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Abstract

Background: Phylogenomic analyses involving whole-genome or multi-locus data often entail dealing with
incongruent gene trees. In this paper, we consider two causes of such incongruence, namely, incomplete lineage
sorting (ILS) and hybridization, and consider both parsimony and probabilistic criteria for dealing with them.

Results: Under the assumption of ILS, computing the probability of a gene tree given a species tree is a very hard
problem. We present a heuristic for speeding up the computation, and demonstrate how it scales up
computations to data sizes that are not feasible to analyze using current techniques, while achieving very good
accuracy. Further, under the assumption of both ILS and hybridization, computing the probability of a gene tree
and parsimoniously reconciling it with a phylogenetic network are both very hard problems. We present two exact
algorithms for these two problems that speed up existing techniques significantly and enable analyses of much
larger data sets than is currently feasible.

Conclusion: Our heuristics and algorithms enable phylogenomic analyses of larger (in terms of numbers of taxa)
data sets than is currently feasible. Further, our methods account for ILS and hybridization, thus allowing analyses
of reticulate evolutionary histories.

Introduction
The phenomenon of gene tree incongruence arises in
phylogenomic studies [1]. This incongruence can be
caused by many processes, including incomplete lineage
sorting (ILS) and hybridization. Recent studies have
shown large extents of gene tree incongruence in var-
ious groups of organisms due to ILS [2-9]. Degnan and
Salter proposed the first method for computing the
probability of a gene tree topology given a species tree
using the concept of coalescent histories [10]. Later, Wu
introduced the concept of ancestral configurations (or
AC) to speed up the computation for the same task
[11], and proposed maximum likelihood method for
inference of species tree given a set of gene tree topolo-
gies. However, even with the speedup of [11], inference
in practice remained limited to data sets with small

numbers of taxa, mainly due the very slow computation
of gene tree probabilities.
Furthermore, simultaneous patterns of hybridization

and incomplete lineage sorting have been reported in
several studies [12-14]. Therefore, it is important to
enable analyses under both ILS and hybridization. While
methods for handling limited cases of reticulation were
introduced [15-20], it was not until most recently that
parsimony and probabilistic methods for the general
cases were introduced [21,22]. However, the methods of
[21,22] are computationally intensive and their applica-
tion is limited to data sets with very few taxa.
The contributions of this paper are threefold. First, we

devise a fast heuristic for estimating the probability of a
gene tree under ILS. We use the heuristic to infer spe-
cies trees from multi-locus data, and show that the
method achieves significant speedup over the method of
[11]. Second, we introduce a novel concept of weighted
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devise a much faster exact algorithm than that of [21]
for reconciling a gene tree with a phylogenetic network.
Third, using the same concept of weighted ancestral
configurations, we devise a much faster exact algorithm
than that of [22] for computing the probability of a gene
tree under both ILS and hybridization.
We have implemented the methods in the PhyloNet

software package [23], which is freely available for
download in open source at http://bioinfo.cs.rice.edu/
phylonet. The methods will enable much larger phyloge-
nomic analyses than are currently possible using existing
methods.

Methods
Given a directed graph g, we denote by V (g) and E(g)
the node- and edge-sets of g. Given a node v in a graph g,
we denote by d-(v), δ-(v), d+(v), δ+(v) the in-degree, in-
edges, out-degree, and out-edges, respectively, of node v.
In this paper, we consider a special type of rooted, direc-
ted, acyclic graphs (rDAG) g = (V, E), where V is parti-
tioned into four sets VT = {v Î V : d-(v) = 1 Λ d+(v) ≥ 2},
VN = {v Î V : d-(v) = 2 Λ d+(v) = 1} (reticulation nodes),
VL = {v Î V : d-(v) = 1 Λ d+(v) = 0}, and {r}, where r, the
root, is a unique node with d-(r) = 0 and d+(r) ≥ 2. An
X -rDAG is an rDAG whose leaves (the set VL) are bijec-
tively labeled by setX . Further, we consider a special
type of rooted trees, where a rooted tree is an rDAG with
VN = ∅. An X -tree is a rooted tree whose leaves are
bijectively labeled by setX .

