Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

BMC
Bioinformatics

PROCEEDINGS Open Access

A practical O(n log® n) time algorithm for
computing the triplet distance on binary trees

Andreas Sand'?, Gerth Stelting Brodal®?, Rolf Fagerberg”, Christian NS Pedersen'*®, Thomas Mailund'

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)

Vancouver, Canada. 21-24 January 2013

Abstract

The triplet distance is a distance measure that compares two rooted trees on the same set of leaves by
enumerating all sub-sets of three leaves and counting how often the induced topologies of the tree are equal or
different. We present an algorithm that computes the triplet distance between two rooted binary trees in time

O (n log? n). The algorithm is related to an algorithm for computing the quartet distance between two unrooted
binary trees in time O (n log n). While the quartet distance algorithm has a very severe overhead in the asymptotic
time complexity that makes it impractical compared to O (n?) time algorithms, we show through experiments that
the triplet distance algorithm can be implemented to give a competitive wall-time running time.

Background

Using trees to represent relationships is widespread in
many scientific fields, in particular in biology where trees
are used e.g. to represent species relationships, so called
phylogenies, the relationship between genes in gene
families or for hierarchical clustering of high-throughput
experimental data. Common for these applications is that
differences in the data used for constructing the trees, or
differences in the computational approach for constructing
the trees, can lead to slightly different trees on the same
set of leaf IDs.

To compare such trees, distance measures are often
used. Common distance measures include the Robinson-
Foulds distance [1], the triplet distance [2], and the quartet
distance [3]. Common for these three distance measures is
that they all enumerate certain features of the trees they
compare and count how often the features differ between
the two trees. The Robinson-Foulds distance enumerates
all edges in the trees and tests if the bipartition they
induce is found in both trees. The triplet distance (for
rooted trees) and quartet distance (for unrooted trees)
enumerate all subsets of leaves of size three and four,
respectively, and test if the induced topology of the leaves
is the same in the two trees.

* Correspondence: mailund@birc.au.dk
'Bioinformatics Research Center, Aarhus University, Denmark
Full list of author information is available at the end of the article

(BioMVed Central

Efficient algorithms to compute these three distance
measures exist. The Robinson-Foulds distance can be
computed in time O (n) [4] for trees with n leaves, which
is optimal. The quartet distance can be computed in time
O (n log n) for binary trees [5], in time O (d° n log n) for
trees where all nodes have degree less than d [6], and in
sub-cubic time for general trees [7]. See also Christiansen
et al. [8] for a number of algorithms for general trees with
different tradeoffs depending on the degree of inner
nodes. For the triplet distance, O (#%) time algorithms
exist for both binary and general trees [2,9].

Brodal et al. [5] present two algorithms for computing
the quartet distance for binary trees; one running in time
O (n log), and one running in time O (1 log® n). The lat-
ter is the most practical, and was implemented in [10,11],
where it was shown to be slower in practice compared to
a simple O (#?) time algorithm [12] unless # is above
2000. In this paper we focus on the triplet distance and
develop an O (1 log® n) time algorithm for computing this
distance between two rooted binary trees. The algorithm
is related to the O (1 log® 1) time algorithm for quartet
distance, but its core accounting system is completely
changed. As we demonstrate by experiments, the resulting
algorithm is not just theoretically efficient but also Effi-
cient in practice, as it is faster than a simple O (#*) time
algorithm based on [12] already for » larger than 12, and
is e.g. faster by a factor of 50 when # is 2900.

© 2013 Sand et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:mailund@birc.au.dk
http://creativecommons.org/licenses/by/2.0

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

Methods

The triplet distance measure between two rooted trees
with the same set of leaf IDs is based on the topologies
induced by a tree when selecting three leafs of the tree.
Whenever three leaves, a, b and c, are selected, a tree can
induce one of four topologies: It can either group 4 and b,
a and ¢, or b and ¢, or it can put them at equal distance to
the root, i.e. all three pairs of leaves have the same lowest
common ancestor (see Figure 1). For binary trees, the last
case is not possible since this would require a node with at
least three children.

