
PROCEEDINGS Open Access

On the inversion-indel distance
Eyla Willing1,2, Simone Zaccaria3, Marília DV Braga4, Jens Stoye1,2*

From Eleventh Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics
Lyon, France. 17-19 October 2013

Abstract

Background: The inversion distance, that is the distance between two unichromosomal genomes with the same
content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of
Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of
unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides
inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no
deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and
deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch
of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome
rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has
been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation.
Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with
unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time.

Results: In the present work we put these two results together to solve an open problem, showing that, when the
graph that represents the relation between the two compared genomes has no bad components, the inversion-indel
distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance
in the presence of bad components.

Background
The inversion distance problem in genome comparison
searches for the minimum number of signed inversions
(reversals) to transform one unichromosomal genome,
represented as a signed permutation, into another one
with the same gene content and without duplications. The
inversion sorting problem requests a sequence of inver-
sions that achieve this minimum number. Hannenhalli
and Pevzner (1995) gave the first algorithm for calculating
the inversion distance and solving the inversion sorting
problem in polynomial time for two linear genomes [1].
Soon after (1997), it was shown that a similar result holds
for circular genomes [2]. El-Mabrouk (2000) proposed an
extension to include insertions and deletions (indels) to
the model [3]. The author introduced an exact algorithm

for computing the minimum number of inversion and
indel events for the asymmetric case where additional
genes are present in only one genome. The symmetric
case was treated only heuristically, though.
The double cut and join (DCJ) is an abstract rearrange-

ment operation, introduced by Yancopoulos et al. [4] in
2005, which allows to represent most large scale mutation
events, such as inversions, translocations, fusions and fis-
sions, which can occur in genomes. If no restriction on
the genome structure considering linear and/or circular
chromosomes is imposed, using a simple graph data struc-
ture, the adjacency graph [5], this leads to considerable
algorithmic simplifications. For example, the inversion dis-
tance problem can be tackled via the DCJ model in linear
time [6].
Yancopoulos and Friedberg [7] introduced insertions

and deletions (indels) into the DCJ model but left open
the design of an algorithm. This is non-trivial if an indel
of consecutive DNA fragments is treated as a single
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event. In [8] the DCJ distance with indels was considered
again, and a linear time algorithm has been proposed. In
that paper, the cost of an indel is the same as that of an
inversion, but generalizations are possible [9].
In this paper, we combine techniques from [6] and [8]

in order to revisit the problem of computing the inver-
sion distance with indels for unichromosomal circular
genomes having unequal contents but without duplica-
tions. The paper is organized as follows. In the remainder
of this section we give definitions and previous results
used in this work. We will then use the relational dia-
gram introduced in [10] and prove that, when the graph
that represents the relation between the two compared
genomes has no bad components, the inversion distance
with indels equals the DCJ distance with indels, that can
be computed in linear time. We then extend the defini-
tion of the component tree from [6] in order to give a
lower and an upper bound for the inversion distance
with indels in the presence of bad components.

Basic definitions
Each marker in a genome is an oriented DNA fragment.
The representation of a marker g in a genome A can be
the symbol g, if it is read in direct orientation in A, or the
symbol ḡ, if it is read in reverse orientation. Let A be a
unichromosomal circular genome, that is a genome com-
posed of a single circular chromosome. We represent A by
a string s, obtained by the concatenation of all symbols in
the chromosome of A, read in any of the two directions
(we can build s starting at any marker). An example is
given in Figure 1.
Common and unique markers
In this work, duplicated markers are not allowed. Given
two unichromosomal circular genomes A and B, possibly
with unequal contents, let G, A and B be three disjoint
sets, such that G is the set of common markers which
occur once in A and once in B, A is the set of markers
which occur only in A, and B is the set of markers
which occur only in B. The markers in sets A and B
are also called unique markers. For A = (awd̄c̄ybz̄ēfxijhg)

and B = (asbcduvefghitjr), we have G =
{
a, b, c, d, e, f , g, h, i, j

}
,

A =
{
w, x, y, z

}
and B = {r, s, t, u, v}.

Indels
In order to sort genomes with unequal contents, we
need to consider insertions and deletions of blocks of
contiguous markers [3,8]. We refer to insertions and
deletions collectively as indels. Indels have two restric-
tions: (i) markers of G cannot be deleted; and (ii) an
insertion cannot produce duplicated markers [8]. We
illustrate an indel with the following example: the dele-
tion of markers uv from genome B = (asbcduvefghitjr)
results in B′ = (asbcdefghitjr).
Observe that, if |G| ≤ 1, the problem of sorting A into

B becomes trivial: we simply delete at once the unique
content of the chromosome of A and insert at once, in
the proper orientation, the unique content of the chro-
mosome of B. Due to this fact, we assume in this work
that |G| ≥ 2.
Rearrangements modeled by DCJ
A double cut and join (DCJ) [4] is the operation that
cuts a genome at two different positions, creating four
open ends, and joins these open ends in a different
way. Consider, for example, a DCJ applied to genome
A = (awd̄c̄ybz̄ēfxijhg), that cuts before and after yb, creat-
ing the segments •z̄ēfxijhgawd̄c̄• and •yb•, where the
symbol • represents the open ends. If we then join the
first with the third and the second with the fourth open
end, we obtain A′ = (awd̄c̄b̄ȳz̄ēfxijhg). This DCJ corre-
sponds to the inversion of contiguous markers yb. The
alternative would be to join the first with the second
and the third with the fourth open end, giving two cir-
cular chromosomes, representing an excision. Its inverse
is called an integration, completing the set of DCJ
operations for circular genomes [5].

