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Abstract

among the tested perturbations.

from http://www.cellXpress.org.

Background: High-throughput, image-based screens of cellular responses to genetic or chemical perturbations
generate huge numbers of cell images. Automated analysis is required to quantify and compare the effects of
these perturbations. However, few of the current freely-available bioimage analysis software tools are optimized for
efficient handling of these images. Even fewer of them are designed to transform the phenotypic features
measured from these images into discriminative profiles that can reveal biologically meaningful associations

Results: We present a fast and user-friendly software platform called “cellXpress” to segment cells, measure
quantitative features of cellular phenotypes, construct discriminative profiles, and visualize the resulting cell masks
and feature values. We have also developed a suite of library functions to load the extracted features for further
customizable analysis and visualization under the R computing environment. We systematically compared the
processing speed, cell segmentation accuracy, and phenotypic-profile clustering performance of cellXpress to other
existing bioimage analysis software packages or algorithms. We found that cellXpress outperforms these existing
tools on three different bioimage datasets. We estimate that cellXpress could finish processing a genome-wide
gene knockdown image dataset in less than a day on a modern personal desktop computer.

Conclusions: The cellXpress platform is designed to make fast and efficient high-throughput phenotypic profiling
more accessible to the wider biological research community. The cellXpress installation packages for 64-bit
Windows and Linux, user manual, installation guide, and datasets used in this analysis can be downloaded freely

Introduction

High-throughput, image-based phenotypic profiling enables
multi-parameter measurements of cellular responses to
large-scale genetic or chemical perturbations. These mea-
surements are useful for unraveling complex changes in
cellular morphology and protein subcellular localization
[1], and have been used to study drug responses [2], cell
division [3], cytoskeleton remodelling [4], and endocytosis
[5]. Several free software tools are currently available for
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analyzing microscopy images. They include CellProfiler
[6], Image] [7], BiolmageXD [8], Icy [9], OMERO [10],
and EBImage [11].

However, most of these existing software tools are
designed for general 2D, 3D or time-lapse image analyses,
such as de-convolution, segmentation, registration, and
motion tracking (Figure 1). Few of them are specifically
designed for high-throughput cellular phenotype profiling
that generates huge numbers of microscopy images (on
the order of 10*-10°) and poses several new and different
challenges to the analysis pipeline and user-interface
design. First, individual cells need to be identified and
quantified from these images within a reasonable time
(usually less than a day for an entire dataset). However,
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Phenotypic features based on pixel-level correlation
between fluorescent markers within the same sub-
cellular regions

sub-cellular regions (such as ratios, distributions, etc.)
Computation of discriminative phenotypic profiles from
raw feature values

Time-lapse analysis or object tracking

3D image visualization and analysis

User interface

Overlay display of feature values on segmented cells
High-Content Screening plate analysis and viewer
Interactive configuration of segmentation parameters

Dynamic composition and magnifiable view for multi-
channel images

Split-screen image viewer and browser

Notes:

Phenotypic features based on comparisons of different

* CellProfiler can submit batch jobs to external computer clusters only.

Figure 1 Major functional differences between cellXpress and other existing bioimage analysis software platforms.
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most of the existing free bioimage analysis software tools  clusters [6], which are usually expensive and difficult to
are developed in high-level programming languages, such  manage. Second, diverse types and often large numbers of
as Python or Java, which are slower than C/C++ in execut-  phenotypic features are required to distinguish the effects
ing computational algorithms [12,13]. Some of the current  of different perturbations [2]. However, most existing tools
tools alleviate this problem through external computer can extract limited types of phenotypic features. For
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example, features comparing different sub-cellular regions,
such as nuclear versus cytoplasmic intensity, are not avail-
able in most existing tools without custom scripting or
programming (Figure 1). Third, computational algorithms
are required to transform the extracted features into
discriminative profiles that can reveal biologically mean-
ingful associations among the tested perturbations [14].
Very few of the existing tools can currently perform this
function (Figure 1). Last, intuitive user interfaces are
required for configuring algorithms and visualizing results,
such as displaying the computed segmentation boundaries
or feature values on top of cell images. Therefore, there is
a need for a new free and user-friendly software tool that
can address these needs of high-throughput phenotypic

profiling.