Networks and trees
Here, we use the following definition of phylogenetic
network topologies [24].
Definition 1 A phylogenetic X -network, or phyloge-

netic network for short, N is a 3-tuple (G, l, g), where
G = (V, E) is anX -rDAG, l: E ® ℝ+ is the edge lengths
mapping, and g : E ® [0, 1] is the inheritance probabil-
ity mapping, which satisfies

∑
u∈δ−(v)γ (u) = 1 for every

v Î V - {r}.
A gene tree on set Y of alleles (copies of a gene) is a

Y -tree. Since a gene tree is inferred from gene copies
that are sampled from a set of species, there is a map-
ping from the leaves of the gene tree to the leaves of
the phylogenetic network.
Definition 2 A species network/gene tree instance is a

triplet (N, T, µ), where N is an X -network, T is a
Y -tree, and μ : Y → X is a function that maps the
gene tree leaf labels to the phylogenetic network leaf
labels.
Notice that the mapping µ is not necessarily injective

(as, biologically, not all species have exactly the same
number of copies of a given gene) or surjective (since
some species may have zero copies of a given gene). In
order not to introduce too many symbols, we will refer

to the nodes and edges of a phylogenetic network or a
gene tree when we actually mean the nodes and edges
of the topologies of these structures.
The way in which a gene evolves within the edges of a

phylogenetic network can be described by a coalescent
history [22]. Let g be an rDAG or a rooted tree. For a
node u in g, we denote by gu the set of all nodes that
are reachable from node u.
Definition 3 Given a species network/gene tree instance

(N, g, µ), a coalescent history is a function h: V (g) ® E(N )
that satisfies the following two conditions:

• If d+(v) = 0 and µ(v) = w, then h(v) = (u, w) for the
edge (u, w) Î E(N ).
• If v Î gu for node u Î V (g), and h(u) = (p, q), then
h(v) = (x, y) where x Î Nq.

Given a species network/gene tree instance (N, g, µ),
we denote by HN (g) the set of all coalescent histories
of g given N.

Probability and extra lineages
Two central quantities to compute are P(g|N), the prob-
ability of observing a gene tree topology g given the phy-
logenetic network N, and XL(N, g), the minimum
number of extra lineages that arise from the optimal
reconciliation of g with N. We now define these two
quantities. The probability of observing gene tree g
given phylogenetic network N is

P
(
g|N)

=
∑

h∈HN(g)

P (h|N), (1)

where

P (h|N) =
w(h)
d(h)

∏
b∈E(N)

wb(h)
db(h)

γ (b)ub(h)pub(h)vb(h) (λb).

In this equation, the entities ub(h) and vb(h) for an edge
b = (x, y) in the phylogenetic network denote the numbers
of gene copies that “enter” edge b from below (the Y end-
point) and “exit” edge b from above (the x endpoint).
These two entities define the number of coalescent events
that occurred on edge b, which equals r = ub(h) - vb(h).
The probability of r coalescent events occurring, reducing
ub(h) lineages into vb(h) lineages, on an edge whose length
is lb, is given by the quantity pub(h)vb(h)(λb) [25]. The quan-
tities wb(h)/db(h) is the proportion of all r coalescent sce-
narios that are consistent with the gene tree (not every
scenario of r coalescent events will results in a topology
that agrees with g) [10]. This quantity without the b sub-
script corresponds to the root of N (where there is no
explicit edge incoming into it).
Coalescent histories can also be used to compute the

minimum number of extra lineages required to reconcile
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gene tree g with N. Given a coalescent history h : V (g) ®
E(N ), the number of extra lineages arising from h on an
edge b = (w, y) is XL(b, h) = max{vb(h) - 1, 0}. The number
of extra lineages arising from h on the entire network N,
denoted by XL(N, h), is

∑
b∈E(N)XL(b, h). For a gene tree

g, the minimum number of extra lineages arising from
reconciling it within the edges of phylogenetic network N,
denoted by XL(N, g), is

