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Abstract

Background: An increasing number of genetic components are available in several depositories of such
components to facilitate synthetic biology research, but picking out those that will allow a designed circuit to
achieve the specified function still requires multiple cycles of testing. Here, we addressed this problem by
developing a computational pipeline to mathematically simulate a gene circuit for a comprehensive range and
combination of the kinetic parameters of the biological components that constitute the gene circuit.

Results: We showed that, using a well-studied transcriptional repression cascade as an example, the sets of kinetic
parameters that could produce the specified system dynamics of the gene circuit formed clusters of recurrent
combinations, referred to as kinetic motifs, which appear to be associated with both the specific topology and
specified dynamics of the circuit. Furthermore, the use of the resulting “handbook” of performance-ranked kinetic
motifs in finding suitable circuit components was illustrated in two application scenarios.

Conclusions: These results show that the computational pipeline developed here can provide a rational-based
guide to aid in the design and improvement of synthetic gene circuits.

Background
The goal of synthetic biology is to be able to engineer
biological processes and to select and put together stan-
dardized components according to a design and user-
specified function and dynamics [1-5]. To this end,
several depositories of biological components have been
established [6-12], but the design cycles still rely very
heavily on the slow and error-prone process of trying out
the parts [13,14].
A fundamental problem is that we still lack clear

knowledge of the factors that govern the dynamic beha-
viours of even the very simple circuits that are motifs of
large biological networks [13-18]. Although the struc-
ture, or topology, of a biological network may largely

dictate its dynamics [19-21], the kinetic parameters (e.g.
those that indicate the level of efficiency) of the involved
biochemical reactions also play a role [22-27]. Thus,
when performing a mathematical simulation to deter-
mine which biological components from the depositories
should be chosen for a synthetically designed biological
circuit with a specified dynamics, one needs to consider
not only network topology, but also kinetic parameters.
In this work, we developed a computational pipeline,

called Kinetic Motif and Functional Analysis (KMFA), to
address this problem. By identifying the set of kinetic
parameters required to produce the user-specified
dynamic behaviour for a given network topology in both
the presence and absence of random perturbations and
using statistical analysis to identify recurrent patterns (i.e.
motifs) of these kinetic parameters and understand their
mechanics, KMFA provides a “handbook” of kinetic
motifs in which one can look up a biological components
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library to choose suitable parts for optimal performance
of the designed circuit.
We first demonstrated the utility of KMFA by applying

it to a well known synthetic gene circuit of a looped cas-
cade of transcriptional inhibitions built in Escherichia
coli [28-31]. We showed that, for this 4-gene circuit, only
2,355 (0.6%) of the 390,625 (58) possible combinations of
the kinetic parameters could produce the prescribed
steady-state concentration of each gene product as the
output of the circuit under both perturbed and unper-
turbed conditions and that these kinetic solutions formed
clusters of motifs, which could be ranked according to
their relative performance, thus yielding a “handbook” of
performance-ranked kinetic motifs that can be used to
select library components for the circuit. We illustrated
this using two scenarios: the first was to identify faulty/
sub-optimal components and replace them with suitable
ones to make a non-functional circuit functional, while
the second was to improve the performance of an already
functional circuit. KMFA is therefore a useful computa-
tional tool with a rational design capability to choose cir-
cuit components in synthetic biology research.

Methods
As shown in Figure 1, the KMFA pipeline consists of four
steps. Although the concept and procedures of KMFA are
generally applicable, we used a specific gene circuit to
describe these steps and, later, in the Results, illustrate its
utilities. This circuit was a four-gene transcriptional cas-
cade that has been synthesized in E coli and has been stu-
died both experimentally [28] and computationally [29-31].