Implementation

Overall software design and architecture

Here, we present a new cell image analysis software plat-
form called “cellXpress” for high-throughput phenotypic
profiling. The platform consists of two main frameworks
(Figure 2). The core framework is used for cell segmenta-
tion, feature extraction, image management and browsing,
and quick data analysis (Figure 3). The second extensible
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framework is used for custom data analysis, including
phenotypic profile construction and visualization (Figure 3).
The cellXpress platform can read standard 8-bit or 16-bit
TIFF or PNG images produced by most microscopy ima-
ging systems. All the segmentation and feature extraction
results computed by the core processing engine are saved
in HDF5 binary files [15]. They can also be exported as
standard 16-bit TIFF/PNG images or CSV files, which
can be opened by third-party image viewers, spreadsheets
or data analysis software packages for further processing.

The cellXpress platform has the following advantages
over existing bioimage analysis software packages. First, to
achieve higher processing speeds, we have developed the
core processing engine of cellXpress completely in C/C++
based on a highly-optimized computer vision library,
OpenCV [16], and efficient single-instruction-multiple-
data (SIMD) instruction sets [17]. To fully utilize all the
processing units in modern multi-core processors, we
have also developed a dynamic job scheduler based on the
OpenMP interface [18]. The scheduler manages a job
queue for cell segmentation and feature extraction jobs,
and automatically assigns pending jobs to free processors
or cores. Thus, all the available processors will be fully
ultilized by cellXpress.
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Figure 2 The cellXpress cellular phenotype profiling software platform has two main frameworks.
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Figure 3 Typical data analysis workflow for cellXpress.

Export feature statistics
into CSV files

Second, to extract diverse types of features, we have
developed a new subcellular region detection algorithm
that can automatically identify eight different subcellular
regions based on the nuclear and cell masks from each
segmented cell. These sub-cellular regions include
whole-cell, nucleus, nuclear boundary, inner nucleus,
peri-nucleus, cytoplasm, cytoplasmic boundary, and
inner cytoplasm. The cellXpress platform automatically
computes four different feature types, namely morphology,
intensity, region-level intensity ratio and pixel-level inten-
sity correlation, for each of the identified regions (see
Feature Extraction). These diverse types of features will
allow the quantification of complex protein subcellular
localization patterns at the single-cell level.

Third, to perform profile construction or other custom
data analyses, we have developed a suite of library func-
tions called “cXlibrary” under the R computing environ-
ment [19]. Users can import cellXpress data saved in
HDFS5 files into a R session and construct phenotypic
profiles. The resulting data or profiles can then be used
for supervised classification, unsupervised clustering, or

other types of analysis. We also implemented phenotypic
profiling algorithms to condense large numbers of raw
features extracted in typical high-throughput studies into
more concise and discriminative profiles, such as the
support-vector-machine (SVM)-based “drug profiles”
(d-profiles) [2,14].

Finally, to make our software user-friendly, we have
developed intuitive and interactive graphical user inter-
faces for configuring and controlling the image processing
engine, and visualizing cell segmentation and feature
extraction results (Figure 4). We have also designed a
point-and-click interface to allow flexible configuration of
feature extraction based on different combinations of fea-
ture types, sub-cellular regions, and fluorescent markers
(Figure 5). Our graphical user interfaces are based on the
cross-platform wxWidgets library [20], which provides a
consistent look and feel across the Windows and Linux
operating systems. Together, all of these components of
cellXpress make it a fast and user-friendly software plat-
form for high-throughput image-based phenotypic
profiling.
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Figure 4 Graphical User Interface of cellXpress. A common user interface is used to (a) interactively adjust segmentation parameters and display
the resulting cellular outlines, (b) dynamically compose and display multi-channel fluorescence images, (c) visualize and compare results of object
detection, (d) overlay display of extracted feature values on top of original images, and (e) browse and compare images from different wells.