The triplet distance is the number of triplets whose
topology differ in the two trees. It can naively be com-
puted by enumerating all O (1°) sets of three leafs and
comparing the induced topologies in the two trees, count-
ing how often the trees agree or disagree on the topology.
Triplet topologies in a tree, however, are not independent,
and faster algorithms can be constructed exploiting this,
comparing sets of triplet topologies faster. Critchlow et al.
[2] for example exploit information about the depth of
shared ancestors of leaves in a tree to achieve an O (#?)
time algorithm for binary trees while Bansal et al. [9] con-
struct a table of shared leaf-sets and achieve an O (1?)
time algorithm for general trees.

For the quartet distance, the analogue to the triplet dis-
tance for unrooted trees, Brodal et al. [5] construct an
even faster algorithm by identifying sets of four different
leaves in one tree through coloring all leaves with one of
three different colors and then counting the number of
topologies compatible with the coloring in the other tree.
Using a variant of the so-called “smaller half trick” for
keeping the number of different relevant colorings low,
the algorithm manages to construct all relevant colorings
with O (n log n) color changes. The number of topologies
compatible with the coloring can then be counted in the
other tree using a data structure called a “hierarchical
decomposition tree”. Maintaining the hierarchical decom-
position tree, however, involves a number of polynomial
manipulations that, while theoretically can be done in con-
stant time per polynomial, are quite time consuming in
practice [10,11], making the algorithm slow in practice.

A naive algorithm that computes the quartet distance
between two unrooted trees by explicitly inspecting each
of the O (n*) quartets can be modified to compute the
triplet distance between two rooted trees without loss of

Page 2 of 9

time by adding a new leaf x above the two root nodes
and limit the inspection of quartets to the quartets con-
taining this new leaf. However, the efficient algorithms
for computing the quartet distance presented in [5,7] do
not explicitly inspect every quartet and therefore cannot
be modified to compute the triplet distance following
this simple approach.

In the following, we develop an efficient algorithm for
computing the triplet distance between two rooted bin-
ary trees T7 and T, with the same set of leaf IDs. Our
key contribution is to show how all triplets in one tree,
say T3, can be captured by coloring the leaves with col-
ors, and how the smaller half trick lets us enumerate all
such colorings in time O (n log n). We will then con-
struct a hierarchical decomposition tree (HDT) for T,
that counts its number of compatible triplets. Unlike the
algorithms for computing the quartet distance [5],
where the counting involves manipulations of polyno-
mials, the HDT for triplets involves simple arithmetic
computations that are efficient in practice.

Counting shared triplets through leaf colorings
A triplet is a set {a, b, ¢} of three leaf IDs. For a tree T,

we assign each of the (Z) triplets to the lowest com-

mon ancestor in T of the three leaves containing 4, b,
and c. For a node v € T we denote by , the set of tri-
plets assigned to v. Then {z, | v € T} is a partition of
the set T of triplets. Thus, {r, N7, | v T1, u € T} is
also a partition of 7. Our algorithm will find

Shared(7) = Z Z Shared(z, N 7,),

veT; ueT)

where Shared(S) on a set S of triplets is its number of
triplets having the same topology in T; and T5. The tri-

plet distance of T} and T} is then (;l) — Shared (7) .

In the algorithm, we capture the triplets 7, by a color-
ing of the leaves: if all leaves not in the subtree of v
have no color, all leaves in one subtree of v are “red”,
and all leaves in the other subtree are “blue”, then 7, is
exactly the triplets having two leaves colored “red” and
one leaf colored “blue”, or two leaves colored “blue” and
one leaf colored “red”. See Figure 2.

a b c a c b

(@) (b)

Figure 1 Triplet topologies. The four different triplet toplogies.

b c a a b c

(©) (d)

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

Page 3 of 9

(2)

Figure 2 Coloring when visiting a node. Coloring of a sub-tree rooted in node v lets us count all triplets rooted in v.