Step 1: System setup
In this step, the system is set up to be numerically simu-
lated in Step 2. This includes specifying the topology of
the gene circuit or network, the mathematical model of
the system, the target output dynamics and performance
measures. Many studies have shown that deterministic
modeling and stochastic modeling of biological systems
have complementary benefits, the deterministic modeling
providing the mean qualitative dynamics of a gene circuit
and stochastic modeling the effects of random noises on
the circuit [32,33]. In this study, we modeled the
dynamics of the transcriptional cascade using both deter-
ministic and stochastic simulations, the latter being used
to find kinetic solutions for a robust system that could
function properly under perturbations. The mathematical
equations for the deterministic simulations are [29]:
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where xi(t) denotes the concentration of protein i and
ẋi(t) its rate of change at time t; f(pi,di) denotes the
non-linear gene regulation of transcription and transla-
tion of protein i; pi,0 is the basal production rate, pi the
production rate constant and di the degradation rate
constant of protein i; and ri(xj(t)) denotes the Hill func-
tion of regulator protein j repressing the production of
protein i at time t.
The mathematical equations for the stochastic simula-

tions are [31]:

ẏi(t) = g(pi, di)
= f (pi, di) + �f (pi, di)ni(t) + vi(t)
= (pi,0 + piri(yj(t))− diyi(t))
+ (�pi,0 + �piri(yj(t))− �diyi(t))ni(t) + vi(t)

(2)

where yi(t) denotes the concentration of protein i and
ẏi(t) its rate of change at time t; g(pi,di) denotes the
non-linear gene regulation of transcription and transla-
tion of protein i influenced by both intrinsic and exter-
nal random noises; Δpi,0, Δpi and Δdi denote the
respective standard deviations for the parameters of
basal production rate, production rate and degradation
rate; and ni and vi are, respectively, randomly generated
intrinsic and extrinsic noises for protein i.
This cascade of transcriptional inhibitions has been

shown to produce steady-state concentrations of the
proteins involved [28-31]. To facilitate comparison, the
target dynamics (z) were chosen to be the steady-state
concentrations of protein TetR, LacI, CI and Eyfp used
in Chen and Wu [31], giving z = {1000, 30000, 300,
30000 nM}. To measure the performance of a given set
of kinetic parameters (pi, di), i = {TetR, LacI, CI, Eyfp},
deviations from the steady-state concentrations of the
target were computed for the deterministic simulations
using Eq. (3) and for the stochastic simulations using
Eq. (4), where DD denotes the deterministic deviation,
DS the stochastic deviation and ln a logarithmic trans-
formation function.

DD = Deviation(x, z) = ln(
∑
i

∑
t

∣∣xi(t)− zi(t)
∣∣) (3)

DS = Deviation(y, z) = ln(
∑
i

∑
t

∣∣yi(t)− zi(t)
∣∣) (4)

In order to compare with the numerical results of
[31], the two measures were not normalized even
though z varies from 300 to 30000 nM. However, by
dictating that a viable dynamics must not deviate from
the target concentration by more than 20% for each of
the four proteins (see below), we reduced the possibility
of the contribution from CI, which has the smallest tar-
get concentration at 300 nM, being overtaken by those
of the other proteins.
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Step 2: Simulation
For our simulations, we employed the same range of
parameter values and values for the basal production
rate constants, initial protein concentrations and pertur-
bation fluctuations used by Chen and Wu [31] (sum-
marized in Additional file 1: Table S1). Because it is
impossible to enumerate all the real values of the kinetic
parameters, we uniformly binned each kinetic parameter
into five different rate efficiency levels, with level 1

denoting the lowest and level 5 the highest strength
(efficiency) of the kinetics, and used the mean of each
bin as the representative of the bin (Additional file 1:
Table S2) for the simulations. The five levels may
respectively correspond to “weakest”, “weak”, “medium”,
“strong”, and “strongest” categories that are often used
in experimental studies to characterize, say, binding effi-
ciency of ribosome binding sites [7]. Increasing the
number of levels will increase the resolution on the