Seeded-watershed-based cell segmentation algorithm

We have implemented and optimized a seeded-watershed-
based cell segmentation algorithm [2] for the cellXpress
platform. The segmentation algorithm is general and was
previously used to identify individual mouse fat cells,
human cancer cells, and neutrophil-like cells from fluores-
cence microscopy images [2,21,22]. In brief, the algorithm
consists of two major steps. The first step is to identify
nuclear regions from the image background using a com-
bination of h-dome operator [23], Laplacian-of-Gaussian
edge detector, and Otsu’s thresholding algorithm [24].
Then, a watershed algorithm [25] is used to break apart
connected nuclear regions. In the second step, a composite
cell image obtained from the linear combination of the
images of all fluorescence channels is used to identify cel-
lular regions based on Otsu’s thresholding algorithm.
Finally, a seeded watershed algorithm that uses the nuclear
regions as seeds is used to break apart connected cellular
regions. In the future, we plan to include additional seg-
mentation algorithms in the cellXpress platform.

Feature extraction

The cellXpress platform has a flexible feature extraction
module that can be used to measure cellular features
based on different combinations of feature types, fluor-
escent markers, and subcellular regions. We have
designed a user-friendly graphical interface to configure
this feature extraction module (Figure 5) and automati-
cally expand feature selections based on the chosen
regions. For example, region-level intensity ratios will
be computed for all possible pairs of the selected sub-
cellular regions. Information about the markers and
regions used in a feature is encoded in its name, which
follows the following format: XXXX:YYYY : ZZZZ, where
XXXX is the feature type, YYYY is the fluorescent mar-
kers used, and ZZZZ is the subcellular regions used. For
example, “fraction total intensity:ERK:
dna_region-cell region® measures the fraction
of total ERK intensity level in the nuclear region to the
entire cellular region, and “total intensity ratio:
Tubulin-ERK:nondna region-dna region®
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measures the ratio of total tubulin intensity level in the
cytoplasmic region over total ERK intensity level in the
nuclear region. The names of the extracted features are
included in all cellXpress HDF5 data files or CSV export
files. Users can load specific subsets of extracted features
into the R environment by using the 1oad wells ()
function in the cXlibrary.

Phenotypic profiling

To transform extracted features into discriminative pro-
files, we implemented a support-vector-machine-(SVM)-
based phenotypic profiling algorithm called “drug profiling”
(d-profiling) [2] in the cellXpress platform. Given two sets
of feature values for cells under treated and control condi-
tions, respectively, the algorithm trains a linear SVM to
obtain a hyperplane that optimally separates these two set

of values in high-dimensional feature space. Then, the unit
vector normal to the hyperplane is used as a profile to
represent changes in the phenotypes of the treated cells
with respect to the control cells [2]. Our implementation is
based on the LIBLINEAR library [26].

Evaluation methods

Comparisons with existing tools

To evaluate the performance of cellXpress, we consi-
dered several other alternative free biological image ana-
lysis software platforms (Figure 1). The functions of
many of these platforms may be extended through
third-party plugins or custom scripting/programming.
However, most biological scientists will have limited
resources or expertise in developing such custom plugins
or programs. Therefore, we only considered built-in
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functions or plugins that are bundled with default instal-
lation packages. We chose to compare the performance
of cellXpress (version pro 1.0) [27] to the Broad Institute’s
CellProfiler (version 2.0) [28] because they have the most
similar functions (Figure 1). We also included NIH’s
Image] (version 1.47) [29] with plugins from the Fiji
package [30] because it is a standard image analysis tool
and widely used by biological scientists. We focused
on evaluating the processing speed, cell segmentation
accuracy, and profile clustering performance of these
software packages.

Applications to Kc167, HT29, and Hela datasets

To evaluate cell segmentation performance of cellXpress,
we used two standard image benchmark datasets,
namely Kc167 and HT29, which represent different cell
types and numbers of image frames [31,32]. The first
dataset was collected from a Drosophila melanogaster
cell line, Kc167. We used the dataset’s DNA marker for
detecting nuclear regions, and actin marker for detecting
cellular regions. This dataset has three image frames (an
image frame refers to an imaging position in a well), but
we only used one of them for testing cell segmentation
speed to mimic the situation when computation cannot
be parallelized at the image-frame level. Each image has
a resolution of 1000 x 1006 pixels, and there are ~200
cells per frame. The second dataset [33] was collected
from a human colon cancer cell line, HT29. We only
used the dataset’s DNA marker for detecting nuclear
regions, and actin marker for detecting cellular regions.
The dataset was generated in a sShRNA screen for finding
mitotic gene regulators [33]. It has 56 image frames, and
was used to test cell segmentation when computation
may be parallelized at the frame-level. Each image has a
resolution of 512 x 512 pixels, and there are ~100 cells
per frame. We followed the procedures recommended on
the CellProfiler website [31], and used the original images
and the provided pipeline without any further image
pre-processing.

