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Abstract

Background: Given a protein’s amino acid sequence, the protein structure prediction problem is to find a three
dimensional structure that has the native energy level. For many decades, it has been one of the most challenging
problems in computational biology. A simplified version of the problem is to find an on-lattice self-avoiding walk
that minimizes the interaction energy among the amino acids. Local search methods have been preferably used in
solving the protein structure prediction problem for their efficiency in finding very good solutions quickly.
However, they suffer mainly from two problems: re-visitation and stagnancy.

Results: In this paper, we present an efficient local search algorithm that deals with these two problems. During
search, we select the best candidate at each iteration, but store the unexplored second best candidates in a set of
elite conformations, and explore them whenever the search faces stagnation. Moreover, we propose a new non-
isomorphic encoding for the protein conformations to store the conformations and to check similarity when
applied with a memory based search. This new encoding helps eliminate conformations that are equivalent under
rotation and translation, and thus results in better prevention of re-visitation.

Conclusion: On standard benchmark proteins, our algorithm significantly outperforms the state-of-the art
approaches for Hydrophobic-Polar energy models and Face Centered Cubic Lattice.

Background
Proteins are the most important of all organ-isms present
in the living cell. Given a protein’s amino acid sequence,
the protein structure prediction (PSP) problem is to find
a three dimensional native structure that has the lowest
free energy. In order to function properly, the protein has
to fold into its native structure. Mis-folded proteins
cause many critical diseases such as Alzheimer’s disease,
Cystic fibrosis, and Mad Cow disease. Knowledge about
this native structure is of paramount importance and can
have an enormous impact on the field of drug discovery.
Not much is known about the folding process and the
nature of the energy function is also very complex. For
many decades, it has been considered one of the hardest
problems in biology. In vitro laboratory methods like

X-ray crystallography and Nuclear Magnetic Resonance
(NMR) spectroscopy are very much slow and expensive.
For these issues, many researchers from other fields are
attracted to solve the problem using their own techni-
ques [1,2].
Computational methods applied to PSP fall into three

broad categories: ab initio, homology modeling and protein
threading. The later two methods depend on the templates
(or structures) of known proteins and are useful only
when matching templates are found. Research in ab initio
PSP has been instigated by the famous Anfinsen’s dogma.
In 1973 Nobel Prize Laureate Christian B. Anfinsen sug-
gested that the native structure of a globular protein is
determined only by its primary amino acid sequence [3].
The ab initio PSP can be viewed as a search problem,
where one has to find a stable, unique, and kinetically
accessible native structure from the space of all possible
structures (also called conformations). The search space
for this problem, even in the simplified models, contains
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an astronomically large number of conformations. There-
fore, systematic search techniques are almost impractical
since they perform exhaustive search and requires a huge
amount of computational resources. In contrast, local
search methods are normally very quick in finding good
solutions, although they suffer from re-visitation and stag-
nation, and require good heuristics.
Performance of the computational methods also

degrades when applied to the high resolution models that
deal with real structures of proteins. This is due to three
reasons: i) the unknown contributing factors of different
forces to the energy functions, ii) protein models with
atomic level details require huge computational effort, and
iii) the space of possible conformations is very large and
complex. For these reasons, the general paradigm of de
novo PSP is to begin with the sampling of a large set of
candidate (decoy) structures guided by a scoring function.
In the final stage, the refinements are done to achieve the
real structure. The simplified models, though lack many
details, provide a realistic back-bone for the proteins and
can be refined to get real structures [4].
Local search algorithms when applied to large proteins

(sequence length around 200 monomers) suffer from a
huge number of re-visitation and stagnation. To handle
these issues, a number of techniques have been applied in
the literature of PSP [5-7] that include tabu lists, adaptive
measures, and various restart mechanisms. Similar
approaches have also been used in other domains such as
propositional satisfiability [8] and quadratic assignment
problem [9]. Many of the algorithms apply random
restarts or restart from the best local minimum [6,7];
which do not solve the problem in general.