(b)

For such a coloring according to a node v € T3, and
for a node u € T,, the number Shared(z, n z,,) could be
found as follows: let x and y be the two subtrees of 4,
let x(r) and y(r) be the number of leaves colored red in
the subtrees x and y, respectively, and x(b) and y(b) the
number of leaves colored blue. The number Shared(z, N
7,) is then ("0) 0+ ("9) w0+ (D) o+ () o0
We call these the triples of u compatible with the
coloring.

Explicitly going through T; and coloring for each node v
would take time O (r) per node, for a total time of O (1?).
We reduce this to O (n log n) by using the smaller half
trick. Going through T, for each coloring and counting
the number of compatible triplets would also take time O
(). Using a HDT we find this count in O(1) time, while
updating the structure takes time O (log n) after each leaf
color change. The result is O(z log” #) total running time.
In essence, the HDT performs the inner sum of

Shared (T) = Zuen ZueTz Shared(t, N 7,), while the

coloring algorithm performs the outer sum.

Smaller half trick
We go through nodes v in a depth first order while
maintaining two invariants of the algorithm: 1) Before
we process v, the entire subtree of v is colored “red”
and the rest of the tree has no color; 2) When we return
from the depth first recursion, the entire tree has no
color.

For v let S(v) denote the smallest subtree of v and let
L(v) denote the largest subtree of v. We go through the
coloring as follows (see Figure 3):

1. Color S(v) “blue”. Now v has the coloring that
enable us to count the triplets for v.

2. Remove the color for S(v). Now we can call recur-
sively on L(v) while satisfying the invariant.

3. Returning from the recursive call, the entire tree
is colorless by invariant 2.

4. Color S(v) “red”. Now we satisfy invariant 1 for
calling recursively on S(v).

5. Call recursively on S(v). When we return we
satisfy invariant 2 for returning from the recursive
call.

Using this recursive algorithm, we go through all col-
orings of the tree. In each instance (not counting recur-
sive calls), we only color leaves in S(v), and only a
constant number of times. Thus, a leaf £ is only colored
when visiting an ancestor node v where € S(v), i.e. £ is
in the smaller subtree of v. Since £ can have at most O
(log n) such ancestors, each leaf will only be colored at
most O (log n) times, implying a total of O (n log n)
color changes.

Hierarchical decomposition tree
We build a data structure, the hierarchical decomposi-
tion tree (HDT), on top of the second tree T, in order
to count the triplets in T, compatible with the coloring
of leaves in the first tree T;. The HDT is a balanced
binary tree where each node corresponds to a connected
part of T,. Each node in the HDT, or component, keeps
a count of the number of compatible triplets the corre-
spondent part of 7, contains, plus some additional
book-keeping that makes it possible to compute this
count in each component in constant time using the
information stored in the component’s children in the
HDT.

The HDT contains three different kinds of compo-
nents:

o L: A leaf in T,
« I: An inner node in T5,
+ C: A connected sub-part of T,

where for type C we require that at most two edges in
T, crosses the boundary of the component; at most one
going up towards the root and at most one going down
to a subtree.

The leaves and inner nodes of T, are transformed into
L and I components, respectively, and constitute the
leaves of the HDT. C components are then formed by

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

pairwise joining other components along an edge in 7,
by one of two compositions, see Figure 4. C components
can be thought of as consisting of a path from a sub-
tree below the C component going up towards the root
of T5, such that all trees branching o to other children
along the path are all contained in the component. In
the following we show how the HDT of T, can be con-
structed in time O(n), and we prove that the height of
the HDT is O (log n).

The construction algorithm operates on components
and edges. Each component is of one of the types L, I,
or C. It has a parent pointer, pointing to its parent com-
ponent in the HDT, and a bit, down_closed, indicating if
the component corresponds to a complete subtree in
the original tree. When a component does not yet have
a parent in the HDT, we make the parent pointer point
to the component itself. We use this pointer to test if
an edge has been contracted in the HDT construction.
Edges consist of two pointers, an up pointer and a down
pointer that points to the components above and below
the edge in T5.