To evaluate the phenotypic-profiling performance of
cellXpress, we used an image dataset from a previous
high-throughput siRNA screen [34,35] on HelLa cells
stained for DNA, tubulin, and actin markers. The dataset
was generated by transfecting HeLa cells with a genome-
wide siRNA library for 48 hours, and used to predict func-
tions of genes based on their knockdown phenotypes.
There are four 670 x 510 pixel image frames per gene
knockdown, each of which has around 50 cells. siRNAs
for a non-human gene, renilla luciferase (Rluc), were used
as negative controls. We selected 32 genes, which can be
categorized into four groups representing structural com-
ponents of actins or microtubules, or the synthesis machi-
neries for RNAs or proteins (Additional file 1). The RNA
and protein synthesis genes were selected from genes
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encoding the subunits of RNA polymerase II and ribo-
some, respectively. Microtubule structural components
were selected from the o-tubulin, B-tubulin and y-tubulin
families. For structural components of actins, we included
three actin isoforms (alpha, beta and gamma) and genes
from the spectrin family, which are actin-crosslinking
proteins that link the plasma membrane to the actin
cytoskeleton [36].

Evaluation criteria for segmentation accuracy

We used two different segmentation accuracy criteria:
the boundary and Rand error indices [37]. The boundary
error index (Eboundary) measures the averaged distance
between the boundaries of cellular masks obtained from
manual and automated segmentation, respectively. Smaller
boundary error index values mean higher automated
segmentation accuracy. We define the boundary error
index between two sets of boundary pixels (B and B’) from
a manual segmentation mask (M) and an automated
segmentation mask (M’), respectively, to be:

Eboundary (M, M’) = B ??Eié?{" b—b},
€

where p and p’ are individual pixels within sets B and
B/, respectively; || is the cardinality operator; and |-| is
the Euclidean norm.

We also used the Rand error index [37], which measures
the frequency with which the two segmentation masks
disagree over whether a pair of pixels belongs to same or
different segmented cellular regions. Let the set of labelled
regions in a manual segmentation mask be L = {R;} and
the set of labelled regions in an automated segmentation
mask be L’ = {R/{, where R; and R]/' are the i-th and j-th
connected pixels within the respective masks. Further-
more, we denote ¢ as the number of pixel pairs in M that
belongs to the same sets in L and the same sets in [/,
and d as the number of pixel pairs in M that belongs to
different sets in [ and different sets in [/. Then, the Rand
error index is:

c+d

N

2

where N is the total number of pixels in the segmen-
tation mask M.

Erand (M, M) =1 —

Generation of phenotypic profiles for HeLa dataset

To construct phenotypic profiles for HeLa cells, we first
segmented the dataset using cellXpress. Actin and tubulin
were used as cell markers and DNA as a nuclear marker
for the watershed algorithm. Then, we measured the
morphology, intensity, intensity ratio, and pixel-level
intensity correlation features for actin and tubulin in the
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whole cell, nuclear and non-nuclear regions; and for
DNA in the nuclear region only. In total, we measured
290 features for every cell (Additional file 2). Then, we
constructed three different types of phenotypic profiles
for the dataset. The first type of profiles is based on the
arithmetic mean of each feature across all cells that have
been treated with a specific sSiRNA. The second type of
profiles is based on principal component analysis (PCA)
[38]. We kept the number of principal components
needed to explain 95% of the variation in our data, and
used the scores vector as the phenotypic profiles. The
last type of profiles is the SVM-based “d-profiles” [2]
(see Implementation Section).

Evaluation criteria for phenotypic profiling

To evaluate the performance of these three phenotypic
profiling methods, we measured the intra-group and
inter-group dissimilarities for the four groups of siR-
NAs (Additional file 1). Other criteria based on cen-
troids or medoids of the groups are not suitable for
this dataset, because most of the profiles have highly-
asymmetrical and non-Gaussian-like distributions. We
computed the cosine dissimilarity between two profiles
& and & as:

T
d(g“gs) -1— \/ &8s ,

(878r) (878s)

where g7 is the vector transpose of §. To determine
the average ‘compactness’ of profiles within a group, we
computed the average maximum intra-group dissimilarity
score as:

N

1
Dintra = N Zgrn;?é] {d (grr gs)} ,

j=1
where G;j is the set of all profiles in the j-th group, and
N is the total number of groups.

