), #T(5ap(#)EN0), 47)(Gap(#),
S5cap(y, 7))(x, y) be a fusion to act on m, where

and hence its norm equal to

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

char(x,7) =T and char(y,) = C3. Then
(67— W (EA) €{-2,0,2).

Proof. For simplicity, it is assumed that we cannot find
any cap exchange from 57 -1 to perform on 7. We
then consider the following two cases.

Case 1: Suppose that (x, y)|67 1, that is, both x and
y lie in the same cycle, say ¢, in 57 ~!. Without loss of
generality, let a= (a1, a2 ..., ai=x, ..., ;= y).
Then o can be expressed as o = a;0(x, y), where a; =
(a1, ..., a;}) and @, = (a1, ..., a;). Let o/ denote the mate
cycle of a in 71, that is, «-Gf@) ... 4Fw@), ... 7T (@), #T@).
Then it can be expressed as o' = o}y (AT(y), #T(x)),
o = (AT (ai-1), ..., 2T (a1), #T(a)))
o = (AT (aj-1), #T(aj2), ..., 7T (a;)). Clearly, after
applying 7 to 7, the cycle & becomes two disjoint cycles
o, and @, in 67-1¢~1 and o’ becomes two disjoint o}
and o). It means that n (¥ (64 't 1)) = n (Y (6771)) +2
and hence ||y (67~)| — |[¥ (6727 1c7Y)]| = 2.

Case 2: Suppose that (x, y) {671, that is, x and y lie
in two different cycles, say o; and a5y, in 57! In this

where and

case, ﬁf(x) and frf(y) also are in two different cycles,
say @] and), that are the mate cycles of &; and a,
respectively, in
(#T(x), #) = C3 and char (#T(y),#) =T. Then per-
forming 7 on 7 leads &; and o, to be joined together
into a cycle, say @, in 67-1¢~1 and @} and o} to be
joined into another cycle, say ¢'. If a7 and o, as well as
o} and o), does not contain both T and C3 elements

6n~l. By Lemma 4, char

simultaneously, then n.(y (677 1t71)) =n(y(67271)) -2
@Al = lly@Eate)l =-2. If
exactly one of ¢; and o, as well as exactly one of &}

and hence

and), contains both T and C3 elements simulta-
neously, then joining o; and o, will also change char
(x, #) from T to O and char (y, #) from C3 to N3,
and joining ¢; and «) will change char (AT (x), #)
from C3 to N3 and char (ﬁf(y), #) from T to O.
Therefore, the cycle o, as well as «’, contains a C3 (or
T) element and an N3 element. In this case, we can use
these four elements, along with their corresponding 5’
caps in 7, as a cap exchange to perform on 7, resulting
in that each of the cycles o and ¢’ is divided into two
smaller ones in new &#%-1. As a result,
n((ez) =n(v@#) and hence |y (@2~ - lly(67 7))l = 0.
Suppose that both a; and o,, as well as both o} and
o), contain T and C3 elements at the same time. Then,
after applying 7z to 7, one of the above two T elements
becomes an O element in new #, leading to o, as well
as o/, containing only a T element, along with a C3 ele-
ment and an N3 element. Next, we can use the T and

Page 8 of 13

N3 elements (or the C3 and N3 elements) in o and ¢’
and their corresponding 5’ caps in 7 to exchange
the caps of 7. After that, o, as well as ¢/, is divided
into two cycles in the new g7-1 and, conseque-
ne(¥ (671t 7) = ne(¥ (657))
(6~ HIl =1l (62~ NIl =0.

Notice that if # =6, then ||y (6727 !)|| = 0. Accord-
ing to Lemmas 5 and 6, any translocation z that acts on
7 as a fusion of 7 decreases the norm ||y(6771)|| at
most by two. Hence, we call 7 as a good fusion of r if
(672~ — I¥(6a~ 1t~ 1)|| =2. By the discussion
in the proof of Lemma 6, we have the following
corollary.

