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Abstract

We prove that for general models of random gene-order evolution of k > 3 genomes, as the number of genes n
goes to oo, the median value approximates k times the divergence time if the number of rearrangements is less
than cn/4 for any ¢ <1. For some c* > 1, if the number of rearrangements is greater than c*n/4, this approximation

does not hold.

Introduction

The iterative improvement of approximate solutions to
the Steiner tree problem by optimizing one internal ver-
tex at a time has a substantial history in the “small phy-
logeny” problem for parsimony-based phylogenetics,
both at the sequence level [1] and the gene order level
[2]. It has been generalized to iterative local subtree
optimization methods such as “tree-window-hill” [3] and
“disc covering” [4,5]. Here we focus on the “median pro-
blem” for gene order where we estimate the location of
a single point (the median) in a metric space given the
location of the three or more points connected to the
median by an edge of the tree. Given k > 3 signed gene
orders Gy, ..., Gx on a single chromosome or several
chromosomes, and a metric d such as breakpoints [6],
inversions [7], inversions and translocations [8], or dou-
ble-cut-and-join [9], find the gene order M such that
Zf_l d(G;, M) is minimized.

Although it plays a central role in gene order phylo-
geny, the median suffers from several liabilities. One is
that it is hard to calculate in most metric spaces. Not
only is it NP-hard [10], but exhaustive methods are
costly for most instances, namely unless G; ... , Gj are
all relatively similar to each other, which we will refer to
generically as the similar genomes condition. Another
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problem is that heuristics tend to produce inaccurate
results unless a suitable similar genomes condition
holds [11]. Still another, is the tendency in some metric
spaces to degenerate solutions [12] unless the same con-
ditions prevails.

In this paper we add to this litany of difficulties by
showing that as k genomes evolve over time, as modeled
by any one of several biologically-motivated random
walks, there is a phase change after n/4 steps, where n
is the number of genes. With u < n/4 steps, the sum of
the normalized distances ) d/n from each of the gen-
omes to the starting point - the ancestor - converges to
ku/n in probability, and this is the median value. When
u > c*n/4 steps, for a constant ¢* > 1, the sum of the
normalized distances to the median converges in prob-
ability to a value less than ku/#, and that the ancestor is
no longer the median.

Our proof is inspired by a result of Berestycki and
Durrett [13] in showing that the reversal distance
between two signed permutations converges in probabil-
ity to the actual number of steps, after rescaling, if and
only if u < n/2. The technique is to construct a graph
with genes as vertices and edges added between vertices
according to how they are affected by transpositions.
Properties of the number of components of random
Erdos-Renyi graphs can then be invoked to prove the
result.
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Definitions

We represent a unichromosomal genome by a signed
permutation, where the sign indicates whether the gene
is “read” from left to right (tail-to-head) or from right to
left (head to tail) on the chromosome. Let S be the
signed symmetric group of order 7, i.e. the space of all
signed permutations of length n. A reversal operation
applied to a signed permutation reverses the order, and
changes the signs, of one or more adjacent terms in the
permutation. A DCJ operation, which can apply not
only to signed permutations but to more general gen-
omes containing linear and circular chromosomes, cuts
the genome in two places and rejoins pairs of the four
“loose ends” in one of two possible new ways (one of
which may be equivalent to a reversal). We define the
reversal and DCJ distances, d, and dcj, to be the mini-
mum number of reversal and DC] operations, respec-
tively, needed to transform one genome to another.

The breakpoint graph BP(II, IT') of two genomes
represented by IT and IT" contains vertices for the head
and tail of each gene, black edges edges defined by the
adjoining heads or tails of two adjacent genes in the
genome IT and grey edges defined by two adjacent genes
in the genome IT'. Let id = I, the identity permutation,
and BP(IT) = BP(I], id). It is well-known that

dcj(I1) =n+1 — |cBP(IT)]. (1)

We need to define an orientation for grey (and black)
edges of BP(I1). We traverse a cycle ¢ € ¢BP(Il) in a
counter-clockwise manner if we start at the left-most ver-
tex of BP(II) (in the usual representation), travel along its
unique adjacent black edge and end at the same vertex
through its unique adjacent grey edge. Then we say a
black edge in c is positively oriented if we move along it
from left to right in a counter-clockwise traversal. Other-
wise we say it is negatively oriented. Similarly, for the
grey edge (i, (i + 1),) we say it is positively oriented if
during a counter-clockwise traversal we move along it
from i, to (i + 1),. Otherwise it is negatively oriented. We
define the orientation function ¢ on the edges of BP(II)
to be:

+1 if e is positively oriented
—1 if e is negatively oriented.