Our contribution
In this paper, we present a new algorithm for the simpli-
fied protein structure prediction problem. During the
search, our method selects the best candidate in each
iteration, but memorizes the second best conformations
that are generated but not selected or explored (called
elite conformations) at each iteration. Whenever the
search faces stagnation, we select the best conformation
from this elite set and continue search from there. This
retreat helps the search diverge. Similar techniques have
been used in the systematic search techniques like A*
search, but they require a huge amount of memory to
store the unexplored frontier. We maintain only a small
set of previously generated conformations by discarding
conformations with similar fitness. It reduces the mem-
ory requirement and provides a mechanism to go back to
earlier conformations with lower fitness value but with
potential to lead towards better search regions. We also
propose a new non-isomorphic encoding that reduce the
non-unique or isomorphic conformations from the

search space and makes the similarity matching of the
conformations efficient. These isomorphic conformations
are essentially same and show differences only because of
the translational and rotational symmetry. We applied
this encoding in our algorithm along with the long term
memory of local minima proposed in [10]. Experimental
results show that our algorithm significantly outperforms
the state-of-the-art algorithms on standard benchmark
proteins using Hydrophobic-Polar(HP) energy model and
Face Centered Cubic (FCC) lattice.

Related work
Lau and Dill [1] proposed a simplified HP energy model
for protein structure prediction problem. It is proved to
be a hard combinatorial problem [11]. Due to the com-
plexity, several techniques and their hybridizations have
been applied to solve the problem. The similarity with
the thermodynamic nature of the protein folding allured
the researchers to apply simulated annealing [12,13].
Genetic algorithms were first applied to solve this pro-
blem by Unger and Moult [14]. The basic genetic algo-
rithm was subsequently improved by many researchers
[15-17].
Yue and Dill [18] applied constraint based approaches

for the first time and developed the Constraint Based
Hydrophobic Core Construction (CHCC) algorithm. Their
method had several pitfalls: CHCC could only support the
HP model and failed to report degeneracy or non-unique
structures for several protein sequences. The research
group of Rolf Backofen developed a Constrained-based
Protein Structure Prediction (CPSP) tool [19], which pro-
vided solutions to these problems. However, CPSP tool
depends on pre-calculated cores and does not converge
for larger protein sequences. Palu et al. [20] developed
COLA solver using highly optimized constraints and pro-
pagators to obtain satisfactory results on small and med-
ium-sized instances (length < 80). Lesh et al. [5] provided
a novel set of transformations called pull moves extendible
to any lattice. Both Lesh et al. [5] and Blazewicz et al. [21]
implemented tabu search meta-heuristics in-dependent of
each other.
Hybrid techniques that combine the power of different

strategies provided better results. Using the pull moves,
Klau et al. [22] proposed an interactive optimization fra-
mework called Human Guided Simple Search (HuGS).
Using the same pull move set, Ullah et al. [23] proposed a
two-stage optimization approach. Furthermore, Ullah et al.
[24] combined local search and constraint programming
approaches. They introduced a protein folding simulation
procedure on FCC lattice and employed the COLA solver
[20] to generate neighborhood states for a simulated
annealing based local search. They used MJ matrices with
20 × 20 amino acid pairwise interactions. They tested their
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approaches on some real proteins (length < 80) from the
Protein Data Bank (PDB). Jiang et al. [25] combined tabu
search strategy (GTS) with genetic algorithms in the two-
dimensional HP Model.
Cebrian et al. [26] used tabu search to find 3D struc-

tures of Harvard instances [27] on FCC lattices for the
first time. In their subsequent work, Dotu et al. [6,7]
applied Large Neighborhood Search (LNS) to further
optimize the results found in [26]. They also improved
the tabu search by adopting a new neighborhood selec-
tion technique [7]. Both of their methods are implemen-
ted in COMET. Shatabda et al. [10] proposed a memory
based approach on top of the algorithm proposed by
Dotu et al. [7] and improved the results on the FCC lat-
tice and HP energy model. Other methods (such as
Simulated Annealing [12], Ant Colony Optimization
(ACO) [28], and Extremal Optimization [29]) are also
found in the literature.