Figure 1 Steps in the kinetic motif and functional analysis (KMFA) pipeline. KMFA is a computational pipeline consisting of four steps:
system setup, functional mapping by simulation, identification of functional kinetic motifs and tabulation of performance-ranked kinetic motifs.
The details of each step are described in the Methods.
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transformation of parameter values but will also increase
the computational cost and difficulties to identify kinetic
motifs in subsequent analysis (see below). Since there
are four genes in the system and each gene product
(protein) is associated with two kinetic parameters, one
for production and the other for degradation, there were
a total of 390,625 (58) sets of kinetic parameters that
could be used for simulations. For each of these para-
meter sets, Eq. (1) (deterministic) and Eq. (2) (stochastic)
were simulated for a maximum of 100 time steps and dif-
ferences in protein concentrations between the simula-
tion and prescribed values (z) (Eq. (3) and Eq (4))
calculated. At any time point, if the concentration of any
of the four proteins exceeded 106 nM, the simulation
(Eq. (1) or Eq. (2)) was aborted prematurely and an extre-
mely large deviation value of 15 was assigned. The other
ill-behaved parameter sets, for which a value of 15 was
assigned to their DD (Eq. (3)) or DS (Eq. (4)), were those
in which at least one of the four proteins exhibited a
steady-state concentration, computed as the mean for the
second half of the simulation, that deviated by more than
20% from the prescribed value. Simulations with a devia-
tion value of 15 were considered non-functional.

Step 3: Identification of kinetic motifs
All the sets of kinetic parameters that were not ill-behaved
(i.e. both their DD and DS values were smaller than 15)
were transformed into bin integers representing efficiency
levels (see above), which were then clustered hierarchically
[34] based on the similarity, computed by the Hamming
distance [35], of the sequence of bin levels. This resulted
in clusters of kinetic parameters, and each cluster, called a
kinetic motif, could be represented by a consensus
sequence logo, such as {(1, 1); (3, 3); (*, *); (3, 3)}, in which
bin levels in integers of the two kinetic parameters for the
production and degradation of each of the four proteins
are paired in parentheses and * indicates any levels.

Step 4: Generation of a handbook of kinetic motifs
These motifs could be ranked based on their perfor-
mance, i.e. how well they could produce the specified
system dynamics, as measured by the deviations DD
(Eq. (3)) and DS (Eq. (4)). This resulted in a table, or
handbook, of performance-ranked kinetic parameter
sets, which provides information that can be easily
referred to in order to identify suitable genetic compo-
nents to assemble a functional circuit that meets user-
desired specifications.

Results
Mapping parameters to solutions
As described in the Methods, we comprehensively
searched the parameter space, albeit using representa-
tives of uniformly divided bins, for sets of kinetics

parameters that could produce the specified steady-state
system dynamics under both conditions of with and
without perturbations. Figure 2A shows that only a very
small fraction (2,355 or 0.6%) of the parameter sets
sampled (58 = 390,625) could produce the specified
dynamics, while the vast majority (387,535 or 99.2%)
failed to function properly under either condition. Inter-
estingly, some parameter sets (0.1%) functioned well
only without perturbations, while others (0.1%) did so
only with perturbations.

Clusters of kinetic motifs
Each of the 2,355 kinetic solutions obtained in Figure
2A is a combination of 8 kinetic parameters consisting
of the pair of kinetic parameters p, for the production
rate, and d, for the degradation rate of each of the four
proteins. The resulting 2,355 8-integer sequences were
compared and grouped into 52 clusters (Figure 2B), 48
of which had at least 10 members (i.e. 10 parameter sets
that could produce the specified steady-state dynamics).
Similar to sequences of DNA [36] or amino acids
[37-39], these clusters of kinetic parameter sets, or
kinetic motifs, were represented by a motif logo made
up of efficiency level integers in which the character size
reflects the extent of consensus within the cluster, while
‘*’ indicates no consensus at all (Figure 2B). These 48
clusters were tabulated in a handbook of kinetic motifs
(Additional file 1: Table S3), along with their circuit
structure, kinetic motif logo, number of cluster mem-
bers and performance scores.