£ - | ®

We say the black (grey) edges e, €’ are parallel, denoted
by e || € if &(e) = &(€). Otherwise we say they are crossing.
This is just a reformulation of Hannenhalli and Pevzner’s
original concept of oriented cycles. An oriented cycle in
this definition is a cycle including at least one positively
and one negatively oriented black edge. The mechanism
by which a reversal affects a genome can easily be seen
using the BP graph. Let p be a reversal acting on two
black edges e, ¢’ in BP(II). If they are in two different
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cycles we have a merger of the two to construct a new
cycle. But if e, € are in a same cycle, that cycle either splits,
ife }f €, or does not splitife || €.

Limit Behavior of the Median Value

Suppose d” be a metric on the space of all signed per-
mutations length n. For a set A of these permutations,
define

84" Sy —~ No=NU {0} 3)
") =) d'(x ). @
yeA
Then let
méM(A) := min{g?"(x) : x € ST}. (5)

m®"(A) is called the median value of A under the
metric d”. A signed permutation which makes gi'" mini-
mum is called a median solution of A. Denote by d, and
dcj the reversal and DCJ distances on Sf.

Let X, = id, the identity permutation, and let X}’ be a
stochastic process on SF, where at random Poisson
times 7,,, with rate 1, we choose two elements of X?K,
namely i, j and let p(i, j) operate on X7 , that is

X7 = X7 0 (i, j), (6)

where p(i, j) is the reversal acting on i and j. We call X}'
a reversal random walk (r.w.) on. Sf. Suppose
X", ..., X" be k independent reversal r.w. all starting
at the identity element, id. Define

A L Xk (7)
and
e = g4 (id) — m*" (A,). (8)

We investigate the time up to which the median value
of X, ..., Xk, namely m®" (A,), remains a good esti-
mator for the total divergence time, kt, as well as to the
total distance of points in A, to id, namely gi’["(id). To
answer this question we use the fact that the speed of
escape of the r.w. up to some particular time, is the same
from any point of the space and is close to 1, the maxi-
mum value. Berestycki and Durrett studied speed of
transposition and reversal random walks with the related
edit distances while in the latter they used “approximate
reversal distance” instead of reversal itself, ignoring the
effect of hurdles and fortresses. This turns out to be the
same as DCJ distance on single chromosomes. We have

de(m, ) =n+1—c(m) +h(m) +f(7) )
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while

dej(mw, I =n+1—¢(m), (10)

where k() and f(n) are the number of hurdles and
fortresses, respectively.

Although Berestycki and Durrett only proved their
theorem for the random transposition r.w. on §,, they
suggested that same method should carry over to rever-
sal r.w. The following proposition is proved in [13] for
approximate reversal distance (i.e., DCJ distance).

In this result and in the ensuing discussion a,, is an
arbitrary sequence such that a,, — e as n — 0. When it
is unambiguous we drop z from Ag") and X}.

Propostition 1 [Berestycki-Durrett] Let c be fixed and
let Xt be a reversal r.w. on St starting at id. Then

dej(id, Xenj2) = (1 = f(c))n + w(n), (11)
where

o Lk—2
f@= 3" @) 12)

k=1

and ::‘(521 — 0 in probability.

Remark 1 The function 1 - fis linear for ¢ <1, f (c) =
1 - ¢/2, and sublinear for ¢ >1, 1 - f(c) < ¢/2 This
means that for ¢ < 1

dej(id, Xenj2) — '32" = w(n) (13)

and r.w. travels on an approximate geodesic (or parsi-
monious path) asymptotically almost surely. f is the func-
tion counting the number of tree components of an
Erdos-Renyi random graph with n vertices for which the
probability of having each edge is ,, denoted by G(c, n).
See Theorem 12 in [14], Chapter V.

We extend the above theorem for the bonafide reversal
distance. To do so we need to estimate the number of hur-

dles of Xcz" Recall that an oriented cycle in a breakpoint

graph is a cycle including an orientation edge, that is a grey
edge with two black adjacency edges e, €', where a reversal
involving e and ¢’ splits the cycle [15]. As we discussed this
is equivalent to saying e J €. It is not difficult to show

Lemma 1 Let C € cBP(m), then C is oriented if and only
if there exists exactly two equivalence classes of black edges,
that is there exist at least two black edges with different
Signs.

Then

Theorem 1 Let ¢ >0 be fixed and let X, be a reversal
r.w.starting at id. Define h, := h(X,) to be the number of
hurdles in BP (X,). Then

hcn/z

an — 0 in probability.