Corollary 1 Let = (#T(5cap(y, #)), #T(5cap(x, #)))(#T(y),
5cap(y, #))(x, y), 5cap(y, #))(x, y) be a fusion to act
on m, where char (x,7) =T and char (y,7)=C3. If
(x, Y)I6A ™Y, then t is a good fusion to perform on .

ntly, and hence

According to Corollary 1, it can be realized that f;, as
well as its mate 2-cycle f;, can derive a good fusion to
act on 7, where 1 < k < A. If A = m - 1, then performing
the m - 1 fusions on 7, as we did in Algorithm 1, corre-
sponds to an optimal ordering of 7 such that the
weighted reversal and block-interchange distance
between the assembly of 7 and o is minimum. If A <m -
1, then we show below that the fusions of m - 1 contigs
in 7 performed by our algorithm utilizing f, f, ..., fiu-1
is still optimal.

Lemma 7 Let T1, T2, - -+, Tm—1 be any sequence of m - 1
translocations that act on 7 as fusions to assemble m - 1
contigs in 1. Let &y, be the genome obtained by performing
1 and zero or more following cap exchanges on dy—1 such

that no more cap exchange can be derived from 6o, ",
wo=n and 1 < k < m - 1. Then
Wy (Gag I = ly (a1) < 2x.

Proof. For simplicity, we assume that in the beginning,

where

no cap exchange can be derived from 6&;' to act on
@o- Let Wi denote the genome obtained from @, by
removing its caps, where 1 < k < m - 1. By Lemma 6,
(6, "I — ¥ (6@, ")l € {—2,0,2} and by Corol-
lary 1, |[¥ (6@, ")l — llv (6, ")l =2 if T is a good
fusion to @k-1. In fact, there are at most A transloca-
tions from T1,72,...,Tm—1 that are good fusions. The
reason is as follows. As mentioned before, we can obtain
2) 2-cycles fi,fi,....fa.f, from &#-1 that can derive A
good fusions to act on 7, say T1,72,...,Tx, as well as 2
(m - A - 1) other 2-cycles fisi,fs,q/---+fm—1.f,_; that
cannot derive any good fusions to act on 7 since their T
and C3 elements lie in the same contig strand in 7. If
we can further extract two 2-cycles, say f and its mate
2-cycle f, from 57 ~1 that can derive a good fusion, say

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

7, to act on 7, then the C3 elements in both fand f
must locate at a contig whose T elements are in some f
and f,;, respectively, where 1 < k < A. This implies that
the good fusion 7 cannot act on # together with
71, T2, ..., Tn at the same time, since they will assemble
a circular contig that is not allowed. Now, we suppose
that 71,72, .- -, Tm-1 are the fusions obtained by the step
4 of Algorithm 1. Clearly, for 1=k<x, 1w@Eez)i-ivEai -2
since 7, is a good fusion to @k-1. Moreover, for
relzk=m—1, lpEaI - IvEa)I =0, due to the following rea-
son. According to Algorithm 1, we have g = (&1T(),
O T (1)) Ve) (%1 21)> - Dea T (1)) (Vi 22) (0s 21)»
which actually equals to (@k_lf(xk), cbk_lf(zk),
AT () 21 x). Moreover, we have v(6a,") = v (6,)r, ",
in which the composition of (xr, Y1) (Vi 2 X))~ !

equals to (xx, z;) and the composition of (&)k_lf(yk),
ral(ar), Dl (@) ot T () !
(6?)13711_‘\()/;3),5)1171?(211))- Recall that fi = (X, yx) and
fir = (@k_lf(y), cbk_lf(x)), both of which are extracted