XL(N, g) = min
h∈HN(g)

XL(N, h). (2)

Notice that for computing extra lineages, the l and g
parameters are not used. This is a maximum parsimony
criterion for explaining the gene tree g given the phylo-
genetic network N. Different from Eq. (1), N here repre-
sents the topology of the network only.
When the phylogenetic network N is a tree (that is,

VN = ∅ and g(b) = 1, for all b Î E(N )), algorithms exist
for computing P(g|N) [10,11] and XL(N, g) [1,26]. More
recently, we proposed new methods for computing these
two quantities when N is a phylogenetic network (VN ≠ ∅),
based on a technique that converts the network into a
multi-labeled tree (MUL-tree) [21,22]. However, these
techniques become prohibitive even for data sets with 15
to 20 taxa and even without hybridization being involved
[11]. The contribution of this paper, which we present
in detail next, is a heuristic that significantly reduces time
to approximate P (g|N), when N is a tree as well as two
novel strategies to speed up the algorithms of [21,22]
significantly.

Speeding up probability computation under ILS
From Eq. (1) we can see that the probability of obser-
ving gene tree g given species tree N equals to the sum
of all coalescent histories. Number of coalescent his-
tories increases rapidly with the increase of number of
taxa, but not all of the histories contribute equally, or
even significantly to the sum. We propose the heuristic
approach in which the target probability is approxi-
mated by summing over a subset of coalescent histories
which carry the most weight. In order to do so we first
compute limiting coalescent history (LCH), which is one
distinct, easy to compute, coalescent history and will be
used to bound the search space. If v is an internal node
of species tree N, let bv represent the branch that con-
nects node v to its parent with length λbv Let numLv
represent the number of lineages entering branch bv and
minLv the minimal number of lineages exiting that same
branch (if all coalescent events that are permitted by
topologies of gene and species tree happen on this
branch). Initially all lineages coalesce prior to the root
and numLv for all internal nodes v of the species tree is
set accordingly. Coalescent history is represented by a
vector C = (c1, c2, ...cn-2). Each element of C corresponds

to an internal node (clade) of the gene tree, and the
appropriate value represents the node v in species tree
on whose branch bv the clade coalesces. LCH is just one
distinct coalescent history. We define a function called
ComputeLCH which takes a species tree N and gene
tree g, and returns LCH for these two trees.
Algorithm 1: ComputeLCH.
Input: Phylogenetic tree N with branch lengths, gene

tree g
Output: LCH(N, g)
foreach internal node v Î N, with parent w in post-

order traversal do
if minLv ≠ numLv then

Find x, minLv ≤ x ≤ numLv, that maximizes
pnumLv ,x(λvb);

Pick r = numLv - x coalescent events on branch bv
that agree with gene and species tree topologies (ties are
broken randomly); Update LCH accordingly; numLw ¬
numLw - r;
return LCH;
Once we have LCH, we will approximate the probabil-

ity of g by summing over all coalescent histories that are
“under” LCH. Coalescent history H = (h1, h2, ...hn-2) is
“under” LCH = (l1, l2, ..., ln-2) if for each i Î {1, 2, ..., n - 2},
hi is ether equal to li or is a descendant of li. Similar
approach in duplication/loss model was suggested in [27].
We do not address the parsimony approach, since it is

trivial when we work with trees. It consists of comput-
ing least common ancestor (LCA) mapping of all pairs
of nodes within a gene tree on a species tree.

Ancestral configurations on networks
Central to our methods is the concept of weighted
ancestral configuration (AC, or simply configuration).
When its unweighted version was first introduced, it
was defined on species trees for computing the probabil-
ity of gene tree topologies [11]. However, the concept is
extended significantly here to apply to networks.
Given a species network N with q = |VN | reticulation

nodes numbered 1, 2, ..., q and a gene tree g on set Y
of alleles, an ancestral configuration can be associated
with a node v of N, denoted by ACv, or an edge e of N,
denoted by ACe, and is an element of the set

2Y × Z
q × R where the first element is the set of all

subsets of alleles in Y , the second is the set of all vec-
tors of integers of size q, and the third element is the
set of real numbers. When the context is clear, we omit
the subscript. For an AC (B, a, w), the interpretation is
as follows:

• B ⊆ A: a set of lineages that exist at the point
(node or edge) with which the AC is associated.
• a[i], for 1 ≤ i ≤ q: an index for the AC split that
occurred at reticulation node i and gave rise to B.
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• w: a weight of the AC; we discuss below how to
set/use this entry.

