
PROCEEDINGS Open Access

De Bruijn Superwalk with Multiplicities Problem is
NP-hard
Evgeny Kapun, Fedor Tsarev*

From RECOMB-seq: Third Annual Recomb Satellite Workshop on Massively Parallel Sequencing
Beijing, China. 11-12 April 2013

Abstract

De Bruijn Superwalk with Multiplicities Problem is the problem of finding a walk in the de Bruijn graph containing
several walks as subwalks and passing through each edge the exactly predefined number of times (equal to the
multiplicity of this edge). This problem has been stated in the talk by Paul Medvedev and Michael Brudno on the
first RECOMB Satellite Conference on Open Problems in Algorithmic Biology in August 2012. In this paper we show
that this problem is NP-hard. Combined with results of previous works it means that all known models for genome
assembly are NP-hard.

Introduction
The majority of current genome sequencing technologies
are based on the shotgun method – the genome is split
into several small fragments which are read directly. The
problem of reconstructing the initial genome from these
small fragments (reads) is known as the genome assembly
problem. It is one of the fundamental problems of bioin-
formatics. Several models for genome assembly were stu-
died by researchers. If reads are assumed to be error-free,
the assumption made in all models is that every read
from the input must be a substring of the genome.
One of the models is based on maximum parsimony

principle – the original genome should be the shortest
string containing all reads as substrings. This leads to the
Shortest Common Superstring (SCS) problem which is
NP-hard [1]. Modeling genome assembly as the SCS pro-
blem has a sufficient drawback: the majority of genomes
have repeats – multiple similar (or even equal) fragments,
while the SCS solution would under-represent these
repeats.
The de Bruijn graph model proposed in [2] deals with

repeats much better. It is based on generating a set of
all (k + 1)-character substrings (called (k + 1)-mers) of
reads and constructing a de Bruijn graph in which the

vertices are k-mers and edges are (k + 1)-mers. Each
read is represented by a walk in this graph. Any walk
containing all the reads as subwalks represents a valid
assembly. Consequently, the genome assembly problem
is formulated as finding the shortest superwalk, which is
closely related to the polynomial time Eulerian tour pro-
blem (which was previously used to solve the problem
of sequencing by hybridization [3]). Despite that, the
Shortest De Bruijn Superwalk problem (SDBS) was
shown to be NP-hard [4]. Note also that SDBS has a
special case solvable in polynomial time – if each sub-
walk contains only one edge, this problem can be
reduced to Chinese Postman Problem [5].
In [6] an algorithm for reads’ copy counts estimation

based on maximum likelihood principle was proposed. A
similar algorithm can be applied to find multiplicities of
edges in the de Bruijn graph, so, the following problem
was formulated in the talk [7]. Given a de Bruijn graph
with vertices of size k constructed from a set of reads and
multiplicities (in unary notation) of all edges of this graph
find a superwalk consistent with edge multiplicities and
containing all reads as subwalks. This problem is named
De Bruijn Superwalk with Multiplicities problem (DBSM)
and its computational complexity remained unknown.
In this paper we prove that this problem is NP-hard.

* Correspondence: tsarev@rain.ifmo.ru
St. Petersburg National Research University of Information Technologies,
Mechanics and Optics Genome Assembly Algorithms Laboratory 197101,
Kronverksky pr., 49, St. Petersburg, Russia

Kapun and Tsarev BMC Bioinformatics 2013, 14(Suppl 5):S7
http://www.biomedcentral.com/1471-2105/14/S5/S7

© 2013 Kapun and Tsarev; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:tsarev@rain.ifmo.ru
http://creativecommons.org/licenses/by/2.0

NP-hardness proof
The proof has the following structure. First, the Common
Superstring with Multiplicities (CSM) problem is formu-
lated. This problem is shown to be NP-hard by reducing
SCS to it. Then CSM is reduced to de Bruijn Superwalk
with Multiplicities problem.
Let S be a string over alphabet ∑. Let Lc (S) denote the

number of occurrences of character c Î ∑ in S. Then, let
Common Superstring with Multiplicities problem be the
problem, given strings S1, S2, ..., Sn and nonnegative inte-
gers lc for all c Î ∑ (given in unary notation), to find out if
there exists a string S such that:

- all strings S1, S2, ..., Sn are substrings of S,
- Lc (S) = lc for each c Î ∑.