equals to

from two mate cycles in ¥ (6@, ;). According to the
above discussion, both y; and ﬁf(xk) will be fixed in
Y(6&;, '), thus increasing the number of cycles by two.
However, the 2-cycle (x1, z;) will further join other two
cycles respectively containing x; and z; together into
one cycle and (ﬁ/F\(yk), ﬁf(zk)) will join another two
cycles respectively containing ﬁf(yk) and ﬁf(zk)
together into one cycle, thus decreasing the number of
cycles by two. As a result, n(v(6d,")) =n(v(68,2)).
Therefore, we have ||y (6o, ")l — ¥ (6@,)1l < 2A
for the (m -1) fusions obtained by the step 4 of Algo-
rithm 1. In fact, to let [y (6o, —Il¥ (60,1)l > 2A
happen, there must be a translocation z; that acts
on ®i—1 as a fusion of ®i-1 satisfying either (1)
1y (G) — ||1ﬁ(6c?);1)|| =0, the number of good
fusions newly created by 7; and its following cap
exchanges minus that of good fusions currently
destroyed by 7; and the following cap exchanges is
greater than or equal to one, and the total available
good fusions can assemble more contigs than before, or
2) Iy (6o DIl =¥ (6@, ")Il =—2, the number of
good fusions created by 7; and its following cap
exchanges minus that of the currently destroyed good
fusions is greater than or equal to two, and the total
good fusions can assemble more contigs than before.
However, we show below that no such a translocation z;
exits. Let «=(@iF(5aply, @i1)), dialF(5eap(e, di1))(@i1T (), di1T(@)(5cap(s, bi1),
sap(r, »-0))x) be a fusion (but not a good one) to @i-1,
where char (x, ®-1)=T and char (y, ®i—1)=C3.

Page 9 of 13

According to Corollary 1, we have (x, y) {6&; ", that
is, x and y are in different cycles of &c?)i:ll. Moreover,
char (x, ti@i—1) = O and char (y, tiwi—1) = N3 after
applying 7; to ®;_1. Below, we consider two cases.

Case 1: Suppose that there is a 2-cycle f; = (xj, ¥;) such
that Xj = X, where 1 <j <m — 1, char (xj, ®—1) =T and
char (yj, @i—1) = C3. For simplifying our discussion, we
assume that f; is disjoint from the other cycles in
s ap=7y)
of ¥(6&;). Thenin y (6@)7, ", the cycles f; and o
;1. Vi Vjr X),
y(v v,
, dn—1, ¥, x), char (y, tiwi—1) = N3 and

Y(6&; ") and y is in the cycle « = (a1, a2, ...

are joined into a cycle B = (a1, az, ...
which
y =(a, az, ...
char (yj, Ti®i-1) = C3. According to Lemma 3, there is a
cycle g’ = (Tid)i—lf) . L. that is the mate cycle of B in

can be expressed as where

Y(6&; ")t " In other words, we can extract ¢; = (, y))
from B and ¢ = (ri@i,lﬁ(yj), ric?),»,lf‘\(y)) from ', and
then apply 1/ = c¢)cjcac1 to Ti@i—; as a cap exchange,
¢y = (5cap(y, Tidi—1), 5cap(y;, Tidi-1))

tdi_1 D (5cap(y, Tidi-1))), Ti@i-1 L (5cap(y, tidi-1)))s
since the character pair (C3, N3) of (y;, y) belongs to

where and

CEpair. After that, y;, as well as 7;0; f‘(y), will be fixed
in the resulting ¥ (6®; ') and char (y, @;) will become
C3. As a result, n.(y(6; ') = n(¥(6&;})) and hence

Iy (60811 — 1w (6@ 1)I| = 0. According to the above
discussion, if j < A, that is, f; can be used to derive a good
fusion to @i-1, then this good fusion will be destroyed
when we perform 1',-/ 7i on @;—1. On the other hand, if char
(an—1, @i—1) =T and (an—1, ¥) = fr with k < A, that is, fx
can also be used to derive a good fusion to @i-1, then this
good fusion will be destroyed after applying 7/7; to @;_1,
since f; will become a 2-cycle with character pair of (T,
N3) in the resulting @;. Based on the above discussion,
the number of good fusions newly created by z; and 7/
minus that of good fusions currently destroyed by 7; and
7/ must be less than or equal to zero.