Given two ACs, AC1 = (B1, a1, w1) and AC2 = (B2, a2,
w2), we say that AC1 and AC2 are compatible if for each i,
1 ≤ i ≤ q, either a1[i] = a2[i] or a1[i] · a2[i] = 0; otherwise,
the two ACs are incompatible. Further, if B1 = B2 and
a1 = a2, we say that the two ACs are identical.
Ancestral configurations are computed in a bottom-up

fashion by algorithms below. Two major operations that
occur as the algorithms proceed bottom-up are:

• Splitting an AC whenever a reticulation node is
encountered. Let (B, a, w) be an AC on the edge
incident out of reticulation node k. Further, assume
that for each reticulation node i (1 ≤ i ≤ q), we have
a counter oi, that is initialized to 0 at the start of an
algorithm. Splitting (B, a, w) at node k results in two
ACs AC1 = (B1, a1, w1) and AC2(B2, a2, w2), each
associated with one of the two reticulation edges,
such that B1 ∪ B2 = B, B1 ∩ B2 = ∅, a1[k] = a2[k] =
ok + 1, and ok is incremented by 1. For the weights,
w1 = w and w2 = 0 if the algorithm used is CountXL
below, and w1 = w and w2 = 1 if the algorithm used
is CalProb below.
• Merging two ACs whenever an internal tree node
is encountered. Let (B1, a1, w1) and (B2, a2, w2) be
two compatible ACs associated with the edges inci-
dent from a tree node u. Then, these two ACs are
merged into one AC (B, a, w) at node u where B =
B1 ∪ B2 and a[i] = max{a1[i], a2[i]} for all 1 ≤ i ≤ q.
For the weights, w = w1 + w2 if the algorithm used
is CountXL below, and w = w1 · w2 if the algorithm
used is CalProb below.

For AC = (B, a, w) we denote by n(AC) the quantity
|B|. We denote by A C the set of ACs associated with a
node or edge. When A C is associated with an edge, it
denotes the set of ACs that result after all coalescence
events took place on the edge.
Assume m and n are two gene lineages that meet at

some node in a gene tree g. When reconciling g within
the edges of a species network N , after the two entered
the same edge of N , they might or might not have coa-
lesced before leaving that edge, the probability of which
depends on the length (in terms of time) and width (in
terms of population size) of that edge. Therefore, one
configuration entering a edge of N might give rise to
several different configurations leaving that edge with
different probabilities. We denote by Coal(B, g), for a set
B of lineages and gene tree g, the set of all sets of
lineages that B could coalesce into with respect to the
topology of g. Ancestral configurations provide a

compact representation of coalescent histories, thus
allowing for efficient computing: while redundant parts
that appear in different coalescent histories must be
computed explicitly every time they are encountered,
particularly over the different allele mappings employed
in the approaches of [21,22], using ancestral configura-
tions ameliorates this by computing the values only
once for each ancestral configuration. Further, when
these computations are coupled with network space
search, local perturbations to candidate networks neces-
sitate new computations to only a small number of
ancestral configurations. We now show how to use con-
figurations to compute P (g|N) and XL(N, g) efficiently.

