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Abstract

Background: A conformational epitope (CE) in an antigentic protein is composed of amino acid residues that are
spatially near each other on the antigen’s surface but are separated in sequence; CEs bind their complementary
paratopes in B-cell receptors and/or antibodies. CE predication is used during vaccine design and in immuno-
biological experiments. Here, we develop a novel system, CE-KEG, which predicts CEs based on knowledge-based
energy and geometrical neighboring residue contents. The workflow applied grid-based mathematical
morphological algorithms to efficiently detect the surface atoms of the antigens. After extracting surface residues,
we ranked CE candidate residues first according to their local average energy distributions. Then, the frequencies at
which geometrically related neighboring residue combinations in the potential CEs occurred were incorporated
into our workflow, and the weighted combinations of the average energies and neighboring residue frequencies
were used to assess the sensitivity, accuracy, and efficiency of our prediction workflow.

Results: We prepared a database containing 247 antigen structures and a second database containing the 163
non-redundant antigen structures in the first database to test our workflow. Our predictive workflow performed
better than did algorithms found in the literature in terms of accuracy and efficiency. For the non-redundant
dataset tested, our workflow achieved an average of 47.8% sensitivity, 84.3% specificity, and 80.7% accuracy
according to a 10-fold cross-validation mechanism, and the performance was evaluated under providing top three
predicted CE candidates for each antigen.

Conclusions: Our method combines an energy profile for surface residues with the frequency that each
geometrically related amino acid residue pair occurs to identify possible CEs in antigens. This combination of these
features facilitates improved identification for immuno-biological studies and synthetic vaccine design. CE-KEG is
available at http://cekeg.cs.ntou.edu.tw.
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Introduction

A B-cell epitope, also known as an antigenic determi-
nant, is the surface portion of an antigen that interacts
with a B-cell receptor and/or an antibody to elicit either
a cellular or humoral immune response [1,2]. Because of
their diversity, B-cell epitopes have a huge potential for
immunology-related applications, such as vaccine design
and disease prevention, diagnosis, and treatment [3,4].
Although clinical and biological researchers usually
depend on biochemical/biophysical experiments to iden-
tify epitope-binding sites in B-cell receptors and/or anti-
bodies, such work can be expensive, time-consuming,
and not always successful. Therefore, in silico methods
that can reliably predict B-cell epitopes would simplify
immunology-related experiments [5]. Given accurate
epitope-prediction tools, immunologists can then focus
on the appropriate protein residues and reduce their
experimental efforts.

In general, epitopes are described as linear (continuous)
or conformational (discontinuous) [6]. A linear epitope
(LE) is a short, continuous sequence of amino acid resi-
dues on the surface of an antigen. Although an isolated LE
is usually flexible, which destroys any information con-
cerning its conformation in the protein, it can adapt that
conformation to react weakly with a complementary anti-
body. Conversely, a conformational epitope (CE) is com-
posed of residues that are not sequential but are near in
space [7]. Several algorithms, which require a protein
sequence as input, are available for LE prediction, includ-
ing BEPITOPE (8], BCEPred [9], BepiPred [10], ABCpred
[11], LEPS [12,13] and BCPreds [14]. These algorithms
assess the physicochemical propensities, such as polarity,
charge, or secondary structure, of the residues within the
targeted protein sequence, and then apply quantitative
matrices or machine-learning algorithms, such as the hid-
den Markov model, a support vector machine algorithm,
or an artificial neural network algorithm, to predict LEs.
However, the number of LEs on native proteins has been
estimated to be ~10% of all B-cell epitopes, and most
B-cell epitopes are CEs [15]. Therefore, to focus on the
identification of CEs is the more practical and valuable
task. For CE prediction, several algorithms have been
developed including CEP [16], DiscoTope [17], PEPOP
[18], ElliPro [19], PEPITO [20], and SEPPA [21], all of
which use combinations of the physicochemical character-
istics of known epitope residues and trained statistical fea-
tures of known antigen-antibody complexes to identify CE
candidates.

A different approach relies on phage display to produce
peptide mimotopes that can be used to characterize the
relationship between an epitope and a B-cell receptor or
an antibody. Peptide mimotopes bind B-cell receptors
and antibodies in a manner similar to those of their
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corresponding epitopes. LEs and CEs can be identified by
mimotope phage display experiments. MIMOP is a hybrid
computational tool that predicts epitopes from information
garnered from mimotope peptide sequences [22]. Similarly,
Mapitope and Pep-3D-Search use mimotope sequences to
search linear sequences for matching patterns of structures
on antigen surfaces. Other algorithms can identify CE resi-
dues with the use of the Ant Colony Optimization algo-
rithm and statistical threshold parameters based on
nonsequential residue pair frequencies [23,24].