Materials and methods
Proteins are polymers of amino acid monomers. In a sim-
plified model, all monomers have an equal size and all
bonds are of an equal length. Each amino acid monomer
is represented by a single point and its position is
restricted to a three dimensional lattice. A simplified
energy function is used in calculating the energy of a con-
formation. The given amino acid sequence fits into a fixed
lattice, where every two consecutive monomers in the
sequence are also neighbor on the lattice (called the chain
constraint) and two monomers can not occupy the same
lattice point (called the self avoiding constraint).

FCC lattice
The Face Centered Cubic (FCC) lattice is preferred over
other lattices since it has the highest packing density
[30] for spheres of equal size, and provides the highest
degree of freedom for placing an amino acid monomer.
Thus, it provides a realistic discrete mapping for
proteins. The FCC lattice is generated by the follo-

wing basis vectors: −→v1 = (1, 1, 0), −→v2 = (−1, −1, 0) ,
−→v3 = (−1, 1, 0), −→v4 = (1, −1, 0) , −→v5 = (0, 1, 1) ,
−→v6 = (0, 1, −1) , −→v7 = (0, −1, −1) , −→v8 = (0, −1, 1) ,
−→v9 = (1, 0, 1), −→v10 = (−1, 0, 1) , −→v11 = (−1, 0, −1) ,
−→v12 = (1, 0, −1) . Two lattice points p, q ∈ L are said

to be in contact or neighbors of each other, if q = p + −→vi
for some vector −→vi in the basis of lattice L .

HP energy model
The Hydrophobic-Polar (HP) energy model was pro-
posed by Lau and Dill [1]. In this model, all the amino
acids are divided into two groups: hydrophobic H (Gly,

Ala, Pro, Val, Leu, Ile, Met, Phe, Tyr, Trp); and hydro-
philic or polar P (Ser, Thr, Cys, Asn, Gln, Lys, His, Arg,
Asp, Glu). The given amino acid sequence of a protein
is represented as a string s of the alphabet {H, P}. The
free energy calculation for the HP model, shown in (1),
counts only the energy interactions between two non-
consecutive amino acid monomers.

E =
∑

i,j:i+1<j

cij.eij (1)

where cij= 1 only if two monomers i and j are neighbors
(or in contact) on the lattice and 0 otherwise. The other
term, eijis calculated depending on the type of amino
acids: eij= -1 if si= sj= H and 0 otherwise. Minimizing the
summation in (1) is equivalent to maximizing the number
of non-consecutive H-H contacts. Several other variants of
HP-model [31] exist in the literature.
Using the HP energy model together with the FCC

lattice, the simplified PSP problem is defined as: given a
sequence s of length n, find a self avoiding walk p1 ...
pnon the lattice such that the energy defined by (1) is
minimized.
Local search framework
The local search framework was originally proposed in
[7]. The algorithm is similar to that of the procedure
localSearch () presented in Table 1 except in Lines 6,
9-10 and 14. It depends on a structured randomized initi-
alization method and maintains a simple tabu list to pre-
vent recently used moves. In the framework, moves
involving single monomer are only allowed. For any
given conformation c and a sequence position i, a move(i,
p, c) that moves an amino acid i to a new position p is
allowed, if (i) p is free and is in contact with both amino
acids at positions i - 1 and i + 1, and (ii) i is not in the
tabu list. The length of the tabu list takes a random value
from [4, n/4], where n is the length of the sequence. The
move can be applied to either H or P type of amino acid
at each iteration. The fitness function minimizes the
summation of HH-distances for all non-consecutive pairs
of H-monomers. The fitness function can be formally
defined as the following:

f (c) =
n∑

i,j:i+1<j

(dv(i, j))2 × (si = H, sj = H) (2)

where dv(i, j) = d(i, j)2 -2 and d(i, j) = (xi-xj)
2 + (yi- yj)