Counting the number of extra lineages under ILS and
hybridization
For a configuration AC, we denote by xl(AC) the mini-
mum number of extra lineages arising from coalescing the
extant gene lineages in AC to the present gene lineages in
AC. In this method, weight w in (B, a, w) Î A C corre-
sponds to xl(AC), where A C is either A C v where v is a
node orA C b where b is a edge.
Observation 1 Let AC = (B, a, w) be a configuration

entering a edge b and AC+ = (B+, a+, w+) be a configura-
tion that AC coalesced into before leaving b. Then w+ =
w+ max{n(AC+) - 1, 0}, where n(AC+) is the number of
lineages on edge b.
We define a function called CreateCACsForXL which

takes a gene tree g, an edge b = (u, v) of the network N
and a set of ACs A C v that enter edge b, and returns a
set of ACs A C (u,v) that exit edge b.
Note that although one configuration can coalesce

into several different configurations along an edge,
under parsimony we only need to keep the one that has
the minimum total number of extra lineages. Therefore
Algorithm 2: CreateCACsForXL.
Input: Gene tree g, edge b = (u, v), set of ACs A C v

Output: A set of ACs A C (u,v)

foreach (B, a, w) Î A C vdo
B+ ← argminB′∈Coal(B,g)|B′|;
Compute w+ using Rule 1;
A C (u,v) ← A C (u,v) ∪ (B+, a, w+);

return A C (u,v)

|A C u| = |A C (u,v)| and there is 1-1 correspondence
between configurations in |A C u| and configurations in
|A C (u,v)|.
For a phylogenetic network N and a gene tree g, the

algorithm for computing the minimum number of extra
lineages required to reconcile g within N is shown in
Alg. 3. Basically, we traverse the nodes of the network
in post-order. For every node v we visit, we construct
the set of ACs A C v for node v based on its type. Recall
that there are four types of nodes in a phylogenetic
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network, which are leaves, reticulation nodes, internal
tree nodes, and the root. Finally when we arrive at the
root of N, we are able to obtain XL(N, g).
Algorithm 3: CountXL.
Input: Phylogenetic network N with q reticulation

nodes, gene tree g
Output: XL(N, g)
while traversing the nodes of N in post-order do
if node v is a leaf, who has parent u then
A C v ← {(B, a, 0)} where B is the set of leaves in g

that are sampled from the species associated with v and
a is a

vector of q 0’s;
A C (u,v) ¬ CreateCACsForXL(g, (u, v), A C v);

else if node v is a reticulation node, who has child w,
and two parents u1 and u2 then

A C v ← A C (v,w);
foreach AC Î A C vdo
Split AC in every possible way into pairs of ACs,

and for each pair, add one AC to A C (u1,v) and the
other AC to A C (u2,v);
else if node v is an internal tree node, who has two

children w1 and w2 then
foreach pair (AC1, AC2 ) of compatible ACs in

A C (v,w1) × A C (v,w2)do
Merge AC1 and AC2 and add the resulting AC to

A C v;
if node v is an internal tree node, who has a parent

u then
A C (u,v) ¬ CreateCACsForXL(g, (u, v), A C v);

else
return minAC∈AC v xl(AC);

Calculating gene tree probability under ILS and
hybridization
For a configuration AC, we denote by p(AC) the cumula-
tive probability of the extant gene lineages in AC coales-
cing into the present gene lineages in AC from time 0. In
this method, weight w in AC = (B, a, w) Î A C corre-
sponds to p(AC), where A C is either A C v where v is a
node or A C b where b is an edge.
Lemma 1 Let B be a set of gene lineages entering

branch b of network N with branch length lb. Then the
probability of observing a set of gene lineages B+ leaving
branch b is

pt(B, B+, b) = p|B|,|B+|(λb)
wb(B,B+)
db(B,B+)

(3)

where p|B|,|B+|(λb)is the probability that |B| gene
lineages coalesce into |B+| gene lineages within time lb,
wb(B, B+) is the number of ways that coalescent events
can occur along edge b to coalesce B into B+ with respect
to the gene tree topology, and db(B, B+) is the number of
all possible orderings of |B|-|B+| coalescent events.