To determine the average inter-group profile dissimi-
larity, we first sorted all pair-wise dissimilarities between
profiles from two different groups, Gj and G, from the
lowest to the highest, where d; <d, <ds <dy < ..,
and d;=d (g g;) for all g €Gj and g € G For a
n-nearest neighbours analysis, we denote the set of n
lowest distances between two groups, G; and G,
as Wj.(n) = {dy,da,ds,...,dy}. Then, the inter-group
profile dissimilarity for the n-nearest neighbours is:

2 N
Dinter = N(N=1) Z ZE (‘/V]k(ﬂ)) '

j=1 k#j

where E() is the mean operator. This evaluation is
repeated for different values of n.
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Computer software and hardware platforms

The evaluations were performed on a desktop computer
with a Intel Core i7 3.07 GHz processor, 8 GB of memory,
64-bit Windows 7 operating system, and Java version 7
Update 9 (build 1.7.0_09-b05). All image and data files
were stored in a local harddrive. For the evaluation of pro-
cessing speed and segmentation accuracy, we implemen-
ted a script in Matlab version R2007b (Mathworks, USA)
to compute and compare both the boundary and Rand
error indices. For the evaluation of phenotypic profiling,
we generated multidimensional scaling (MDS) plots for
all the constructed profiles using the MASS [40] and the
rgl libraries [41] under the R computing environment
(version 2.14.2).

Results and discussion

Processing speed and segmentation accuracy

A fast and accurate bioimage analysis software platform
is required to process the huge amount of microscopy
images generated from high-throughput phenotypic pro-
filing experiments. We compared the processing speed
and accuracy of cellXpress, CellProfiler [6], and Image]/
Fiji [42] in segmenting the Kc167, HT29, and HeLa
datasets. These three software packages implement var-
iants of similar seeded watershed segmentation algorithms
[25]. For CellProfiler [43], we used the segmentation pipe-
line and optimized parameters included in the Kc167 data-
set zip file [31]. We disabled the image cropping function,
“show all windows on run” option, and feature-extraction
steps in the original pipeline. The pipeline identified DNA
regions and the cellular regions using Otsu’s thresholding
algorithm [43]. For Fiji [42], we implemented a macro
script to perform watershed segmentation. The script
identified cellular regions using Li’'s Minimum-Cross-
Entropy [44] and Triangle-thresholding algorithms [45]
implemented in Fiji for the Kc167 and HT29 datasets,
respectively. We found that these two thresholding
algorithms gave the best segmentation results for the
respective datasets for Fiji.

To evaluate processing speed, we measured the proces-
sing time of the whole segmentation process, which
includes image loading, processing, and saving. We
repeated the measurement five times and computed the
mean and standard error of the measurements (Additional
file 3). To avoid memory caching, we re-started each soft-
ware package after every measurement. We found that
cellXpress was ~2.3-17.5 times faster than CellProfiler and
Fiji (Figure 6a and Additional file 3) on the three tested
datasets. For the Kc167 dataset with only one image
frame, cellXpress, Fiji and CellProfiler needed 1.65, 3.7,
and 7.6 seconds, respectively, to complete the segmen-
tation jobs. For the HeLa dataset with 176 image frames,
cellXpress, Fiji and CellProfiler took 32.1, 220.7, and
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image frames, *** = P<0.001, n.s. = P>0.05; two-sided t-test).
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Figure 6 Evaluation of processing speed and segmentation accuracy. (a) Processing time of CellProfiler, Imagel/Fiji, and cellXpress in
segmenting Kc167, HT29 and Hela image datasets. (b) Segmentation accuracy of CellProfiler, Imagel/Fiji, and cellXpress. (k = total number of

512.8 seconds respectively, to complete the segmentation
jobs. This higher per image performance of cellXpress was
partially due to the dynamics job scheduler in cellXpress.
Based on our results, we estimate that cellXpress would
only take ~5-9 hours to process a typical genome-wide
gene knockdown image dataset (~20,000 genes x 9
frames/gene = ~180,000 frames) on a personal desktop
similar to our test system, while other software tools could
take ~2-6 days. The fast processing speed of cellXpress
makes it more efficient for analyzing data generated from
high-throughput experiments, such as gene-knockdown or
small-molecule screens, on modern desktop computers
without requiring expensive computer clusters.