Crystal and solution structures of the interfaces of
antigen-antibody complexes characterize the binding
specificities of the proteins in terms of hydrogen bond
formation, van der Walls contacts, hydrophobicity and
electrostatic interactions (reviewed by [25]). Only a
small number residues located within the antigen-anti-
body interface energetically contribute to the binding
affinity, which defines these residues as the “true” anti-
genic epitope [26]. Hence, we hypothesized that the
energetically important residues in epitopes could be
identified in silico. We assumed that the free, overall
native antigen structure is the lowest free energy state,
but that residues involving in antibody binding would
possess higher potential energies. Two types of potential
energy functions are currently used for energy calcula-
tions involving proteins: a physical-based potential func-
tion that focuses on the fundamental forces between
atoms, and a knowledge-based potential that relies on
parameters derived from experimentally solved protein
structures [27]. Owing to the heavy computational com-
plexity required for the first approach, we adopted the
knowledge-based potential for our workflow. The energy
functions for the surface residues used are those of the
Protein Structure Analysis website [28].

Additionally, a study concerning LE prediction [29]
showed that certain sequential residue pairs occur more
frequently in LE epitopes than in non-epitopes. A similar
statistical feature may, therefore, enhance the performance
of a CE prediction workflow. Hence, we incorporated the
statistical distribution of geometrically related pairs of resi-
dues found in verified CEs and the identification of resi-
dues with relatively high energy profiles. We first located
surface residues with relatively high knowledge-based
energies within a specified radius of a sphere and assigned
them as the initial anchors of candidate epitope regions.
Then we extended the surfaces to include neighboring
residues to define CE clusters. For this report, the distribu-
tions of energies and combined with knowledge of geome-
trically related pairs residues in true epitopes were
analyzed and adopted as variables for CE prediction. The
results of our developed system indicate that it provides
an outstanding CE prediction with high specificity and
accuracy.
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Methods
CE-KEG workflow architecture
The proposed CE prediction system based on knowl-
edge-based energy function and geometrical neighboring
residue contents is abbreviated as “CE-KEG”. CE-KEG is
performed in four stages: analysis of a grid-based pro-
tein surface, an energy-profile computation, anchor
assignment, and CE clustering and ranking (Figure 1).
The first module in the “Grid-based surface structure
analysis” accepts a PDB file from the Research Collabora-
tory for Structural Bioinformatics Protein Data Bank [30]
and performs protein data sampling (structure discretiza-
tion) to extract surface information. Subsequently, three-
dimensional (3D) mathematical morphology computa-
tions (dilation and erosion) are applied to extract the sol-
vent accessible surface of the protein in the “Surface
residue detection” submodule [31], and surface rates for
atoms are calculated by evaluating the exposure ratio
contacted by solvent molecules. Then, the surface rates
of the side chain atoms of each residue are summed,
expressed as the residue surface rate, and exported to a
look-up table. The next module is “Energy profile com-
putation” that uses calculations performed at the ProSA
web system to rank the energies of each residue on the
targeted antigen surface(s) [28]. Surface residues with
greater energies and located at mutually exclusive
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positions are considered as the initial CE anchors. The
third module is “Anchor assignment and CE clustering”
which performs CE neighboring residue extensions using
the initial CE anchors to retrieve neighboring residues
according to energy indices and distances among anchor
and extended residues. Additionally, the frequencies of
occurrence of pair-wise amino acids are calculated to
select suitable potential CE residue clusters. For the final
module, “CE ranking and output result” the values of the
knowledge-based energy propensities calculated in mod-
ule 2 and the frequencies of occurrence of the geometri-
cally related residue pairs are weighted and then
combined to provide CE predictions.