Observation 2 Let AC = (B, a, w) be a configuration
entering an edge b and AC+ = (B+, a+, w+) be a config-
uration that AC coalesced into when leaving b. Then
w+ = w · pt(B, B

+, b).
We define a function called CreateCACsForProb which

takes a gene tree g, an edge b = (u, v) of the network N
and a set of ACs A C v that enter edge b, and returns a set
of all possible ACsA C (u,v) that exit edge b. The algorithm
for calculating the probability of observing a gene tree g
given a species network N
Algorithm 4: CreateCACsForProb.
Input: Gene tree g, an edge b = (u, v), a set of ACs

A C v

Output: A set of ACs A C (u,v)

foreach (B, a, w) Î A C vdo
foreach B+ Î Coal(B, g) do
Compute w+ using Rule 2;
if ∃(B’, a’, w’) Î A C (u,v)where B’ = B+ and a’ = a

then
w’ ¬ w’ + w+;

else
A C (u,v) ← A C (u,v) ∪ (B+, a, w+);

return A C (u,v);
is shown in Alg. 5. The basic idea is similar to the

parsimony method we described in the previous section.
It is important to note that the running time of the
algorithms can be exponential for some data sets, as the
complexity of both problems is open and conjectured to
be NP-hard.

Reducing the number of configurations
At every reticulation node v in the species network,
every configuration AC in A C v is split in all 2n(AC) pos-
sible ways. This may result in multiple configurations
which contain the same set of gene lineages but are all
distinct because of different vector values in some A C .
It is clear that the running time (and memory usage) of
both these two algorithms depends on the number of
configurations. Therefore, in order to reduce the num-
ber of configurations so as to speed up the computation,
we make use of articulation
Algorithm 5: CalProb.
Input: Phylogenetic network N including topology,

edge lengths and inheritance probabilities, gene tree g
Output: P (g|N)
while traversing the nodes of N in post-order do
if node v is a leaf, whose parent is u then
A C v ← {(B, a, 1)} where B is the set of leaves in g

sampled from the species associated with v and a is a
vector of q 0’s;

A C (u,v) ¬ CreateCACsForProb(g, (u, v), A C v);
else if node v is a reticulation node, who has child w,

and two parents u1 and u2 then
A C v ← A C (v,w);
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S1 ¬ ∅;
S2 ¬ ∅;
foreach AC Î A C vdo
Split AC in every possible way into pairs of ACs,

and for each pair, add one AC to S1 and the other AC
to S2;

foreach (B, a, w) Î S1 do
w ← w · γ

|B|
(u1,v)

;
A C (u1,v) ¬ CreateCACsForProb(g, (u1 , v), S1);
foreach (B, a, w) Î S2 do
w ← w · γ

|B|
(u2,v)

;
A C (u2,v) ¬ CreateCACsForProb(g, (u2 , v), S2 );

else if node v is an internal tree node, who has two
children w1 and w2 then

foreach pair (AC1, AC2) of compatible ACs in
A C (v,w1) × A C (v,w2) do

Merge AC1 and AC2 and add the resulting AC to
A C v;

if node v is an internal tree node, who has a parent
u then

A C (u,v) ¬ CreateCACsForProb(g, (u, v), A C v);
else
Let BR be the root lineage of the gene tree g;

return
∑

(B,a,w)∈AC v
w · pt(B, BR, +∞);

nodes in the graph (an articulation node is a node whose
removal disconnects the phylogenetic network). Obviously,
the reticulation nodes inside the sub-network rooted at an
articulation node are independent of the reticulation nodes
outside the sub-network. So at articulation node v we can
reset the vectors in all ACs inA C v to 0’s so that all config-
urations at v containing the same set of gene lineages
become identical. More precisely, when traversing the spe-
cies network, after constructing A C v for some internal
tree node v as we have described in Alg. 3 and Alg. 5, if v is
an articulation node, we reset the vector to 0’s in every AC
inA C v. Then for counting the minimum number of extra
lineages, we update A C v to be A C ′

v such that only the
configuration containing the minimum weight is left, using
the statement: A C ′

v = {argmin(B,a,w)∈AC v
w}. And for

computing the probability of the topology of a gene tree,
we keep only one copy of every distinct configuration.
More precisely, we update A C v to be A C ′

v using

A C ′
v = {(B, a,w′) : w′ =

∑
(B,a,w)∈AC vw}. Note that a is a

zero vector.