Case 2: Suppose that there is no fj = (xj, ¥;) such that
x; = %, where 1 <j<m—1, char (x,®i-1)=T and
char (yj, @i—1) = C3. Let @, denote the cycle containing
x and o, denote the cycle containing y in 86);11. Also
let @} and o) be the mate cycles of &; and o, respec-
tively, in c}d)i_fl. Note that after applying 7; to ®;_1, the
cycles a; and o, will be merged into a single cycle, say
o, in 6o

~L 77" and o] and &) will be merged into a

single cycle, say o’. Moreover, the characters of x and y

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

in T;@;—; will become O and N3, respectively. As dis-
cussed in the proof of Lemma 6, if both 7 and o, as
well as both @} and o), do not contain T and C3 ele-
ments simultaneously, then [ly(6a7)I - Ilv (a7)l = —2.
In this case, it can be verified that no existing good
fusion is destroyed by 7; and no new good fusion is cre-
ated by 7. In other words, the number of the increased
good fusions minus that of the destroyed good fusions
is zero. If at least one of o; and o, as well as at least
one of o] and a5, has both T and C3 elements at the
then ||y (6o)l — Iy (6a; DIl =0
according to the discussion in the proof of Lemma 6.
Now suppose that o; has no C3 element. Then T and
C3 elements in a, can form a 2-cycle that equals to
some fi = (xr, y¢), where 1<k<m—1 and V=Y.
After applying 7; to @i_1, the T element x from o
becomes an O element in o and the C3 element y from
0, becomes an N3 element in &. We can continue to
extract (xi, y), which is now a 2-cycle of (T, N3), from o

same time,

and act 7/ = ¢3¢j¢2¢1 on T;®;—1 as a cap exchange, where
¢y = (5cap(xp, Tidi—1), ¢ = (5cap(x, Tidi—1), 5cap(y, tidi-1)),
)= (ri(?)i,lf"(y), ri(bi,lf‘(xk)) and ¢, = (tioi_1 [(5cap(y, wdi1)),
T (5cap(xi, Ti@wi—1)))- Clearly, no new good fusion
is created in this case and one existing good fusion
derived by f; will be destroyed if k < A . Therefore, the
number of the increased good fusions minus that of the
destroyed good fusions is less than or equal to zero. Sup-
pose that ¢r; contains both T and C3 elements, where we
denote the C3 element by z for convenience. Then x and
z can form a 2-cycle of (T, C3) pair, which can derive a
good fusion T = c,cjcrct to @i if (x, 2) t @i—1, where
¢z = (5cap(x, @i—1), ¢z = (5cap(x, ®i—1), 5cap(z ®i-1)),
¢, = (&i10(2), i1 T (x)) and ¢, = (@1 T (5cap(z, di_1)),
@i—1T (5cap(x, @i-1)))- If (x, z) { ®i—1, then, as men-
tioned previously, 7 cannot work together with A other
good fusions derived by fi1,f,,...,fi at the same time,
since they will assemble a circular contig that is not
allowed. For the case in which &, contains no T element,
it is not hard to see that no new good fusion will be cre-
ated and no existing good fusion will be destroyed when
performing 7 and its following cap exchange on ®i-1,
resulting in that the number of the created good fusions
minus that of the destroyed good fusions is zero. We
now assume that @2 contains a T element, say w, and a
C3 element y. Then w and y are adjacent in @2 and (w,)
equals to some f;, where 1 <k < m — 1. After applying
Ti to wj_1, @ has a C3 element z, a T element w and an
N3 element y. Then a 2-cycle (w, y) can be extracted
from «a such that 7/ = ¢)cjcac can further perform on
Tiwi_1 as a cap exchange, where ¢; = (w, y), «- G),

Page 10 of 13

T T (5cap(w, tidi1)))» ¢ = (mdi1l(y), néi1(w) and
tidia [(Scap(w, tidi-1))), T I(Scap(w, idi-1)))-
Hence, if k < A, then the good fusion derived by f; will
be destroyed by 7; and 7{. However, the remaining o still
contains a C3 element z and a T element w, which can
derive a good fusion, say t’/. Hence, the number of the
increased good fusions minus that of the destroyed good
fusions is zero. On the other hand, if k > A, then no exit-
ing good fusion is destroyed by 7; and 7/. In this case, the
number of the increased good fusions minus that of the
destroyed good fusions is equal to one. However, it can
be verified that 7/ cannot work with A other good fusions
derived by fi1,f2,...,fi, because they will produce a cir-
cular contig that is not allowed. In other words, no more
contigs can be assembled after performing % and 7/ on
é)i—l-