Functional association of kinetic motifs
From Additional file 1: Table S3, in which the clusters of
kinetic motifs are ranked by their performance in
decreasing value of the sum of their DD and DS scores,
we observed that, on the whole, the top clusters tended
to have high, though not necessarily the highest, produc-
tion and degradation rates, i.e. there were more 3’s or 4’s
and 5’s than 1’s and 2’s in the motif logos, and that, con-
versely, levels 1 and 2 occurred more frequently in the
motif logos for the clusters ranked at the bottom. This
was particularly true for the 2nd (LacI) and 4th (Eyfp) pro-
teins in the network, because they were required to have
a high steady-state output concentration of 30,000 nM,
compared to 1,000 nM for the 1st protein (TetR) and 300
nM for the 3rd (CI) (see Methods). Furthermore, for the
same protein, its production and degradation rates
seemed to be symmetry-related, i.e. level 3 degradation
tended to be paired with level 3 production. Such sym-
metry is also visible in Figure 2B. These observations are
consistent with our understanding of the dynamic beha-
viours of a transcription regulation system in that, in gen-
eral, degradation rates determine the response time and
fast degradation rates allow rapid changes in protein
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concentration and can, therefore, minimize the response
time to stimulation [40,41]. Furthermore, to maintain a
given steady state concentration, proteins with a rapid
degradation rate also require a high production rate, the
final concentration being determined by both rates
[16,42]. Inspection of individual solutions with the high-
est degradation rate (level 5) showed that they tended to
exhibit high fluctuations in protein concentrations before
reaching the final steady-state concentrations, suggesting
that the highest degradation rate (level 5) may not always
be the most desirable for the designed circuit, which may
also explain why the symmetry between protein produc-
tion and degradation tended to break down a little when
levels were very high (4 or 5; Additional file 1: Table S3).
Another interesting observation was that the third

protein (CI) did not show a preference for a particular
efficiency level for either of its two kinetic parameters
(Figure 2B and Additional file 1: Table S3). As shown in
Additional file 1: Fig. S1, this can be explained by exam-
ining the repression network and its rate equations.
Briefly, the high initial and steady-state concentrations
of protein LacI, which represses the cI gene, renders the
contribution of gene regulation to CI production negli-
gible and, thus, the magnitude of its production kinetic
parameter, pCI, inconsequential; also, as a consequence,

at the steady state, all the values within the range
allowed for its degradation kinetic parameter, dCI, would
lead to a CI concentration within 20% of the specified
value, thus meeting the required condition for a func-
tional solution (see Methods).

Application scenario I: making a non-functional design
functional
Given a non-functional circuit, it is, at present, not easy
to determine the reasons for the failure to function or
to identify the faulty/sub-optimal component that needs
to be replaced or corrected to salvage the design. The
handbook of kinetic motifs and associated properties
(Additional file 1: Table S3) is a great aid to solving this
problem, as illustrated by the following example. As
shown in Figure 3A, the original network was composed
of components with kinetic parameters {(pTetR, dTetR);
(pLacI, dLacI); (pCI, dCI); (pEyfp, dEyfp)} with values equiva-
lent to efficiency levels of {(3, 3); (5, 1); (2, 4); (2, 1)}
that could not produce the specified dynamics for the
2nd (LacI) and 4th (Eytp) proteins. Comparing this
sequence of kinetic levels with those tabulated in Addi-
tional file 1: Table S3, we found two motifs with a
sequence that differed at only two of the 8 positions (i.e.
Hamming distance = 2), namely motif No. 47 [{(3, 3);