Preparation of test datasets

The epitope data derived from the DiscoTope server, the
Epitome database, and the Immune Epitope Database
(IEDB) were collected to validate the performance of CE-
KEG. Using DiscoTope, we obtained a benchmark data-
set of 70 antigen-antibody complexes from the SACS
database [32]. These complexes had been solved to at
least 3-A resolution, and the antigens contained more
than 25 residues. The epitope residues in this dataset
were defined and chosen as those within 4 A of the resi-
dues directly bound to the antibody (tied residues). The
Epitome dataset contained 134 antigens which were

-
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Figure 1 CE prediction workflow.
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inferred by the distances between the antigens and the
complementary-determining of the corresponding anti-
bodies, and these antigens were also successfully analyzed
through ProSA’s energy function evaluation. Epitome
labels residues as interaction sites if an antigen atom is
within 6 A of a complementary-determining antibody
region. The IEDB dataset was initially composed of 56
antigen chains acquired at the IEDB website (http://www.
immuneepitope.org). This dataset contained only anti-
gens for which the complex-structure annotation “Com-
plexPdbld” was present in the “iedb_export” zip file.
Because 11 of these antigens contained fewer than 35
residues and 2 antigens could not be successfully ana-
lyzed by ProSA, we only retained 43 antigen-antibody
complexes in the final IEDB dataset. In brief, the total
number of testing antigens from previous three resources
is 247, and after removing duplicate antigens, a new test-
ing dataset containing 163 non-redundant antigens is
used for validation of CE-KEG.

Surface structure analysis

The interaction between an antigen and an antibody
usually depends on their surface resides. The concepts of
solvent accessible and molecular surfaces for proteins
were first suggested by Lee and Richards [33] (Figure 2).
Later, Richards introduced the molecular surface con-
structs contact and re-entrant surfaces. The contact sur-
face represents the part of the van der Waals surface that
directly interacts with solvent. The re-entrant surface is
defined by the inward-facing part of a spherical probe that
touches more than one protein surface atom [34]. In 1983,
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Connolly employed the Gauss-Bonnet approach to calcu-
late a molecular surface, which is defined by a small-sized
probe that is rolled over a protein’s surface [31]. On the
basis of the definitions given above, we developed a grid-
based algorithm that could efficiently identify surface
regions of a protein.

3D mathematical morphology operations

Mathematical morphology was initially proposed as a
rigorous theoretic framework for shape analysis of bin-
ary images. Here, we employed the 3D mathematical
morphological dilation and erosion operations for sur-
face region calculations. Based on superior characteris-
tics of morphology in terms of describing shape and
structural characteristics, an efficient and effective algo-
rithm was designed to detect precise surface rates for
each residue. The query antigen structure was denoted
as X as an object in a 3D grid:

X={v:ifvm=1,v=(xy2) eZ3.

where f is called as the characteristic function of X.
On the other hand, the background X¢ is defined as:

X={v:fv)=0,v=(xy2) € Z3}.

A 1.5-A radius sphere is employed as a fundamental
structure element B. The symmetric of B with respect to
the origin (0, 0, 0) is denoted as B and written as

B ={—v:veB}.

Figure 2 A cartoon of protein surface representation.
A\

solvent accessible surface

\ molecular surface
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The translation of B by vector d is denoted By and
performed as

By={v+d:veB}.

The three elementary morphological operators listed
below are then applied for the surface region
calculation.

Dilation: Xp = X @Bf = {V VAR B, NX # @}

Erosion: Xg = Xp © B‘g ={veZ®:B,y, C Xp}

Difference: Xp — Xg

where the X is the original structure, Xp is a dilated
structure by the structuring element B;, Xg denotes the
eroded structure from Xp by a larger structuring ele-
ment B, compared to By, and the surface regions can be
achieved by taking difference between Xp and Xg. The
surface rate for each atom is obtained by calculating the
ratio of the intersected and non-intersected regions with
respect to the overlapping areas between the morpholo-
gical difference operations and the original protein
atoms. Figure 3 depicts the step-by-step procedure used
to extract the surface regions and to calculate the sur-
face rate for an atom.
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Surface rate computations

The properties of the side chains of the residues in an
epitope are important factors controlling protein-protein
interactions. Much literature deals with the influence of
side chains as factors affecting protein binding. Antigen-
antibody binding may cause conformational changes in
the proteins, and amino acids that have flexible side
chains may, therefore, have an advantage. Experimen-
tally, nonpolar-nonpolar and polar-polar side chain
interactions stabilize protein interfaces [35]. Therefore,
we considered side chain characteristics in our work-
flow. With the use of 3D mathematical morphology
operations, the rate of each atom, AR(r), can be deter-
mined although only the rates of surface side-chain
were considered. The surface rate of each residue is
denoted SR(r) and calculated as:

) 1 -
SR (r) = {1 €R: N;AR(r)}

where i represents the i™ surface atom in the side chain
of a residue, R is all surface atoms in a residue, and N is

“w u

the total number of surface atoms in residue “r*.