According to the above discussion, we can conclude
that ||y (6@,)l = 1y (6@, L Il <2A. O

Based on Lemma 7, as well as the discussion in its
proof, the m - 1 fusions derived by Algorithm 1 corre-
spond to an optimal ordering of 7 with an induced per-
mutation assembly (m) such that the weighted
rearrangement distance A(mw, o) between assembly ()
and o is minimized. The obtained rearrangement dis-
tance A(w, o) is calculated based on the algorithm in

; : [l67 1|
our previous study [17], and is equal to 5 where

7 is the genome obtained by performing the cap
exchanges and m - 1 fusions on the initial capping of 7,
as done in the steps 3 and 4 in Algorithm 1, respec-
tively. The total time complexity of Algorithm 1 is
O(8n), where ¢ is the number of reversals and block-
interchanges used to transform assembly (m) into o. The
reason is as follows. Since m < n, the cost of the step 1
for capping the input genomes is O(n). The computa-
tion of 571 in the step 2 still can be done in O(n)
time. Recall that after running the step 3, each cycle in
67! has at most a T element and at most a C3 ele-
ment. Totally, there are 2mT elements and 2m C3 ele-
ments in the cycles of 57 ~1. Moreover, deriving two 2-
cycles to serve as a cap exchange from two long mate
cycles in 571 will divide these two long cycles into
four smaller cycles. Hence, there are O(n) cap
exchanges to be performed in the step 3, which totally
cost O(n) time since each cap exchange needs only
constant time. The step 4 assembles m contigs by utiliz-
ing 2(m - 1) 2-cycle fi,f],....fm=1.f,,_1, which can be
derived in advance from 5#-1 in O(n) time. Since
each fusion requires only constant time, the cost of the
step 4 is O(m + n), which is equal to O(n). As to the
steps 5 and 6, they can be done in O(8n) time in total,

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

since there are totally J iterations to find the reversals
and block-interchanges and the time complexity of each
iteration is dominated by the cost of finding a reversal
or block-interchange that is O(n) time. Notice that
although Algorithm 1 we described above is dedicated
to linear, uni-chromosomal genomes, it can still be
applied to circular, uni-chromosomal genomes, or to
multi-chromosomal genomes with linear or circular
chromosomes in a way of chromosome by chromosome.

Theorem 1 Given a partially assembled genome m and
a completely assembled genome o, the one-sided block
ordering problem can be solved in O(5n) time and the
weighted rearrangement distance between the permuta-
tion assembly(ir) induced by the optimal ordering of ©

and o is H‘A”Aglu that can be computed in O(n) time,

7 is the capping genome of m with the cap

where 7
exchanges and m - 1 fusions being done, & is the cap-

ping genome of O, n is the number of genes or markers,

Page 11 of 13

and 90 is the number of reversals and block-interchanges
used to transform assembly(r) into o.

As mentioned in the introduction, any algorithm to
solve the one-sided block ordering problem can be used
to assemble (i.e., order and orient) the contigs in a draft
genome based on a reference genome, if we denote this
draft genome as 7 and use the reference genome as o.
For this application, our Algorithm 1 can finish its job
just in O(n) time, because it does not need to do the
steps 5 and 6 in this situation.