To evaluate segmentation accuracy, we compared cell
masks obtained automatically from the three software
platforms to cell masks obtained from manual segmenta-
tion. For the Kc167 dataset, we manually segmented each
individual cell based on the actin channel. For the HT29
dataset, we used the manual segmentation masks from
the Broad Institute’s website [32]. The image frame
“10779.DIB” was excluded from analysis, as suggested
from the website, because of insufficient image quality.
We found that the cellXpress had slightly better or simi-
lar segmentation accuracies than Fiji and CellProfiler
(Figure 6b). The boundary error of cellXpress was

significantly lower than CellProfiler (P<0.001), but the
Rand errors of the three tested tools were not signifi-
cantly different from each other (P>0.05, both using two-
sided t-tests). Therefore, the faster speed of cellXpress
does not come at the cost of segmentation accuracy.

Evaluation of phenotypic profiling
To demonstrate the ability of cellXpress to identify func-
tional relationships from large-scale gene knockdown
studies, we considered an image dataset from a siRNA
screen on HeLa cells stained for DNA, tubulin and actin
[35]. We focused on four groups of genes that are part
of the structural components of actins or microtubules,
or the synthesis machineries for RNAs or proteins
(Additional file 1); and constructed three types of phe-
notypic profiles, namely mean, PCA, and d-profiles, for
the dataset (Figure 7a). We found that d-profiles sepa-
rate these groups better, with smaller intra-group and
larger inter-group average dissimilarity, than mean- or
PCA-based profiles (Figure 7b). We tested n = 5, 10 and
30, and found that d-profiles had the highest average
inter-group distance, irrespective of n (Figure 7c).

The better performance of d-profiles may be attribu-
ted to its ability to capture more informative features.
Mean profiles are the arithmetic means of the extracted
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Figure 7 Evaluation of phenotypic profiling. (a) Multidimensional scaling plot based on the cosine dissimilarities among the d-profiles for the
32 siRNAs, which are color-coded according to their known biological functions. (b) Mean intra- and inter-group dissimilarities of phenotypic
profiles constructed for 32 siRNAs in the Hela dataset based on mean-, principal-component-analysis-(PCA)-based, and “d-profiles” (error

bars = SEM, * = P<0.05, ** = P<0.01, *** = <0.001; two-sided paired t-test). (c) Inter-group dissimilarities of mean-, PCA-based and d-profiles for
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features across all cells, and PCA profiles are based on
an orthogonal transformation of the features into a new
set of linearly uncorrelated variables with descending
variance (see Evaluation Methods). Both methods do
not remove or penalize non-informative features that
show high-variance but similar values in both siRNA-
treated and control cells. However, d-profiles are based
on SVM hyperplanes that optimally separate between
treated and control cells, and thus will give lower weights
to these non-informative features. Interestingly, we found
that d-profiles could distinguish genes involved in the
synthesis machineries of RNAs or proteins (Figure 7a),
although the cells were only stained with markers for
cytoskeleton components. This shows the potential of

using morphological and intensity features of a small set
of markers to distinguish genes with different biological
functions.

Conclusions

The cellXpress platform is specifically designed to make
fast and efficient high-throughput phenotypic profiling
more accessible to the wider scientific community.
Other biological image analysis software platforms may
be more appropriate for analyzing time-lapse or 3D
microscopy images, or managing large image databases
(Figure 1). The cellXpress platform is actively main-
tained and updated. Future planned improvements
include graphics-processing-unit (GPU)-based acceleration,
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and gene or chemical annotation analysis. The cellXpress
software package can be downloaded from http://www.
cellXpress.org.

Additional material

Additional file 1: Plate layout for the genes in the RNA synthesis
(blue), ribosomal (yellow), actin (red) and tubulin (green) groups.

Additional file 2: Feature list for the HelLa siRNA dataset.

Additional file 3: Total processing time for cell segmentation (unit
= second, k = frame number, CP = CellProfiler, cX = cellXpress)
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