1. original structure

4. Difference result(2-3)

2. Dilated result

5. atom surface rate computation

Figure 3 3D morphology operations used for surface rate calculations. Shown in the figure are the original, dilated, and eroded structures,
the difference between the dilated and eroded structures, and the final atomic surface region.
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Using the equation given directly above, statistics for the
surface rates of verified epitope residues and of all surface
residues in the non-redundant dataset were acquired, and
their distributions are illustrated in Figure 4, which shows
that the side chains of residues of known CEs often pos-
sessed higher surface rates than do the averaged total
areas of the antigens. After calculating the surface rates,
they were imported into a file, and a minimum threshold
value for the surface rate was set to be used in the predic-
tive workflow.

Energy profile computation

We used the knowledge-based approach to calculate the
energy of each surface residue [28], in conjunction with
the distribution of pairwise distances to extract the effec-
tive potentials between residues. The potential energy of
each residue was calculated using a heavy-atom represen-
tation, with the heavy atoms categorized according to the
residue in which they were found. The potential calcula-
tion represents the ratio between the observed and
expected number of contacts for a pair of heavy atoms
within a specified distance. The potential value for two
atoms reflects the level of attractive interaction between
the two residues. Although this knowledge-based potential
has usually been used to improve fold recognition, and
structure prediction and refinement, we adopted to calcu-
late the energy of each surface residue so as to distinguish
among active state conditions. To assess differences in the
potentials of CE and non-CE residues, we calculated their
surface energy profiles under a variety of parameter set-
tings for 247 known antigens. We found that CE residues
possess a higher energy function than do non-epitope
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residues. When the window size was set to eight residues,
the average energy for each verified CE residue cluster in
an antigen from the Epitome, DiscoTope, and IEDB data-
sets was 69.4%, 82.9%, and 51.2% greater than the average
energy of non-CE residues in the same antigen, respec-
tively. We also observed that at least one CE residue in
each antigen had an energy that was in the top 20% of all
surface residues, and most of the largest energies for the
CE residues ranked in the top 3%. Therefore, we selected
the 20% of the residues with the greatest energies as our
initial CE anchors. Additionally, the selected initial seeds
were required to possess surface rates within the distribu-
tion range of 20% to 50% shown in Figure 4. We also spe-
cified that the anchor residues should be separated by at
least 12-A to eliminate possible overlapping CE candi-
dates. With the identities of the initial seeds decided, the
relationship between geometrically related neighboring
residues within a 10-A radius sphere of the anchor residue
were examined.

Frequency of occurrence of geometrically related

residue pairs

The filtering mechanism used was adopted from a sug-
gestion by Chen that involves the use statistical features
for CE verification [29]. However, unlike Chen’s proposal
that used pairs of sequential residues, CE-KEG incorpo-
rated geometrically related neighboring residue pairs.
Table 1 shows variables used for the statistical analysis of
the residue pairs. Because there are 20 different amino
acids, 210 possible unique combinations of pairs are pos-
sible, for which we determined the number of times that
they were found within CEs and non-CEs. Additionally,
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Figure 4 The distribution of surface rates for residues in known CE epitopes and all surface residues in the antigen dataset.
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Table 1 Variables used in the statistical analysis of geometrically related amino acid pairs (GAAP).

Variables Description

NEAAP The number of times a geometrically related residues pair occurs in the known CE epitope dataset.
NEAAP The number of times a geometrically related amino acid pair occurs in the non-CE epitope dataset.
féAAP The frequency (%) that a geometrically related amino acid pair occurs in the known CE epitope dataset.
ngAP The frequency (%) that a geometrically related amino acid pair occurs in the non-CE epitope dataset.
TotalEAAP The total number of times that all geometrical amino acid pairs occur in the known CE epitope dataset.
TotalaAAP The total number of times that all geometrical amino acid pairs occur in the non-CE epitope dataset.
CElgaap CEl for a geometrically related amino acid pair.

the residue pairs found more frequently within spheres of
various radii ranging from 2 A to 6 A were analyzed
respectively, and their corresponding CE indices (CEIs)
were also calculated for default settings.

The CE Index (CEIg44p) was obtained by calculating
the frequency of occurrence that a pair of geometrically
related amino acid in the CE dataset divided by the fre-
quency that the same pair in the non-CE epitope data-
set. This value was converted into its log;o value and
then normalized. For example, the total number of all
geometrically related residue pairs in the known CE epi-
topes is 2843, and the total number of geometrically
related pairs in non-CE epitopes is 36,118 when the
pairs of residues were within a sphere of radius 2 A.
The two greatest CEIs are for the residue pairs H/Q
(0.921) and E/H (0.706) found in from the 247 antigens.