Experimental results

We have implemented Algorithm 1 as mentioned in the
previous section into a program and also compared its
accuracy performance to SIS on assembling the contigs
of partially assembled genomes using some simulated
datasets of linear, uni-chromosomal genomes. For this
purpose, we compared the permutation induced by an
assembly algorithm for a partially assembled genome

(a) o2
018
0.16

0.14

012

0.1

0.08

0.06

0.04

®) o3

Averaged normalized mis-join error (%)

0.02

—— Our program
weseeree SIS

0

L e B S S S S S S B S e L m e
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of rearr

0.3

&

s (reversal/tr

P

ition ratio = 1:0)

-~
)
S

0.25

0.2

0.1

Averaged normalized mis-join error (%)

0

Our program

Averaged normalized mis-join error (%)

—— QOur program
e SIS

—T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65

—T T T T
70 75 80 85 9% 95 100

Number of rearr

(d) o4

i)

ts (reversal/tr

P

ition ratio = 2:1)

0.35 4

0.3

0.2 4

0.15 4

01 4

Averaged normalized mis-join error (%)

0.05 4

0

——— Our program
wenseees SIS

T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of rearr: ts (reversal/transposition ratio = 1:1)

involved reversals and transpositions.
A\

Figure 1 Comparison of accuracy performance between our program and SIS on simulated datasets with different ratios of the

T — T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of rearrangements (reversal/transposition ratio = 0:1)

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59
http://www.biomedcentral.com/1471-2105/14/55/S9

with its actual permutation by counting the number of
breakpoints between them, where each breakpoint cor-
responds to an error of incorrectly joining two contigs
(i.e., a mis-join error) caused by the assembly algorithm.
This breakpoint number is then normalized by the num-
ber of contigs minus p to represent a fraction of incor-
rect contig joins, where p = 1 if the chromosome is
linear; otherwise, p = 0. Each of partially assembled gen-
omes with single linear chromosome in our simulated
datasets was prepared and tested as follows. First, we
generated the reference genome ¢ = (1, 2, ..., n) with a
linear chromosome of n genes, where n varies from 50
to 1000 with in the step of 50, and performed J random
rearrangement events (reversals and/or transpositions)
on s to obtain a permutation of a linear, uni-chromoso-
mal genome 7, where ¢ varies from zero to 100 in the
step of 1. Among the J rearrangement events in our
simulations, we used four different occurrence ratios to
randomly generate reversals and transpositions: (1) 1:0,
(2) 2:1, (3) 1:1 and (4) O:1. Next, the genome 7z’ is ran-
domly fragmented into m contigs of various sizes to
simulate the partially assembled genome 7, where m
varies from 50 to 500 with step 50. Finally, for each
choice of n, m, 0 and reversal/transposition ratio, we
repeated the experiments 10 times and compared our
program with SIS using their averaged normalized mis-
join errors. As shown in Figure 1, the averaged normal-
ized contig mis-join errors of our program are lower
than those of SIS for all simulated datasets when the
number of the involved reversals and transpositions is
increased. In particular, if there are more transpositions
involved in the rearrangement events, then the gap of
accuracy performance between our program and SIS is
increasing. The main reason may be due to the fact that
our program can deal with both reversals and block-
interchanges (including transpositions as a special case),
while SIS considers only reversals without taking into
account transpositions.

Conclusions

In this study, we introduced and studied the one-sided
block/contig problem with optimizing the weighted
reversal and block-interchange distance, which particu-
larly has a useful application in genome resequencing.
We finally designed an efficient algorithm to solve this
problem in O(8n) time, where n is the number of
genes or markers and d is the number of used reversals
and block-interchanges. In addition, we showed that the
assembly of the partially assembled genome can be done
in O(n) time and its weighted rearrangement distance
from the completely assembled genome can be calcu-
lated in advance in O(n) time. Finally, our simulation
results showed that the accuracy performance of our

Page 12 of 13

program is better than that of the currently existing tool
SIS when the number of the involved reversals and
transpositions is increased. Moreover, the gap of this
accuracy performance between our program and SIS is
increasing, if there are more transpositions involved in
the rearrangement events.

Authors’ contributions

Corresponding author CLL conceived of the study, designed and analyzed
the algorithm, and drafted the manuscript. The other authors CLL and KTC
participated in the development of the program, as well as in the simulated
experiments and their result discussion. The authors wish it to be known
that the first two authors CLL and KTC contributed equally to this work and
should be considered co-first authors. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported in part by National Science Council of Republic of
China under grant NSC100-2221-E-007-129-MY3.