2

+ (zi- zj)
2, i.e. square of the Euclidean distance between

the ith and jth amino acids in the current conformation c
of a sequence s of length n. The energy level of the struc-
ture is still determined by the HP energy value. The fit-
ness function is used to drive the search only. The search
algorithm periodically switches the type of the acid and
selects the best move on a amino-acid which is not in the
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tabulist. In case of P moves, it selects a random move
since a move of P type amino acid does not affect the fit-
ness function. The search restarts from the previously
found best solution whenever the fitness function is not
improving for maxStable steps. The memory-based search
in [10] extends this local search framework. It stores a
proportion of the local minima encountered and whenever
a move is selected, it generates the conformation and
checks similarity with the stored local minima. If the gen-
erated conformation is within a given proximity of a
stored local minimum, the conformation is discarded.
Hamming distance is used as the similarity measure and
relative encoding to represent the conformations.
Our algorithm is developed on top of the memory-

based search. The pseudo-code for our algorithm is
depicted in Table 1. Our algorithm differs from the
memory-based approach in Line 14 of Procedure local-
Search() where we select a conformation from the elite
set at stagnation and in Line 9 of Procedure selectMove()
where we store the prominent but not selected candidate
conformations into the elite set. It also differs in the
encoding of the representation of the conformations. We
do that at Line 4 of Procedure selectMove() before match-
ing it with stored local minima and at Line 10 of Proce-
dure localSearch() while storing the local minimum. Rest
of this section describes the detail of the procedures of
our algorithm.
Elite conformations
In each iteration of a local search, a number of conforma-
tions are generated. However, only a few of them are
explored in the next iterations. In the case of a single can-
didate search, only a single conformation, which is typi-
cally the best conformation according to the heuristic, is
selected for the next iteration. In successive iterations, the

search goes on by generating the neighbors of the selected
conformations. The other potential conformations with
good fitness values are never used as the search is greedy
in nature. We call them elite conformations. These confor-
mations, if explored ever, may lead to better search
regions. Note that, in the systematic search techniques,
these conformations are stored and explored. However,
they require a huge amount of memory. Moreover, the
selection in a systematic search like A* search depends on
a heuristic function that requires the goal to be known
beforehand. In our case, the optimal structure is totally
unknown and we can not afford to store a huge number
of conformations. In our algorithm, we store the second
best conformations and explore them whenever the search
faces stagnation.

Store
We store the second best conformations in each iteration
in a set called elite set. At each iteration, when a move is
selected, we update this elite set of conformations. The
pseudo-code for the updateEliteSet() procedure is given
in the right side of Table 2. We use a priority queue
sorted in the order of fitness value and iteration number
to store the elite conformations. Before inserting a con-
formation into the priority queue, we check for similarity
in the stored local minima list and store it only if no
match is found.

Explore
We select the top element from the priority queue
whenever the search stagnates. The search then con-
tinues from the selected elite conformation. The search
algorithm, guided by the fitness function defined in (2),
quickly forms a compact hydrophobic core at the center

Table 1 Local Setach Framework.

Procedure localSearch() Procedure selectMove()

1 initialize() 1 while moveList.notEmpty() do

2 initializeTabu() 2 m ¬ getNextCandidate()

3 while iteration ≤ maxIteration do 3 c ¬ getConformation(m)

4 selectMonomerType() 4 e ¬ getNonIsoEncoding(s)

5 generateMoves() 5 b ¬ getPacked(s)

6 selectMove() 6 if match(b, proximity) then

7 performMove() 7 discard m

8 updateCosts() 8 else

9 if local minima is detected then 9 updateEliteSet()