(14)
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Proof. Cycles of the BP that have never been involved
in a fragmentation event must be oriented, since the
two rejoined black edges resulting from an inversion-
induced merger of cycles cannot be parallel.

Therefore we need only to count the number of edges
that have been involved in a fragmentation event. To do
so we apply the method of counting cycles in [13], The-
orem 3. Hurdles occur only in those cycles with length
more than one that have been involved in a fragmenta-
tion up to time 9. We call such cycles fragmented
cycles. The number of fragmented cycles with length
more than /n is always less than /n. But to count all
fragmented cycles in X 9" with size less than /n we need
to find an upper bound for the rate of a fragmentation
up to time 9. Since a fragmentation occurs when two
black edges in one cycle are chosen, to fragment a cycle
in BP, for any chosen black edge e we only can pick
another black edge €’ in the same cycle whose graph dis-
tance in the breakpoint graph is less than 2,/n. (The
coefficient 2 arises from the fact that the cycles are
alternating in BP.)

Thus the rate of fragmentation at an arbitrary time ¢ is

: 2(:1/") = jn. Integrating up to time ¢,

not more than }
this gives us the expected number of fragmented cycles
at time ¢ is jn. For t = 9 this expectation is cy/n. Now,
dividing by a,+/n, the result follows from Chebyshev’s
inequality and the fact that hurdles only occurs in frag-
mented cycles. ®

Theorem 2 et ¢ >0 be fixed and let X, be a reversal r.w.
on St starting at id and let d, = d£”) denote the reversal
distance on SE. Then

dy(id, Xenp2) = (1 = f(c))n +w/(n) (15)

where f is the same function as in the statement of Pro-
position 1 and w (n) is a function with :;E;lr)l — 0in
probability.

Proof. Since d,(I1) = dcj(IT) + h(IT) + f(I1) by the pro-
position we have d, (X,,,») = (1 = f(c))n + w(n) + he,m +
J (Xens2). But

w(n) w(n) + henj2 +]?(ch/2) R

. 0 (16)
Ana/N any/n
in probability, by the convergence of :)(;21 and :f% in

Proposition 1 and Theorem 2 and f(ch/z) <11

Theorem 3 Let th’”, e, Xf/” be k independent rever-
sal r.w in St starting at id. Suppose either

a) d := dcj dcj distance

or

b) 4= dg") reversal distance.

dn
Then for ¢ <}; we have ;C”

"y 0 in probability.
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Proof. We prove the theorem only for d,. The proof
of the DCJ case is similar. For all i, j € {1, ..., k} and for
a median solution x of AS")

an e X" < a0 XM+ dP @ X" (7)
Therefore,

SdP g, XMy = 30 @ X M XM). (1)

i# i#

We conclude
YA, X" < (k= 1)m*(A") < (k= 1)g,0(id).(19)

Letc < ‘11. Then by Theorem 2 we have for all i, j i = j

A (xin, XIMY = 2cn — w(n) (20)
and
A" (id, X' = cn — w(n) (21)

where (::1(;21) — 0 in probability. Thus
<’;) @en —w(n)) < (k= 1)m*(AL)) < (k= Dk(en —w(n)). (22)
Then

|md’"(Ag,l)) —ken| < Kw(n) (23)

for a constant k. Also [8,m(id) —ken| < lw(n).
Therefore, there exists a constant k* such that

Im*™(AG)) = g% d)] < Kw(n). (24)

This implies
e MMAL)) - gl (id)
an \/ n N ay «/ n

This proves the theorem. ®

Remark 2 The statement of the theorem suggests
ignoring the error of order o(ay/n) for a, — o. id
remains as the median of leaves of k independent sto-
chastic processes X", ..., Xf'” up to time j asymptoti-
cally almost surely.

Theorem 4 Let ¢ < }1 be fixed. Suppose d is either DC]
or reversal distance. Then by the hypothesis of Theorem 3

— 0 in probability. (25)

ken — mé"(A)

— 0 in probability as n — oo. (26)
an /1
Proof. This follows directly from the fact that
ken — g4 (id
S (D) (27)

an/n
in probability. ®
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Now, it is natural to ask whether the statement of
Theorem 4 also holds for some time after }. In other
words, is the median value kcn a fair estimator for the
total time of divergence? We conjecture not, that the
property is lost after time }, but for now can only prove
a weaker upper bound for this time.

Theorem 5 Let ¢ > ; be fixed. Suppose d is either DCJ
or reversal distance. Then by the same hypothesis as in
Theorem 3

dn
—m“"(A
ken — m*™(Acn)

n

O (28)

where

o = k(1 — f(20))

is strictly positive for ¢ >

Remark 3 This theorem shows after time ) the error is
of order n and so the median value is not a good esti-
mate of k times the divergence time.