Declarations

The publication costs for this article were funded by National Science
Council of Republic of China under grant NSC100-2221-E-007-129-MY3.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 5, 2013: Proceedings of the Third Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-seq 2013). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/14/S5.

Published: 10 April 2013

References

1. Shendure J, Ji HL: Next-generation DNA sequencing. Nature Biotechnology
2008, 26:1135-1145.

2. Mardis ER: The impact of next-generation sequencing technology on
genetics. Trends in Genetics 2008, 24:133-141.

3. Metzker ML: Sequencing technologies - the next generation. Nature
Reviews Genetics 2010, 11:31-46.

4. Fertin G, Labarre A, Rusu |, Tannier E, Vialette S: Combinatorics of Genome
Rearrangements Cambridge, Massachusetts: The MIT Press; 2009.

5. Gaul E Blanchette M: Ordering partially assembled genomes using gene
arrangements. Lecture Notes in Computer Science 2006, 4205:113-128.

6. Bourque G, Pevzner PA: Genome-scale evolution: reconstructing gene
orders in the ancestral species. Genome Research 2002, 12:26-36.

7. Hannenhalli S, Pevzner PA: Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. Journal of the
ACM 1999, 46:1-27.

8. Bentley DR: Whole-genome re-sequencing. Current Opinion in Genetics and
Development 2006, 16:545-552.

9. Koboldt DC, Ding L, Mardis ER, Wilson RK: Challenges of sequencing
human genomes. Briefings in Bioinformatics 2010, 11:484-498.

10. van Hijum SAFT, Zomer AL, Kuipers OP, Kok J: Projector 2: contig mapping
for efficient gap-closure of prokaryotic genome sequence assemblies.
Nucleic Acids Research 2005, 33:W560-W566.

11, Richter DC, Schuster SC, Huson DH: OSLay: optimal syntenic layout of
unfinished assemblies. Bioinformatics 2007, 23:1573-1579.

12. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M: ABACAS: algorithm-
based automatic contiguation of assembled sequences. Bioinformatics
2009, 25:1968-1969.

13. Rissman Al, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT: Reordering
contigs of draft genomes using the Mauve Aligner. Bioinformatics 2009,
25:2071-2073.

14. Munoz A, Zheng CF, Zhu QA, Albert VA, Rounsley S, Sankoff D: Scaffold
filling, contig fusion and comparative gene order inference. BMC
Bioinformatics 2010, 11:304.

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.ncbi.nlm.nih.gov/pubmed/18846087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17055251?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20519329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20519329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19515959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19515959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525342?dopt=Abstract

Li et al. BMC Bioinformatics 2013, 14(Suppl 5):59 Page 13 of 13
http://www.biomedcentral.com/1471-2105/14/S5/59

15. Husemann P, Stoye J: r2cat: synteny plots and comparative assembly.
Bioinformatics 2010, 26:570-571.

16. Dias Z, Dias U, Setubal JC: SIS: a program to generate draft genome
sequence scaffolds for prokaryotes. BMC Bioinformatics 2012, 13:96.

17. Huang YL, Lu CL: Sorting by reversals, generalized transpositions, and
translocations using permutation groups. Journal of Computational Biology
2010, 17:685-705.

18. Blanchette M, Kunisawa T, Sankoff D: Parametric genome rearrangement.
Gene 1996, 172:GC11-GC17.

doi:10.1186/1471-2105-14-S5-S9
Cite this article as: Li et al: Assembling contigs in draft genomes using
reversals and block-interchanges. BMC Bioinformatics 2013 14(Suppl 5):S9.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

www.biomedcentral.com/submit

Submit your manuscript at (BioMed Central

http://www.ncbi.nlm.nih.gov/pubmed/20015948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22583530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22583530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20500022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20500022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8654963?dopt=Abstract

	Abstract
	Background
	Preliminaries
	One-sided block ordering problem
	One-sided block ordering problem with reversal and block-interchange distance
	Permutation groups
	A model for representing DNA molecules
	An efficient algorithm for the one-sided block ordering problem

	Experimental results
	Conclusions
	Authors' contributions
	Competing interests
	Acknowledgements
	Declarations
	References