Figure 2 Identification and clustering of functional kinetic motifs. (A) The solution map, in which each black dot represents the simulation
result, as measured by deviations DD and DS, for one parameter set and the large black dot in the upper right corner represents many
simulation results, because the values of their DD and DS were both set at 15 to indicate ill-behaved dynamics (see Methods). The resulting
dynamics from both the deterministic (i.e. without perturbation) and stochastic (i.e. with perturbation) simulation for the simulated 4-gene
transcriptional repression network fell into one of four groups. The vast majority (99.2%) failed to produce the specified dynamics, i.e. the
specified steady-state concentration of the protein product of each of the four genes, in either the deterministic or the stochastic simulation,
while a very low percentage succeeded in one, but not both, of the two types of simulation (0.1% for each). Those that succeeded in both also
accounted for a very small percentage (0.6%) of the kinetic parameters simulated. A typical dynamics is shown for each of the four groups as
insets; that on the left is deterministic and that on the right stochastic. (B) Clusters of kinetic motifs. The functional sets (2,355 sets or 0.6% of
those sampled) were hierarchically clustered based on the integer sequence of their kinetic efficiency levels, which are colour-coded according
to the spectrum shown to the far right, and each cluster could be represented by a motif logo (see Methods).
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Figure 3 Two scenarios demonstrating the application of KMFA. (A) Scenario I: Making a non-functional design functional. If we have a non-
functional original design, as indicated by the dynamics of the deterministic and stochastic simulation shown, we can transform its kinetic
parameters into efficiency levels and look in the handbook of kinetic motifs (Additional file 1: Table S3) for a similar, but functional, design to
replace some of the ribosome binding sites (RBS, denoted as R and represented by triangles) and/or protein degradation tags (PDT, denoted as T
and represented by hexagons) with others with a suitable efficiency level to render the modified design functional. In this example, two different
routes of minimal changes (Hamming distance (D) of replacement = 2) were found. (B) Scenario II: Improving a functional design. In this example,
the original, already functional, design is that reported by Chen and Wu [31], the ranking of which in our performance table (Additional file 1: Table
S3) can be improved by selecting components with an RBS and/or PTD that can work with other components to generate a better system
performance (i.e. better performance ranking in Additional file 1: Table S3). All notations and symbols are the same as those in (A).
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(1, 1); (*, *); (1, 1)}] and motif No. 12 [{(3, 3); (5, 5); (*, *);
(2, 2)}]. Note that, in this comparison, we ignored the 3rd

protein (CI) because, as mentioned above, it does not
have a preference for these kinetic levels. To modify the
original design into one of these two motifs, we can
change the efficiency level of the kinetic parameters by
using a different ribosome binding site (RBS) for one or
more of the genes and thereby changing their protein
production level or by using a different protein degrada-
tion tag (PDT) to alter the protein degradation rate.
Specifically, we can either replace the RBS in the original
design with one with a protein production efficiency level
of 1 for the 2nd and 4th proteins to change the original
design into one that would behave like motif No. 47 or
we can replace the PDT in the original design with one
with protein degradation efficiency levels of 5 for the 2nd

protein and 2 for the 4th protein, making it resemble
motif No. 12. Both routes of modification would render
the system functional, although the second would lead to
a system with a better performance. Note that the key
rule in making these changes is to maintain symmetry
between the protein production and degradation rates for
the same protein, as discussed above.

Application scenario II: improving a functional design
In the second scenario (Figure 3B), the original circuit
was already functional and, in fact, has been shown to
be robust under perturbations by Chen and Wu [31].
However, it was ranked in the middle part of Additional
file 1: Table S3 (motif No. 20) and therefore could still
be improved. There is more than one way of improving
the performance of the original design. The two pro-
posed routes of change illustrated in Figure 3B would
both lead to a superior performance ranking in the
“handbook” of this circuit: the first involves increasing
the efficiency level for both the RBS and PDT for the
2nd protein (LacI), while the second requires the two
steps of replacing the RBS and PDT for the 1st protein
(TetR), then those for the 2nd protein (LacI).

Discussion
Mathematical modelling and simulations are being
increasingly used to help design simple biological circuits
to achieve user-specified functions or certain network
behaviours in synthetic biology [5,43-47]. Much work has
been focused on finding suitable network topologies
[19-21], or kinetic parameters that can produce the
desired system dynamics, given a network topology
[22-26,29-31]. In this work, we have developed a compu-
tational pipeline, KMFA, for the latter. Compared to pre-
vious studies, a distinctive feature of KMFA is that, by
comprehensively mapping the parameter space and func-
tional space (Figure 1, Step 2), the identified multiple sets
of functional kinetic parameters can be clustered and

their motifs (i.e. their recurring combinations) identified
(Figure 2B) and analysed to reveal and understand signifi-
cant functional associations (see Results, Figure 2).
In this work, the network was simulated with and with-