Theorem 1. Common Superstring with Multiplicities
problem is NP-hard for |∑| = 2.
Proof. To prove this, we take an instance of Shortest

Common Superstring problem with ∑ = {0, 1}, which is
NP-hard [8], and transform it into an instance of Com-
mon Superstring with Multiplicities problem with the
same answer. Let the original instance of SCS problem
be {S′

1, S
′
2, ..., S

′
n}, l’ (this instance means that we need to

find if there exists a superstring of S′
1, S

′
2, ..., S

′
n having

length at most l’).
Let us define T0 = 000111 and T1 = 001011. These

strings have been selected in such a way that each of
them contains the same number of zeroes and ones and
they do not overlap – no proper suffix of any of the Tc

(c Î {0, 1}) is equal to any of the proper prefixes of any
of the Tc(c Î {0, 1}).
Then, let Sk = T(S′

k) and l0 = l1 = 3l’, where

T(c1c2 . . . ck) = Tc1Tc2 . . . Tck. The following lemmas

formulate several properties of these instances of SCS and
CSM problems. Equivalence of these instances is shown in
lemmas 3 and 7.
Lemma 1. L0(T(S’)) = L1(T(S’)) = 3|S’|.
Proof. It follows directly from the definition of T.
Lemma 2. If S′

1 is a substring of S′
2, then T(S′

1) is a
substring of T(S′

2).
Proof. It follows directly from the definition of T.
Lemma 3. If the answer for the original instance of

SCS problem is positive, then the answer for the instance
of CSM problem is also positive.
Proof. If the answer for the instance of SCS problem is

positive, then there exists a string S’ of length l’’ ≤ l’ such
that S’ is a superstring of S′

1, S
′
2, . . . , S

′
n. Then, let S = T

(S’0l’-l’’). Because |S’0l’-l’’| = |S’| + |0l’-l’’| = l’’ + (l’-l’’) = l’,
L0(S) = L1(S) = 3l’ (see lemma 1) and all Siare substrings
of T(S’) (see lemma 2) the answer to the instance of CSM
is indeed positive.

Lemma 4. Let S′
1and S′

2be two strings such that there is

a suffix of T(S′
1) equal to a prefix of T(S′

2). Then the

following holds:

- the length of that suffix is a multiple of 6,
- if the length of the suffix is 6k, then the suffix of
length k of S′

1 is equal to the prefix of length k of S′
2.

Proof. Suppose that the length of the suffix is equal to
6k + i, 0 < i <6. Let c1 be the last character of S′

1 and c2
be the character at the (k + 1)-th position of S′

2 (positions
are numbered starting from one). Then, the suffix of Tc1
of length i would be equal to the prefix of Tc2 of the same
length.
As mentioned before, no proper suffix of any of the Tc

(c Î {0, 1}) is equal to any of the proper prefixes of any of
the Tc(c Î {0, 1}). Therefore, the length of the suffix is a
multiple of 6. The second follows from T0 and T1 both
having length 6 and T0 ≠ T1.
Lemma 5. Let S′

1and S′
2 be two strings such that T(S′

1)
is a substring of T(S′

2).
Then following statements hold:

- each occurrence of T(S′
1) in T(S′

2) starts at a position
which is congruent to 1 modulo 6,
- if T(S′

1) occurs at position 6k + 1 in T(S′
2), then S′

1
occurs as a substring of S′

2 at position k + 1.

Proof. The proof is analogous to lemma 4.
Lemma 6. Let S′

1, S
′
2, ..., S

′
n be a set of strings, and let S

be a superstring of T(S′
1), T(S

′
2), . . . ,T(S

′
n) such that

T(S′
2), ...,T(S

′
n), T(S

′
2), ...,T(S

′
n) occur in S at positions i1,

i2, ..., in respectively (if some T(S′
k) occurs in S in multiple

positions only one position is recorded) and every charac-
ter of S is covered by at least one of those occurrences.
Then the following statements hold:

- i1, i2, ..., in are all congruent to 1 modulo 6,
- length of S is a multiple of 6,
- There exists a string S’ such that S = T(S’). Strings
S′
1, S

′
2, ..., S

′
n occur in S’ at positions i′1, i

′
2, ..., i

′
n,where

ik = 6i′k − 5 for k = 1, 2, ..., n.

Proof. Suppose the contrary. Let ikbe the smallest of i1,
i2, ..., inwhich is not congruent to 1 modulo 6. Then, if
ik-th character of S is covered by some T(S′

k′) such that
ik’ <ik, we have a contradiction because ik’ is not congruent
with ik modulo 6, but either T(S′

k) and T(S′
k′) overlap, or

T(S′
k) is a substring of T(S′

k′), which would violate either
lemma 4 or lemma 5. If ik-th character of S is not covered
by any T(S′

k′), such that, ik’ <ik, than (ik- 1)-th character of
S must be covered by the last character of some T(S′

k′).

Kapun and Tsarev BMC Bioinformatics 2013, 14(Suppl 5):S7
http://www.biomedcentral.com/1471-2105/14/S5/S7

Page 2 of 4

But length of T(S′
k′) is a multiple of 6, so ikmust be con-

gruent to ik’ modulo 6, which leads to a contradiction.
The last character of S is also covered by the last char-

acter of some T(S′
k). Because ikis congruent to 1 modulo

6 and the length of T(S′
k) is a multiple of 6, the length of

S is also a multiple of 6.
To prove the last point, it is enough to notice that for j =