Results and discussion
Species tree inference under ILS
It is important to note that although we used coalescent
histories to describe the heuristic, in practice we esti-
mate the probability of the gene tree given a species
tree using the concept of ancestral configurations.
To test the speed of proposed heuristic we generated

4 datasets, each consisting of 50 random species trees

with same number of taxa and same height using Phylo-
Gen [28]. We used trees with 10, 20, 30 and 300 taxa of
heights 5, 10, 15 and 20 respectively. From each species
tree we simulated 25 gene trees, and estimated the
probability of the gene trees given that species tree. On
average, to compute (or estimate) the probability of a
single gene tree, for the exact method it took 0.0019,
0.297 and 10.05 and for heuristic 0.0019, 0.0068 and
0.01 seconds for the trees with 10, 20 and 30 taxa,
respectively. For the exact method we see that as we
increase the number of taxa the time starts increasing
dramatically. For the dataset consisting of trees with 300
taxa using heuristic took on average 0.2594 seconds to
compute the same probability.
To further test the proposed heuristic we modified

and ran the maximum likelihood species tree inference
program STELLS [11] on synthetic data generated by
PhyloGen. Modification of STELLS consisted of chan-
ging the function that computes the probability of the
gene tree given a species tree to use the proposed heur-
istic. Tests were performed on 3 different datasets each
consisting of 10 randomly generated species trees. For
the first dataset all trees contained 15 taxa and were of
height 7 coalescent units. On this data set we ran both
unmodified STELLS (which uses all coalescent histories
to compute the probability of the gene tree given a spe-
cies tree) and modified STELLS which employs the pro-
posed heuristic. For the second dataset all trees
contained 30 taxa and were of height 15 coalescent
units. For the third dataset all trees contained 60 taxa
and were of height 30 coalescent units. From each of
the species trees we have generated 120 sets consisting
of 30 sets with 25 gene trees, 30 sets with 50 gene trees,
30 sets with 100 gene trees and 30 sets with 200 gene
trees. We have imposed the 72 hour time constrain on
execution time, that is, killed the jobs that did not com-
plete in 72 hours. We compared the inferred species
tree with the true species tree (the tree from which we
simulated the gene trees) in terms of averaged normal-
ized Robinson-Foulds (RF) distance [29], Figure 1(a), as
well as the average inference runtime, Figure 1 (b-d).
For the inference using heuristic on datasets with 15

and 30 taxa all of the runs finished within the given
time frame of 72 hours. On the dataset with 60 taxa 5
out of 300 runs with 25 gene trees, 6 out of 300 runs
with 100 gene trees and 31 out of 300 runs with 200
gene trees did not finish in the given time frame. For
the exact method on 15 taxa data set, 1 out of 300 runs
with 100 gene trees and 16 out of 300 runs with 200
gene trees did not finish in the given time frame.
From Figure 1(a) we can see that if we have more

gene trees the inferred species tree will be more accu-
rate, which is a good property. When the heuristic is
compared with exact method on 15 taxa dataset, the
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accuracy of the heuristic decreases slightly, but the run-
ning time improves significantly. Average speedup of the
heuristic over the exact method on this dataset was 112.
One important thing to keep in mind while looking at

the runtime results is that we are working with ML fra-
mework. In order to infer species tree we need to exam-
ine large number of potential species trees, for each of
them we need to estimate branch lengths and finally
compute the likelihood function. This means that for
any potential species tree we will have to recompute the
probabilities of all given gene trees multiple times. So
when we increase the number of taxa, we increase the
number of potential species tree we have to evaluate,
and we increase the number of branches within the tree.
This is the reason why the computation on datasets
with large number of taxa will still take long time, but
not due to the slow computation of probability.