10 storeLocalMinima() 10 return m

11 end 11 end

12 if nonImprovingSteps ≥ maxStable then 12 end

13 initializeTabu() 13 if moveList.empty() then

14 selectFromEliteSet() 14 no moves possible

15 end 15 nonImprovingSteps ¬ maxStable + 1

16 end 16 end
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of the conformation and the greedy search oscillates
within the same region of the search space before it can
improve the fitness function to break the core or to form
some alternate core. The detailed nature of the search is
discussed in [10]. The oscillating nature indicates that if
we select a conformation from a region in the search
space, then we can ignore the other conformations with
the same or near fitness value and within the temporal
locality. Every time an elite conformation is selected form
the list, we do that by discarding a fixed proportion of
the top elements from the list. This results in eliminating
the conformations that are similar in fitness value and
structure, and are also temporally proximate. This retreat
effectively helps the search diverge. It also reduces the
memory requirement for the priority queue used. The
detailed pseudo-code of the method is given in the left
side of Table 2. The method elitSet.release() at Line 6
releases the top elements from the elite set.
Non-isomorphic encoding
Many techniques have been employed in the literature to
represent the protein conformations. These representa-
tions allow the search to keep the candidate conformations
updated and perform operations like similarity checking
(memory-based algorithms) and crossover (genetic algo-
rithms). The most obvious way to represent the conforma-
tions is to use Cartesian co-ordinates of the amino-acid
monomers. However, such a representation contains
translational symmetry, which can be solved if absolute
encoding is used. Absolute encoding is found from the
absolute direction vectors between the consecutive points
in the amino-acid chain. The alphabet size of the absolute
encoding depends on the lattice used. For the FCC lattice,
the alphabet size is 12 since the number of basis vectors is
12. However, absolute encoding is not suitable when we
check similarity between two conformations since it
contains the problem of rotational symmetry. Two identi-
cal conformations with rotational symmetry are repre-
sented by different absolute encoding (see the example in
Figure 1). This type of encoding is called isomorphic
encoding. Non-isomorphic encodings provide a solution to

this issue. Shatabda et al. [10] used the relative encoding
proposed by Backofen et al. [32] in their algorithm. Their
encoding scheme starts from a fixed direction and con-
tinues to update a base matrix throughout the chain. The
efficiency of the algorithm thus depends of the dimension
of the lattice. Moreover, a decoding algorithm is needed to
get back the absolute encodings or the co-ordinate points.
The computational complexity of their algorithm is O(nl3),
where n is the number of absolute directions and l is the
dimension of the lattice. The complexity of the decoding
algorithm is also O(nl3). A non-isomorphic encoding was
also proposed in [33] for cubic lattices that calculates the
angles between two consecutive absolute direction vectors
and en-codes the move sequence. This encoding also costs
more as it requires computation of angles between the
direction vectors.
In this paper, we propose a new non-isomorphic

encoding, which is generic for any lattice and requires no
separate decoding algorithm; the encoding itself maps to
the absolute directions. Instead of relative angles, our
algorithm depends on the relative occurrence of the
absolute directions within the chain. It requires only O(n)
time to encode. The pseudo-code of our algorithm is
given in Table 3. This algorithm calculates the encoding
on the fly. It starts with an empty Map and every time a
new absolute direction is encountered in the sequence, it
assigns the next available code to it. Once the mapping
for all possible directions is found then the algorithm is
just a simple lookup from the mapping array. In the
results section, we show the effectiveness of our encoding
scheme when applied to the memory-based search [10].

Results and discussion
We implemented our algorithm in C++ and ran experi-
ments on the NICTA (http://www.nicta.com.au) cluster
machine. The cluster has a number of machines each
equipped with two 6-core CPUs (AMD Opteron @2.8
GHz, 3 MB L2/6 M L3 Cache) and 64 GB Memory, run-
ning Rocks OS (a Linux variant for cluster). We compared
the performance of our algorithm to that of the tabu

Table 2 Pseudo-code for Elite Set Methods.