1, 7, ..., |S| - 5, the substring of S starting at position j and
having length 6 is either T0 or T1. This follows from the
fact that the j-th character of S is covered by an occurrence
of T(S′

k) for some k, but restrictions on lengths of T(S′
k)

and on ik mean that the whole substring of length 6 would
be covered by T(S′

k). Moreover, the position at which the

substring of length 6 occurs in T(S′
k) is congruent to 1

modulo 6, therefore that substring is either T0 or T1 by
definition of T .
Lemma 7. If the answer for the instance of CSM pro-

blem is positive, then the answer for the original instance
of SCS problem is also positive.
Proof. If the answer for the instance of CSM problem is

positive, then there exists a string S of length 6l’ which is
a superstring of S1, S2, ..., Sn. Let S’’ be the shortest com-
mon superstring of these strings. Then |S’’| ≤ 6l’ and
each character of S’’ is covered by an occurrence of one
of S1, S2, ...,Sn. Recall that Sk = T(S′

k). By lemma 6, there
exists a string S’ such that S’’ = T(S’) and S′

1, S
′
2, ..., S

′
n are

Figure 1 A graph on which Common Superwalk with Multiplicities problem is NP-hard.

Figure 2 Embedding of the graph from the figure 1 into a de Bruijn graph.

Kapun and Tsarev BMC Bioinformatics 2013, 14(Suppl 5):S7
http://www.biomedcentral.com/1471-2105/14/S5/S7

Page 3 of 4

substrings of S’. Also the equation |S′| = |S′′|
6 ≤ 6l′

6 = l′

holds. Therefore, the answer for the original instance of
SCS problem is also positive.
Theorem 2. The de Bruijn Superwalk with Multiplici-

ties Problem is NP-hard for any fixed |∑| ≥ 2 and any
positive integer k.
Proof. Consider the graph with one vertex and two

loops (see Figure 1). An instance of Common Super-
string with Multiplicities problem with ∑ = {0, 1} can be
translated into an instance of Superwalk with Multiplici-
ties problem on this graph in the following way:

- each Sk is directly translated into a walk, by repre-
senting 0 as occurrence of edge 0 and 1 as occur-
rence of edge 1 in the walk,
- the multiplicity of edge 0 is set to l0, and the mul-
tiplicity of edge 1 is set to l1.

To complete the proof we need to embed this graph
into a de Bruijn graph with given k.
This can be done in straightforward manner (see

Figure 2). Edge 0 is mapped to a loop, while edge 1 is
mapped to a cycle of length k + 1.

Conclusion
We have proved that the de Bruijn Superwalk with Multi-
plicities Problem is NP-hard. Results of this work com-
bined with [4] show that all known models for genome
assembly are NP-hard.
However, both de Bruijn Shortest Superwalk and de

Bruijn Superwalk with Multiplicities problems have a spe-
cial case (if subwalks consist of one edge) solvable in poly-
nomial time. A reasonable direction for future research is
to find if there exist other polynomially solvable special
cases of these problems.

Authors’ contributions
The work presented here was carried out in collaboration between all
authors. All authors have contributed to, seen and approved the manuscript.

Acknowledgements
Research was supported by the Ministry of Education and Science of Russian
Federation in the framework of the federal program “Scientific and scientific-
pedagogical personnel of innovative Russia in 2009-2013” (contract
16.740.11.0495, agreement 14.B37.21.0562).

Declarations
Publication of this article was supported by the Ministry of Education and
Science of Russian Federation in the framework of the federal program
“Scientific and scientific-pedagogical personnel of innovative Russia in 2009-
2013” and by the University ITMO.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 5, 2013: Proceedings of the Third Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-seq 2013). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/14/S5.

Published: 10 April 2013

References
1. Gallant J, Maier D, Storer J: On finding minimal length superstrings.

J Comput Syst Sci 1980, 20(1):50-58.
2. Pevzner P, Tang H, Waterman M: An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences 2001,
98:9748-9753.

3. Pevzner P: 1-Tuple DNA sequencing: computer analysis. J Biomol Struct
Dyn 1989, 7(1):63-73.

4. Medvedev P, Georgiou K, Myers G, Brudno M: Computability of Models for
Sequence Assembly, Algorithms in Bioinformatics, 7th International
Workshop, WABI 2007, LNCS.4645:289-301.

5. Edmonds J, Johnson E: Matching, Euler tours and the Chinese postman.
Mathematical Programming 1973, 5:88-124.

6. Medvedev P, Brudno M: Maximum Likelihood Genome Assembly. Journal
of Computational Biology 2009, 16(8):1101-1116.

7. Medvedev P, Brudno M: De Bruijn Superwalk with Multiplicities Problem.
Talk at RECOMB Satellite Conference on Open Problems in Algorithmic Biology
St. Petersburg, Russia; 2012.

8. Garey M, Johnson D: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman; 1979.

doi:10.1186/1471-2105-14-S5-S7
Cite this article as: Kapun and Tsarev: De Bruijn Superwalk with
Multiplicities Problem is NP-hard. BMC Bioinformatics 2013 14(Suppl 5):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Kapun and Tsarev BMC Bioinformatics 2013, 14(Suppl 5):S7
http://www.biomedcentral.com/1471-2105/14/S5/S7

Page 4 of 4

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2684223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19645596?dopt=Abstract

	Abstract
	Introduction
	NP-hardness proof
	Conclusion
	Authors' contributions
	Acknowledgements
	Declarations
	References