Gene tree parsimonious reconciliation and probability
under ILS and hybridization
To study the performance of the two methods compared
to the MUL-tree based methods, we ran all four on syn-
thetic data generated as follows. We first generated 100
random 24-taxon species trees using PhyloGen [28], and
from these we generated random species networks with 1,
2, 4, 6 and 8 reticulation nodes. When expanding a species
network with n reticulation nodes to a species network
with n + 1 reticulation nodes, we randomly selected two
existing edges in the species network and connected their
midpoints from the higher one to the lower one and then
the lower one becomes a new reticulation node. Then, we
simulated 10, 20, 50, 100, 200, 500 and 1000 gene trees
respectively within the edges of each species network
using the ms program [30]. Since the MUL-tree methods

are computationally very intensive, we employed the fol-
lowing strategy: for the parsimony methods, we bounded
the time at 24 hours (that is, killed jobs that did not com-
plete within 24 hours). For the probabilistic methods, we
bounded the time at 8 hours. The reason for this choice is
that we found that in most cases if the probabilistic
method did not finish within 8 hours, then it often did not
finish within 24 hours (which is not the case of the parsi-
mony methods). Therefore, to save running time that
would be “wasted” without adding to the results, we
decided on the 8-hour bound for the probabilistic
methods.
For computing the minimum number of extra lineages,

the results of the running time of both methods are
shown in Figure 2. Overall, both methods spent more
time on data sets where the species networks contain
more reticulation nodes. It is not surprising given the
fact that adding more reticulation nodes increases the
complexity of the networks in general. We can see that
the speedup of the AC-based method over the MUL-tree
based method also increased when the number of reticu-
lation nodes in the species networks increased. In the
best cases, the method achieves an improvement of about
5 orders of magnitude. In this figure, we only plot the
results of the computations that could finish in 24 hours
across all different number of loci sampled. In fact, the
AC based method finished every computation in less
than 3 minutes, even for the largest data set which con-
tained species networks with 8 reticulations and 1000
gene trees. For the MUL-tree based method, out of 100
repetitions the numbers of repetitions that were able to
finish in 24 hours across all different loci are 100, 100,
99, 96 and 88 for data sets containing species networks
with 1, 2, 4, 6 and 8 reticulation nodes.

Figure 1 Normalized RF distance between inferred and true species trees (a), and average running times (b), (c) and (d) for heuristic
with 15, 30 and 60 taxa and exact method for 15 taxa.
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For computing the probability of the gene tree topolo-
gies given a species network, we were not able to run the
MUL-tree based method because we found it could not
finish the computation in 24 hours even for the smallest

data set (one gene tree and a species network with one
reticulation node). In contrast, the AC-based method
only needed 0.4 seconds on the same data set which
implies a speedup of at least 5 orders of magnitude. Part

Figure 2 The running times (ln of number seconds) of the MUL-tree based (t(MUL)), and AC-based (t(AC)) methods for computing
parsimonious reconciliations, as well as the speedup log10(t(MUL)/t(AC)).
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of the results of the AC based algorithm are shown in
Figure 3.
For both parsimony and probabilistic methods, it is not

surprising to see that for a fixed number of taxa the run-
ning time increases significantly when the number of reti-
culation nodes in the species networks increased.
However, even for the same number of reticulation nodes,
we can see that the running time still differs significantly
from case to case. We find that for the data sets of the
same size (e.g., number of taxa and reticulation nodes)
there are several factors that can affect the number of con-
figurations generated during the computation which
directly dominates the running time of the algorithm.
More specifically, the running time of the algorithms
increases when there are more leaves under reticulation
nodes and when the reticulation nodes are more depen-
dent on each other. With respect to the topology of the
gene tree and the species network, the more coalescent
events that are allowed under reticulation nodes the faster
the parsimony method is, and the opposite for the prob-
abilistic method. For most cases, the AC-based methods
are significantly much faster than the MUL-tree based
ones. For parsimony, the gain in terms of efficiency comes
from avoiding allele mappings that are guaranteed to
result in suboptimal reconciliations or correspond to con-
figurations being removed at articulation nodes. For prob-
abilistic reconciliation, the gain comes from two factors:
(1) avoiding redundant computations by reducing the
number of configurations at articulation nodes which
could not be avoided in MUL-tree based method, and (2)
using ACs to compute the probability instead of enumer-
ating the coalescent histories.
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