Proof.

(29)

ken — m*™(An) > ken — Xiﬁ(id) =k(1 — f(2¢))n +w(n), (30)
where u:[(nzl — 0 in probability. Dividing by #x, the
result follows. ®

In fact, since f (¢), ¢ >0 is decreasing and for ¢ <1,
f(c) =1 -5, it is easy to see that in the case k = 3, for ¢
>0.75, ¢4 is of order Bn for some g > 0.

Theorem 6 Let k = 3 and d be either dcj or dr. Con-
sider the same hypothesis in Theorem 3. Assume c* be
solution of

X 1
= . 31
1=, G
Then for all ¢ > c* there exists Blsuch that
d,
gcfnl = 0(,8?7’1) (32)
4
Proof.
miM(An) < d(Xt', Xa") +d(Xe", X"). (33)
4 4 4 4 4

Computing d(X%nn/ X)) for i = 2, 3 is the same as
. 1, 4
d(id, Xcznn). This is true since the Cayley graph of S*

w.r.t. reversals is symmetric and regular and so
P(Xo =id, Xen =T1) = P(Xo =TI, Xen =id) But there-
4 4

fore by symmetry of the Cayley graph we can just con-
sider d(id, Xi'nn). Hence,
2

md'"(AT) < 2(1 —f(c))n + 2w(n). (34)
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Let x >0 be so that

0 < —2(1 - f(x) +3(1 ~f(})). (35)
This means
8ty (id) = m™" (Aen). (36)

4

So it suffices to prove above inequality for x = ¢ >c.
Since f (x) >0 for all x >0
x x
1+2(0) - 3()) > 1-3()) (37)
in which the right hand side is strictly increasing,
Therefore for all ¢ > ¢*

X
1+2f(c)—3f(g)>1—3f(62)=0. (38)

This proves the statement. ®

Now, we would like to measure the volume of that
part of the space SF for which median does well, com-
pared with the whole space. The ratio of the two con-
verges to 0 as n goes to oo, showing that the median is
only useful in a highly restricted region of the space..
The following theorem is entailed by a theorem in [16].
Let ¢, = ¢,(I1) be the number of cycles in the BP graph
of a random II € SE. Let d,, be a distance (metric) on
SE. Define

B¢ = B .= (11 € SF, d(11, id) < cn) (39)
to be the ball of radius cn in Si.
Theorem 7 Let 0 < ¢ <1 be fixed. Then
|Bdcj
a)yn = 1’ — 0 as n— oo, (40)
1S |
1 @)
VWu= 4, — 0 as n— oo
IS |
Proof.
a)
For all TT € B, |cBP(IT)| = (1 — )n. (42)

Suppose y,, does not converge to 0. Therefore there
exists a subsequence {n;}icy such that ¥, = € for a con-
stant ¢ >0. This implies

E(cn,) = &(1 — o). (43)
But by Theorem 2.2 in [16], we have
E(cy.
(Cfl‘) — 0 as n; — oo. (44)

n;
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That is in contradiction with the above inequality
since

e(l—c)n;

—>¢&(l1—c¢)>0.
N (1-9

(45)

b) For the second part it suffices to observe that for all
IT € Sf we have

dr(T1) = dej(IT). (46)
Therefore
B (1) ¢ B¥(M) (47)
and the result follows part (a) since
Yy <¥n— 0asn— oo. (48)
[
Conclusion

We have shown that the median value for DCJ and for
reversal distance for a reversal r.w.has good limiting
properties if the number of steps remains below cn/4,
for any ¢ <1, but for some value ¢ > 1, more than this
number of steps destroys these limiting properties. The
critical value may indeed be ¢ = 1, but for now we can
only show that for ¢ > 3 (and ¢ > 2) the median value is
no longer a good estimator of the distance between the
id and the current position of the r.w. (and k times the
divergence time, respectively).

Note that a simulation strategy to estimate ¢ is not
available because of the hardness of calculating the med-
ian. As # increases even to moderate values all exact
methods require prohibitive computing time.

These results imply that the steinerization strategy for
the small phylogeny problem may lead to poor estimates
of the interior nodes of a phylogeny unless the taxon
sampling is sufficient to assure that a “similar genomes
condition” holds for every k-tuple of genomes used in
the course of of the iterative optimization search. This
can be monitored prior to each step in the iterative
optimization of the phylogeny through successive appli-
cation of the median method.
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