out perturbations, the former being modeled by a sto-
chastic process with randomly introduced intrinsic and
extrinsic noises (Eq. (2)) and the latter by a deterministic
process (Eq. (1)). The results showed that there are cer-
tain situations (i.e. certain combinations of the kinetic
parameters) in which the system may function well under
perturbations, but not in the absence of perturbations.
Although it is well recognized that noise is an integral
part of normal biological functions and how biological
systems evolve to be robust [48-53], our results suggest
that, to design a ‘truly robust’ biological system, both
conditions (with and without noise) need to be consid-
ered. Although further analysis is required to elucidate
the mechanism for the effect of perturbation observed in
this study, we speculate that perturbation alters the
“background” protein production and degradation rates
to allow the circuit to achieve and maintain target
dynamics. Indeed, several studies have shown that gene
circuits (e.g., switches and oscillations) rely on noise to
achieve desired functions and would fail without them
[54-57].
As a proof-of-principle study, KMFA has been

designed in the present work to exhaust all possible
kinetic parameter combinations, which limits its applica-
tion to very small systems such as the transcriptional
cascade serving as a demonstrating example above.
However, this limitation can be lifted by integrating
with approaches such as Monte-Carlo sampling [58],
Latin hypercube sampling [59], and others [29,60] that
have been developed to efficiently search for parameter
solutions from high dimensional spaces. Indeed, several
large systems (e.g. the Fas apoptotic pathway [61]) have
been studied using some of these methods. Replacing
our time-consuming simulation step (see Figure 1) with
these efficient parameter-searching methods, one can
collect the parameter solutions for an interesting func-
tion/dynamics of a large system, and then apply KMFA
on those parameter solutions to find kinetic motifs.
An important finding of this study is that, as in studies

of network topologies [19-21], only a very small percen-
tage of kinetic parameters can be functional, i.e. produce
the desired system dynamics (Figure 2A). Obviously, net-
work topology and kinetic parameters are intertwined, and
the kinetic motifs (Additional file 1: Table S3) identified
here will probably be specific not only for the specific
arrangement of the components of the circuit, but also for
the specified output protein concentrations. Nevertheless,
for a given circuit design, the “handbook” of kinetic motifs
(Additional file 1: Table S3) will be very useful in deciding
which biological components available from a biological
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parts library, such as BioFab [10] and the MIT Registry of
Standard Biological Parts [7], should be used, as illustrated
by the two application scenarios presented in Figure 3.
Thus, the handbook could be used to standardize the bio-
logical parts (e.g. by classifying them into 5 efficiency
levels) and, via ranking all possible combinations of the
parts, standardize the circuit design process. The hand-
book could furthermore be used to help synthesize
required parts of a specified efficiency level not yet col-
lected in the library, especially the ribosome binding sites
for which a relationship between binding efficiency and
binding site sequence has been elucidated [62]. As more
and more genetic components (e.g. promoters, ribosome
binding sites, terminators and protein degradation tags)
are deposited and characterized, mathematical simulations
using a computational pipeline, such as KMFA, will make
the synthetic design and engineering of biological circuits
more efficient and also more rationale-based. Further-
more, the general applicability of the KMFA approach will
allow simulations of different network topologies and dif-
ferent functions (see Additional file 1 for additional illus-
tration on an ‘AND’-gate circuit [63,64]) in comparative
studies to uncover intriguing common/distinct principles
of biological networks, particularly those pertaining to
kinetic parameters, which have received less attention
than network topologies.

Conclusions
Knowledge about how to choose suitable components
for a designed gene circuit is required for efficient
research in synthetic biology. For a given topology of a
designed gene circuit, the computational pipeline,
KMFA, developed here, has produced a “handbook” of
performance-ranked kinetic motifs that can serve as a
user guide to allow the selection and matching up of
different genetic components to achieve user-specified
system functions. In addition to being a useful aid for
the synthetic design of biological circuits, KMFA can
also be used to elucidate the intertwined relationship of
the trinity of prototype biological circuits: topology,
kinetics of the parts and function.

Additional material

Additional file 1: Table S1: Ranges and values of parameters used for
simulations in this study. Table S2: RBSs and PDTs of different efficiency
levels used in this study for the structural arrangement RBS-gene-PDT.
Table S3: Handbook of kinetic motifs for the transcriptional repression
cascade circuit simulated. Figure S1: Analytical analysis of the kinetic
parameters of protein CI. Additional illustration: The case of an ‘AND’-
gate circuit.
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