After determining the CEI for each pair of residues,
those for a predicted CE cluster were summed and
divided by the number of CE pairs within the cluster to
obtain the average CEI for a predicted CE patch. Finally,
the average CEI was multiplied by a weighting factor and
used in conjunction with a weighted energy function to
obtain a final CE combined ranking index. On the basis
of the averaged CEI, the prediction workflow provides
the three highest ranked predicted CEs as the best candi-
dates. An example of workflow is shown in Figure 5 for
the KvAP potassium channel membrane protein (PDB
ID: 10RS:C) [36]. Protein surface delineation, identifica-
tion of residues with energies above the threshold, pre-
dicted CE clusters, and the experimentally determined
CE are shown in Figure 5a, b, ¢, and 5d, respectively.

Results

In this report, we present a new CE predictor system
called CE-KEG that combine an energy function compu-
tation for surface residues and the importance of
occurred neighboring residue pairs on the antigen surface
based on previously known CEs. To verify the perfor-
mance of CE-KEG, we tested it with datasets of 247 anti-
gen structures and 163 non-redundant protein structures
that had been obtained from three benchmark datasets in

conjunction with a 10-fold cross-validation assessment.
The known CEs had been experimentally determined or
computationally inferred prior to our study. For a query
protein, we selected the best CE cluster form top three
predicted candidate groups and calculated the number of
true CE residues correctly predicted by our system to be
epitope residues (TP), the number of non-CE residues
incorrectly predicted to be epitope residues (FP), the
number of non-CE residues correctly predicted not to be
epitope residues (TN), and the number of true CE resi-
dues incorrectly predicted as non-epitope residues (FN).
The following parameters were calculated for each pre-
diction using the TP, FP, TN, and FN values and were
used to evaluate the relative weights of the energy func-
tion and occurrence frequency used during the predic-
tions:

Sensitivity(SE) = TP = [TP + FN]
Specificity(SP) = TN = [TN + FP]
Positive Prediction Value (PPV) = TP = [TP + FP]

Accuracy(ACC) = [TP + TN] = [TP + TN + FN + FP]

Table 2 shows the predictions when the average energy
function of CE residues located within a sphere of 8-A
radius and the frequencies of occurrence for geometri-
cally related residue pairs are combined with different
weighting coefficients, whereas Table 3 shows the results
when the energies of individual residues are considered.
The results show that the performance is better when the
average energy is used as compared with the energy of
single residues are considered. However, both approaches
yield a similar performance for sensitivity, specificity,
positive prediction value, and accuracy. For sensitivity,
the best average energy weighting coefficient is 10%,
which is a consequence of the energy function having
been applied prior to the CE-anchor-selection step.
Therefore, the energy function of the residues will not
have an obvious effect on the prediction results. In this
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residues.

Figure 5 Example of predicted CE clusters and true CE. (A) Protein surface of KVAP potassium channel membrane protein (PDB ID: TORS:C).
(B) Surface seed residues possessing energies within the top 20%. (C) Top three predicted CEs for 10RS:C. Predicted CEs were obtained by
filtering, region growing, and CE cluster ranking procedures. The filtering step removing neighboring residues located within 12 A according to
the energy ranked seed. Region growing formulated the CE cluster from previous filtered seed residues to extend neighboring residues within
10 A radius. CE clusters were ranking by calculating the combination of weighted CEl and Energy scores. (D) Experimentally determined CE

case, the initial parameter settings for new target antigen
and the following 10-fold verification will apply with
these trained combinations.

To evaluate CE-KEG, we adopted a 10-fold cross-vali-
dation test. The 247 antigens derived from the Disco-
Tope, Epitome, and IEDB datasets and the 163 non-
redundant antigens were tested as individual datasets.
These datasets were randomly partitioned into 10 subsets
respectively. Each partitioned subset was retained as the
validation proteins for evaluating the prediction model,
and the remaining 9 subsets were applied as training data

for setting best default parameters. The cross-validation
process is repeated for ten times and each of the ten sub-
sets was applied exactly once as the validation subset.
The final measurements were then obtained by taking
average from individual ten prediction results. For the set
of 247 antigens, the CE-KEG achieved an average sensi-
tivity of 52.7%, an average specificity of 83.3%, an average
positive prediction value of 29.7%, and an average accu-
racy of 80.4%. For the set of non-redundant 163 antigens,
the average sensitivity was 47.8%; the average specificity
was 84.3%; the average positive prediction value was
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Table 2 Average performance of the CE-KEG for using
average energy function of local neighboring residues.