Procedure updateEliteSet() Procedure selectFromEliteSet()

1 sb ¬ set of second best candidates 1 while eliteSet.notEmpty() do

2 while sb.notEmpty() do 2 c ¬ eliteSet.getTopElement()

3 m ¬ sb.getNextCandidate() 3 e ¬ getNonIsoEncoding(c)

4 c ¬ getConformation(m) 4 b ¬ getPacked(e)

5 e ¬ getNonIsoEncoding(c) 5 if match(b, proximity) == false then

6 b ¬ getPacked(e) 6 elitSet.release()

7 if match(b, proximity) == false then 7 return c

8 eliteSet.push(c) 8 end

9 end 9 eliteSet.popElement()

10 end 10 end
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search by Dotu et al. [7] and the memory based approach
proposed in [10]. Algorithms were run 50 times for each
of the protein sequences. Each run was given 5 hours to
finish. We could not compare our results with the Large
Neighborhood Search (LNS) [7] since the COMET pro-
gram exited with ‘too much memory needed’ error for the
large-sized benchmark proteins that we have selected. We
do not show results for small-sized Harvard instances
(length = 48) or other smaller protein sequences since
both algorithms reach near optimal conformations and the
difference of the energy levels achieved for these proteins
are relatively small.

Results
We show results for two sets of benchmarks in Table 4.
The first six proteins are also used by Dotu et al. [7]. The
R instances (length = 200) are originally taken from [34]
and the f180 instances (length = 200) are provided by
Sebastian Will [7]. LS-New denotes our algorithm and
LS-Mem denotes the memory-based approach in [10] and

LS-Tabu de-notes the tabu search by Dotu et al. [7]. The
best and average energy levels achieved are reported in
Table 4. We set proximity measure to 3 and only 5% of
the local minima was stored while maxStable was set to
100 for our algorithm. For other algorithms, we set the
parameters as recommended by the authors. The best
energy levels reported by Dotu et al. [7] are also shown
under the column LNS. These results were produced by
large neighborhood search. Optimal lower bounds for the
minimum energy values for the proteins are also reported
under the column ‘El’ generated by the CPSP tools [19].
Note that these values are obtained by using exhaustive
search methods and are used only to evaluate how far our
results are from them. The missing values indicate where
no such bound was found and the values marked with *
are the values for which the algorithm did not converge
even after 24 hours of run.
We also used a second set of benchmark proteins

derived from the famous Critical Assessment of Techni-
ques for Protein Structure Prediction (CASP) competi-
tion (http://predictioncenter.org/casp9/targetlist.cgi).
These proteins are of length 230 ± 50. Six protein
sequences were randomly chosen from the target list.
These sequences are then converted into HP sequences.
Results for these six proteins are also given in Table 4
(lower part). The PDB ids for each of these proteins are
also given. The parameter settings for these six proteins
were also kept the same. LNS column contains no data
for these six proteins since they were not used in [7].

Analysis
From the average energy levels shown in bold-face in
Table 4, it is clearly evident that, for all the twelve pro-
teins, our algorithm significantly outperforms both of

Table 3 Pseudo-code for Non-Isomorphic Encoding.

Procedure getNonIsoEncoding(s)

1 initMap()

2 for i ¬ 1 to N do

3 absdir = c.getAbsDir(i)

4 if absdir is a new direction then

5 Map[absdir] ¬ dirCount

6 dirCount + +

7 end

8 encoded[i] = Map[absdir];

9 end

10 return encoded

Figure 1 Isomorphic Encoding. Two identical structures in cubic lattice having different absolute encoding; structure in the left has the
encoding “DSES”, and the structure at right with encoding “UNEN”, where D = Down U = Up, N = North, S = South, E = East and W = West.
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the algorithms. We performed statistical t-test for inde-
pendent samples with 95% level of significance to verify
the significant difference in performances. We report
the new lowest energy levels (w.r.t. incomplete search
methods) for all twelve proteins. These energy levels are
shown in italic-faced font in Table 4.