In a single traversal of the tree, the algorithm initially
builds a component for each node in the tree (an L
component for each leaf and an I component for each
inner node) and an edge for each edge in the tree. The
parent pointer of each component is initially set to
point to the component itself, and the down_closed bit
is set to true for L components and false for I compo-
nents. The edges are put in a list es. We then perform a
series of iterations, each constructing one level of the
HDT. In each iteration, edges whose neighbors can be
joined to form a C component via the constructions in
Figure 5 are greedily removed from es, and another list,
next, is used to keep the edges that cannot be con-
tracted in this iteration. The details of an iteration is
shown in Figure 6. The process stops when es becomes
empty.

In case 1, one of e’s neighbors already has a parent,
thus this neighbor has already been contracted into a C
component in this iteration and should not be con-
tracted again. Case 2 is the situation in Figure 5a, and
case 3 is the situation in Figure 5b. In case 4, e.down is
an I component or e.up is an I component and e.down
does not correspond to a complete subtree, hence none
of the constructions in Figure 5 apply. After removing
all edges from es, the up and down pointers of the

Page 4 of 9

remaining edges in next are updated in lines 21-22, such
that they point to either a newly created component or
still point to the same component. The edges in next
are finally moved back to es in line 23, and a new itera-
tion is started. The algorithm finishes when es is empty,
and the root of the HDT is the C component resulting
from joining the ends of the last edge. We now argue
that height of the HDT is O(log n), and that the con-
struction time is O(n). Each iteration of the code in
Figure 6 takes time linear in the number E = |es| of
edges remaining to be contracted at the beginning of
the iteration. The height and time bounds follow if we
can argue that the number of edges decreases geometri-
cally for each iteration. In the following we argue that the
number of edges after one iteration is at most 11/12. E.

We first argue that the number of contractible edges at
the beginning of the iteration is at least E/4. Note that
only edges incident to I components might not be con-
tractible, and that the number of down-closed compo-
nents is at least one larger than the number of I
components. If the number of I components is at most
E/4, then at most 3 - E/4 incident edges might not be
contractible, i.e. at least E/4 edges are contractible.
Otherwise the number of I components is more than
E/4, and therefore the number of down-closed compo-
nents is more than E/4 + 1. Since the parent edges from
all down-closed components are contractible (for E > 1),
the number of contactable edges is again at least E/4.

Since each contracted edge can prevent at most two
other edges incident to the two merged components
(see Figure 5) from being contracted in the same itera-
tion, each iteration will contract at least 1/3 of the at
least E/4 contractible edges. It follows that an iteration
reduces the number of contractible edges by at least
E/12.

Counting triplets in the hierarchical decomposition tree
In each component we keep track of N, the number of
triplets contained within the component (i.e., where the
three leaves of the triplet are within the component) that
are compatible with the coloring. When we change the
coloring, we update the HDT to reflect this, so we can
always read o the total number of compatible triplets
from the root of the HDT in constant time.

By adding a little book-keeping information to each
component we make it possible to compute N (and the

AN AN

(1) 2)

(3) 4) (5)

Figure 3 Coloring algorithm. The five steps of the coloring in the smaller-half trick.

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

Page 5 of 9

(L) @

underlying tree while C components contain a connected set of nodes.

Figure 4 Component types in the HDT. The three different types of components. L and | components contain a single node from the

©)

book-keeping information itself) for a component in
constant time from the information in the component’s
children in the HDT. This has two consequences: it
makes it possible to add the book-keeping and N to all
components after the construction in linear time, and it
makes it possible to update the information when a leaf
changes color by updating only components on the path
from the leaf-component to the root in the HDT, a path
that is bounded in length by O (log n). Since we only
change the color of a leaf O (n log ») times in the triplet
distance algorithm, it is this property of the HDT that
keeps the total running time at O (1 log® n). For the
book-keeping we store six numbers in each component
in addition to N:

¢ R: The number of leaves colored red in the
component.

¢ B: The number of leaves colored blue in the
component.