Weighing Combinations SE SP PPV ACC
0%EG+100% GAAP 0478 0.831 0.266 0.796
T0%EG + 90% GAAP 0490 0.831 0.273 0.797
20%EG + 80% GAAP 0492 0.831 0.275 0.797
30%EG + 70% GAAP 0.497 0.831 0.277 0.798
40%EG + 60% GAAP 0493 0.832 0.280 0.799
50%EG + 50% GAAP 0.503 0.834 0.284 0.801
60%EG + 40% GAAP 0.504 0.834 0.284 0.801
70%EG + 30% GAAP 0519 0.839 0.294 0.808
80%EG + 20% GAAP 0.531 0.840 0.300 0811
90%EG + 10% GAAP 0.521 0.839 0.294 0.809
100%EG + 0% GAAP 0.496 0.837 0.279 0.805

The performance used combinations of weighting coefficients for the average
energy (EG) and frequency of geometrically related pairs of predicted CE
residues (GAAP) within a 8-A radius sphere. The highest SE is denoted by a
bold-italic face.

29.9%; and the average accuracy was 80.7%. For these two
datasets, the number of CE clusters assessed was three
top predicted ones.

Discussion and conclusion

With the rapidly increasing number of solved protein
structures, CE prediction has become a necessary tool pre-
liminary to wet biomedical and immunological experi-
ments. For the work reported herein, we developed and
tested a novel workflow for CE prediction that combines
surface rate, a knowledge-based energy function, and the
geometrical relationships between surface residue pairs.
Because certain existing CE prediction systems do not
allow the user to evaluate the values of area under receiver
operating characteristic curve (AUC) by altering the para-
meter settings, an alternatively approximate evaluation of
the AUC can be made using the average of the specificity

Table 3 Average performance of the CE-KEG for energy
function of single residue.

Weighting Combinations SE SP PPV ACC
09%EG+100% GAAP 0478 0.831 0.266 0.796
10%EG + 90% GAAP 0463 0.827 0.260 0.790
20%EG + 80% GAAP 0473 0.827 0.265 0791
30%EG + 70% GAAP 0476 0.828 0.268 0.792
40%EG + 60% GAAP 0483 0.832 0.275 0.796
50%EG + 50% GAAP 0.466 0.831 0.273 0.795
60%EG + 40% GAAP 0476 0.833 0.280 0.797
70%EG + 30% GAAP 0.485 0.832 0.281 0.797
80%EG + 20% GAAP 0480 0.830 0278 0.796
90%EG + 10% GAAP 0481 0.831 0.275 0.797
100%EG + 0% GAAP 0463 0.830 0.265 0.795

The performance used combinations of weighting coefficients for the energy
(EG) of individual residues and the frequency of occurrence for geometrically
related pairs (GAAP). The highest SE is denoted by a bold-italic face.
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and sensitivity [21]. For example, in comparison with the
prediction performance of the DiscoTope system using
the DiscoTope benchmark dataset (70 antigens), our
workflow provides a better average specificity (83.2% vs.
75%), and a better average sensitivity (62.0% vs. 47.3%).
Hence, the AUC value (0.726) returned by CE-KEG is
superior to that found for DiscoTope (0.612). To compare
CE-KEG with PEPITO (BEPro) system, we used both the
Epitome and DiscoTope datasets. The PEPITO system
returning averaged AUC values of 0.683 and 0.753, respec-
tively, which are comparable with AUC values of 0.655
and 0.726, respectively returned by CE-KEG. The average
number of predicted CEs by employing CE-KEG is
approximately six with the most likely predicted CEs
ranked at an average position of 2.9. This finding was why
we included the top three CEs in our subsequent analysis.
Because CE-KEG limits the distance when extending
neighboring residues, it predicts CEs that contain a rela-
tively small number of residues. Therefore, CE-KEG per-
forms better than the other tested systems in terms of
specificity; however, the sensitivity value is decreased.
Future research could focus on the distributions of various
physicochemical propensities for epitope and non-epitope
surfaces such as the specific geometrical shapes of antigen
surfaces, and the unique interactions between antigens
and antibodies. Such information may facilitate the appro-
priate selection of initial CE anchors and provide precise
CE candidates for immunological studies.
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