Relative improvement
In Table 4, we report the relative achievement in column
‘R.I.’. Relative improvement of our approachis measured in
terms of the difference with optimal bound of the energy
level. This value is significant because it gets harder to find
better conformations as the energy level of a protein
sequence approaches the optimal. We define:

RelativeImprovement =
Eo − Er
El − Er

× 100% (3)

where Eo is the average energy level achieved by our
approach, Er is the average energy level achieved by the
other approach, and El is the optimal lower bound of the
energy level. The missing values indicate the absence of
any lower bound for the corresponding protein sequence.
Similar measurements were also used in [10]. From the
values reported in Table 4, we clearly see that our algo-
rithm produces conformations that are significantly better
in terms of the average energy level achieved.

Search progress
In Figure 2, we show search progress of three algorithms
for the protein sequence R1. Average energy level by each
of the algorithms for 50 runs are shown. All three algo-
rithms achieve almost the same level of energy initially but
as soon as the search makes progress, the tabu search and
the memory-based search fail to overcome stagnation. It
is clearly evident from the graph that our algorithm

continues to improve in the stagnant situations and thus
produces better results.

Effect of the non-isomorphic encoding
The effects of the new non-isomorphic encoding of the
protein conformations have been two-fold. Firstly, it
resulted in the reduction of degeneracy, which is evident
in the number of discarded conformations during the
search. Secondly the efficient computation improved the
runtime. In the memory-based approach proposed in
[10], the authors used the relative encoding proposed in
[32]. When applied with the memory-based algorithm
proposed in [10], our new encoding resulted in more dis-
cards and less computation time, as shown in Table 5.
The discarded conformations are the approximate mea-
sure of similar conformations encountered during the
search. The experimental results for six proteins are
shown in Table 5 for first one million iterations.

Conclusions
In this paper, we presented a local search algorithm for
solving the protein structure prediction problem on FCC
lattice using low resolution HP energy model. Experimen-
tal results shows that our algorithm outperforms the state-
of-the art algorithms. We used a novel encoding scheme
to represent the conformations along with a set of elite
conformations to handle the stagnation of the local search.
We believe that use of domain specific heuristics while
selecting the conformations from the elite set can further
improve the performance of the algorithm. In future, we
wish to explore that and apply our techniques to higher
resolutions and other energy models to see the effect. We
wish to apply our techniques to other domains such as
propositional satisfiability, vehicle routing. We believe the
proposed encoding scheme will add efficiency to search
techniques such as genetic algorithms.

Table 4 Experimental Results.

Protein LS-New LS-Mem LS-Tabu

Seq. Length El best avg best avg R.I. best avg R.I. LNS

R1 200 -384 -359 -339 -353 -326 22.41% -332 -318 31.81% -330

R2 200 -383 -361 -343 -351 -330 24.52% -337 -324 32.20% -333

R3 200 -385 -354 -340 -352 -330 18.18% -339 -323 27.41% -334

f180_1 180 -378* -361 -341 -360 -334 15.90% -338 -327 27.45% -293

f180_2 180 -381* -368 -350 -362 -340 24.39% -345 -334 34.02% -312

f180_3 180 -378 -365 -355 -357 -343 34.28% -352 -339 41.02% -313

3no6 229 -455 -419 -397 -400 -375 27.50% -390 -373 29.26% -

3mr7 189 -355 -320 -304 -311 -292 19.04% -301 -287 25% -

3mse 179 -323 -288 -271 -278 -254 22.63% -266 -249 29.72% -

3mqz 215 -474 -430 -404 -415 -386 20.45% -401 -383 23.07% -

3on7 279 ? -514 -476 -499 -463 - -491 -461 - -

3no3 258 -494 -406 -376 -397 -361 11.27% -388 -359 12.59% -

The best and average energy levels achieved and relative improvements of our algorithm over other algorithms for the R, f180 and instances taken from CASP.
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