+ 77: The number of pairs of red leaves found in the
same sub-tree of a C component. Let T}, i = 1,..., n,
denote the sub-trees in the component, see Figure
7a, and let r(i) denote the number of red leaves in

tree T;. Then 17 = Zn . (r(zl)) .
i=

+ pb: The number of pairs of blue leaves found in
the same sub-tree of a C component.

+ 15 : The number of pairs of leaves with a red leaf
in one sub-tree and a blue in another sub-tree,
where the red leaf is in a tree further down on the
path in a C component. Let T, i = 1,..., n, denote
the sub-trees in the component, see Figure 7, and let
r(i) denote the number of red leaves in tree T; and b

(i) the number of blue leaves in T, Then

=3 2 0.

« pr: The number of pairs of leaves with a red leaf in
one sub-tree and a blue in another sub-tree, where
the blue leaf is in a tree further down on the path in
a C component.

We describe how the book-keeping variables and N
are computed through a case-analysis on how the com-
ponents are constructed. L and I components are con-
structed in only one way, while C components are
constructed in one of two ways (see Figure 5).

L components: For a leaf component, R is 1 if the leaf
is colored red and 0 otherwise, B is 1 if the leaf is
colored blue and 0 otherwise, and all other counts are 0.

I components: All counts are 0.

C components, case Figure 5a: Let x be one of the
counters R, B, 77 ,... listed above for a C component, and
let x(1) and x(2) denote the corresponding counter in
component C; and C,, respectively, with C, above C; in
the underlying tree. Then

R=R(1) +R(2)
f = 7(1) + 77(2)
b = 1b(2) + b(1) + R(1) - B(2)

B =B(1)+B(2)
bb = bb(1) + bb(2)
br=br(2) +br(1) + B(1) - R(2).

The triplet count is then computed as
N = N(1)+N(2) + (R(zl)) B2+ (B(zl)> - R(2)
+77(2) - B(1) +bb(2) - R(1) +R(1) - 1h(2) +B(1) - br(2).

C components, case Figure 5b: Let x(1) denote one
of the counters listed above for component C;. Then

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

Page 6 of 9

cannot have a downwards edge crossing its boundary.

Figure 5 Component compostions in the construction of the HDT. The two different ways of constructing a C component by merging two
underlying components. The topmost of the components can either be a C component (a) or an | component (b) while the bottommost
component, C;, must be a C or L component. If the topmost component is an | component, the bottommost must be downwards closed, i.e. it

(b)

R = R1), B = B(1), ﬁ:(R(zl)>, 1}7;=<B(1)>,
2

7 = br = 0. Since the inner node in the composition
does not contain any leaves, the triplet count is simply
N =N (1).

Results and discussion

We implemented the algorithm in C++ and a simple O
(n*) time algorithm to ensure that it computes the cor-
rect triplet distance.

for each edge e in es

make a
c.down_closed =
e.up. parent =

new component c
False

17 else
18 /* Case 4 */
move e from es to
for each edge e in next
e.up = e.up.parent
2 e.down = e.down. parent
23 move e from next to es

next

NN Nk

if e.up.parent # e.up or e.down.parent

/* Case 1: At least one of the end—points of e is already
contracted x/
move e from es to next
else if e.up.type = C and (e.down.type = C or e.down.type = L)
/* Case 2: Fig. 5(a). %/
7 remove e from es
8 make a new component c
9 c.down_closed = e.down_closed
0 e.up.parent = e.down.parent = ¢
1 else if e.up.type = I and e.down.down_closed = True
2 /x Case 3: Fig. 5(b). =/
3 remove e from es

e.down. parent = ¢

e.down

Figure 6 Algorithm for constructing the hierarchical decomposition tree. Algorithm for constructing the hierarchical decomposition tree.
The listing shows the algorithm run for each level of the HDT construction. This algorithm is repeated until the es list is empty.

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

Page 7 of 9

(a)

(b)

Figure 7 Counting triplets in a C component. The two cases of counting triplets in a C component.

We then verified the running time of our algorithm, see
Figure 8a. As seen in the figure, the running time evens
out when we divide with # log® # giving us confidence
that the analyzed running time is correct. We also mea-
sured where in the algorithm time was spent, whether it is
in constructing the HDT, in coloring the leaves in the first
tree, or in updating the counts in the HDT. Figure 8b
illustrates the time spend on each of these three parts of
the algorithm, normalized so the running time sums to
one. For small trees, constructing the HDT makes up a
sizable fraction of the running time, not surprising since
the overhead in constructing components is larger than
updating them. As the size of the trees increase, more
time is spent on updating the HDT, as expected since
updating the HDT runs in O (n log® 1) while the other
operations are asymptotically O (n log n).

When changing the color of leaves, we spent time
O (log n) updating the book-keeping in the HDT for
each leaf. We only count after a complete sub-tree has
changed color, however, so instead of updating the HDT
for each color-change we could just mark which leaves
have changed color and then update the HDT bottom-
up, so each inner node would only be updated once
when it is on a path from a changed leaf. We implemen-
ted this, but found that the extra book-keeping from
marking nodes and then updating increased the running
time by 10%-15% compared to just updating the HDT.

To render the use of the algorithm in practice, we
implemented an Efficient O(77°) time algorithm based on
the quartet distance algorithm presented in [12]. Figure 9
shows the ratio of the running time for the O(#?) time
algorithm against the O(n log® 1) time algorithm. It is

107 Total running time

10" W 10*

a) Total running time divided by nlog® n.
(a) g y nlog

Time usage

tree
B constructing HDT

(b) The percent of time used on the three parts of the
algorithm.

Figure 8 Validation of running time. (a) Total running time divided by n log? n.. (b) The percent of time used on the three parts of the
algorithm. The left figure shows the total running time divided by n log® n showing that the theoretical running time is achieved in the
implementation. The right figure shows the percent of time used on the three parts of the algorithm: constructing the HDT of the second tree,
coloring the leaves in the first tree, and updating the HDT accordingly. Constructing the HDT takes a considerable part of the time, but as the
trees grow, updating the HDT takes a larger part. The plots show the average over 50 experiments for each size n.

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

Page 8 of 9

20

Comparison to running time of O(n?) algorithm

ratio
>
T

1F--—-=-===== s i

— lom) /tO(u log®n)

10!

n = number of leaves

Figure 9 Comparison to o(n?) algorithm. Ratio between the running times for the O(n?) time algorithm and the O(n \og2 n) time algorithm.

evident that our algorithm is fastest for all practical pur-
poses. The speed-up factor for n = 2900 is 46.

Conclusions

We have presented an O (1 log”® 1) time algorithm for
computing the triplet distance between two binary trees
and experimentally validated its correctness and time
analysis.

The algorithm builds upon the ideas in the O (1 log®)
time algorithm for computing the quartet distance
between binary trees [13], but where the book-keeping in
the quartet distance algorithm is rather involved, making
it inefficient in practice, the book-keeping in the triplet
distance algorithm in this paper is entirely different, and
significantly simpler and faster.

Compressing the HDT during the algorithm makes it
possible to reduce the running time of the quartet distance
algorithm to O (n log #) and the same approach can also
reduce the running time of the triplet algorithm to O (n
log n). We have left for future work to experimentally test
whether this method incurs too much overhead to make it
practically worthwhile.

Unlike the O (#*) time algorithm of Bansal et al. [9] our
algorithm does not generalize to non-binary trees. It is
possible to extend the algorithm to non-binary trees by
employing more colors, as was done for the quartet

distance [6], but this makes the algorithm depend on the
degree of nodes, and future work is needed to develop a
sub-quadratic algorithm for general rooted trees.

Authors’ contributions

All authors contributed to the design of the presented algorithm. AS
implemented the data structures and the algorithm. AS, CNSP, and TM
designed the experiments, and AS conducted these. All authors have
contributed to, seen and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Declarations

The publication costs for this article were funded by PUMPKIN, Center for
Membrane Pumps in Cells and Disease, a Center of the Danish National
Research Foundation, Denmark.

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 2, 2013: Selected articles from the Eleventh Asia Pacific
Bioinformatics Conference (APBC 2013): Bioinformatics. The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/14/52.

Author details

'Bioinformatics Research Center, Aarhus University, Denmark. “Department of
Computer Science, Aarhus University, Denmark. 3MADALGO, Center for
Massive Data Algorithms, a Center of the Danish National Research
Foundation, Denmark. “Department of Mathematics and Computer Science,
University of Southern Denmark, Denmark. SPUMPKIN, Center for Membrane
Pumps in Cells and Disease, a Center of the Danish National Research
Foundation, Denmark.

Published: 21 January 2013

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S2
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S2

Sand et al. BMC Bioinformatics 2013, 14(Suppl 2):518
http://www.biomedcentral.com/1471-2105/14/52/S18

References

1.

Robinson DF, Foulds LR: Comparison of Phylogenetic Trees. Mathematical
Biosciences 1981, 53:131-147.

Critchlow DE, Pearl DK, Qian CL: The triples distance for rooted
bifurcating phylogenetic trees. Systematic Biology 1996, 45(3):323-334.
Estabrook GF, McMorris FR, Meacham CA: Comparison of Undirected
Phylogenetic Trees Based on Subtrees of Four Evolutionary Units.
Systematic Zoology 1985, 34(2):193.

Day WHE: Optimal-Algorithms for Comparing Trees with Labeled Leaves.

Journal of Classification 1985, 2:7-28.

Brodal GS, Fagerberg R, Pedersen CNS: Computing the quartet distance
between evolutionary trees in time O(n log n). Algorithmica 2004,
38(2):377-395.

Stissing MS, Pedersen CNS, Mailund T, Brodal GS, Fagerberg R: Computing
the quartet distance between evolutionary trees of bounded degree.
Proceedings of the 5th Asia-Pacific Bioinformatics Conference (APBC) Imperial
College Press; 2007, 101-110.

Nielsen J, Kristensen A, Mailund T, Pedersen CNS: A sub-cubic time
algorithm for computing the quartet distance between two general
trees. Algorithms for Molecular Biology 2011, 6:15.

Christiansen C, Mailund T, Pedersen CNS, Randers M, Stissing MS: Fast
calculation of the quartet distance between trees of arbitrary degrees.
Algorithms Mol Biol 2006, 1:16.

Bansal MS, Dong J, Ferndndez-Baca D: Comparing and aggregating
partially resolved trees. Theoretical Computer Science 2011,
412(48):6634-6652.

Mailund T, Pedersen CNS: QDist-quartet distance between evolutionary
trees. Bioinformatics 2004, 20(10):1636-1637.

Stissing MS, Mailund T, Pedersen CNS, Brodal GS, Fagerberg R: Computing
the all-pairs quartet distance on a set of evolutionary trees. Journal of
Bioinformatics and Computational Biology 2008, 6:37-50.

Bryant D, Tsang J, Kearney P, Li M: Computing the quartet distance
between evolutionary trees. Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms 2000, 285-286, Society for Industrial and
Applied Mathematics.

Brodal GS, Fagerberg R, Pedersen CNS: Computing the quartet distance
between evolutionary trees in time O(nlog? n). In Proceedings of the 12th
International Symposium on Algorithms and Computation (ISAAC). Volume
2223. Springer; 2001:731-742, Lecture Notes in Computer Science.

doi:10.1186/1471-2105-14-52-S18

Cite this article as: Sand et al: A practical O(n log® n) time algorithm for
computing the triplet distance on binary trees. BMC Bioinformatics 2013
14(Suppl 2):S18.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://www.ncbi.nlm.nih.gov/pubmed/21639882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21639882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21639882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16999860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16999860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18324744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18324744?dopt=Abstract

	Abstract
	Background
	Methods
	Counting shared triplets through leaf colorings
	Smaller half trick
	Hierarchical decomposition tree
	Counting triplets in the hierarchical decomposition tree

	Results and discussion
	Conclusions
	Authors' contributions
	Authors’ contributions
	Competing interests
	Competing interests
	Declarations
	Author details
	References