Methods
In order to find a parsimonious sequence of rearrange-
ments (and indels) sorting one unichromosomal circular
genome into the other, it is convenient to find some
data structure to represent the relation between the

Figure 1 Graphic representation of the unichromosomal circular genomes A and B. Each arrow represents a marker and its orientation. The

genome A, for example, could be represented by (awd̄c̄ybz̄ēfxijhg), or by (cdw̄āḡh̄jix̄f̄ ezb̄ȳ), or by any circular rotation of these strings.
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organization of two genomes. This task can be accom-
plished with the help of the relational diagram, proposed
in [10]. (Similarly to [11], we adopt here the term diagram,
as not only the abstract graph structure, but also the linear
representation of its nodes along the chromosome is used,
as we will describe.) This diagram is a specific view of the
master graph [12] and unifies in a single structure the
breakpoint diagram, proposed in [13] to analyze the inver-
sion distance [1] and also used for the inversion-indel
distance [3], and the adjacency graph, proposed in [5] to
analyze the DCJ distance, and then used for the DCJ-indel
distance [8].

The relational diagram
Given two unichromosomal circular genomes A and B,
their relational diagram, denoted by R(A, B), shows the
elements of genome A in an upper horizontal line and the
elements of genome B in a lower horizontal line. We
denote the two extremities of each marker g ∈ G by gt (tail)
and gh (head). For each extremity of g the diagram R(A, B)
has an orange vertex in the upper line and a blue vertex in
the lower line. Clearly, each line (that corresponds to the
chromosome of one of the two genomes) has 2|G| vertices,
and its vertices are distributed following the same order of
the corresponding chromosome. Since the chromosomes
are circular, we have to choose one marker a ∈ G from
which we start to read the chromosomes in both genomes,
s.t. in both lines the leftmost vertex is ah and the rightmost
is at. Then, for each marker g ∈ G, we connect the orange
and the blue vertices that represent gt by a dotted edge.
Similarly, we connect the orange and the blue vertices that
represent gh by a dotted edge.
Moreover, for each integer i from 1 to |G|, let γ1 and γ2

be the orange vertices (analogously blue vertices) at posi-
tions 2i − 1 and 2i of the corresponding line of the
diagram. We connect the orange vertices (analogously
blue vertices) γ1 and γ2 by an orange edge (analogously
blue edge) labeled by �, which is the substring composed
of the markers of genome A (analogously genome B) that
are between the extremities represented by γ1 and g2.
Observe that γ1 and γ2 are G-adjacent, that is, they repre-
sent extremities of occurrences of markers from G in gen-
ome A (analogously B), so that in-between only markers
from A (analogously B) can appear. In other words, the
label � contains no marker of G. When the label of an
orange (or blue) edge is empty, the edge is said to be
clean, otherwise it is said to be labeled. A similar notion
was introduced in [3] as direct, resp. indirect edge.
Each vertex is now connected to one dotted edge and

either to one orange or to one blue edge, thus the degree
of all the vertices is two and the diagram is a simple col-
lection of cycles. Each cycle alternates a pair of orange-
dotted with a pair of blue-dotted edges, consequently the
length of each cycle is a multiple of 4. By walking

through each of these cycles, arbitrarily in one of the two
possible directions, we assign an orientation to each
colored edge (see Figure 2). The relative orientations of
the colored edges within one cycle are useful for classify-
ing different types of inversions, as we will see later.
We represent the labels according to the assigned direc-

tion instead of taking a simple left-to-right orientation
for each edge, in order to avoid any ambiguity. In other
words, the orientations of the edges determine the orienta-
tions in which the labels are read. Note, however, that an
edge γ1�γ2 could be equivalently represented as γ2�̄γ1.
A cycle that contains at least one labeled edge is said to be
labeled, otherwise the cycle is said to be clean.

DCJ sorting and DCJ distance
The cycles of R(A, B) containing only two dotted edges
(and one orange and one blue edge) are called 2-cycles and
are said to be DCJ-sorted. Longer cycles are DCJ-unsorted
and have to be reduced, by applying DCJ operations,
to 2-cycles. This procedure is called DCJ-sorting of A into
B. A DCJ can be of three types [8]: split DCJ when it
increases the number of cycles by one; neutral DCJ when
it does not affect the number of cycles; and joint DCJ
when it decreases the number of cycles in R(A, B) by one.
It has been shown that, given any pair of orange edges (or
any pair of blue edges) belonging to the same cycle, a split
DCJ can be applied to these edges [14]. (However, depend-
ing on the relative orientations of the edges, the number
of chromosomes may stay the same, when the DCJ
corresponds to an inversion, or increase, when the DCJ
corresponds to the excision of a circular chromosome.)
Due to this fact, the DCJ distance of A and B, denoted by
dDCJ(A, B) and defined as the minimum number of steps
required to do a DCJ-sorting of A into B, is given by the
following theorem.
Theorem 1 (from [4]). Given two unichromosomal

circular genomes A and B over the same set of markers G,
we have dDCJ(A,B) = |G| − c, where c is the number of
cycles in R(A, B).

Inversion model
In the inversion model, circular excisions and reintegra-
tions are not allowed, and a DCJ can only represent an
inversion. In the following, without loss of generality, we
will refer to operations applied to orange edges of
R(A, B), but a symmetric analysis could be done using
blue edges. Differently from a general DCJ operation, an
inversion only increases the number of cycles in R(A, B)
when it is applied to two orange edges that belong to the
same cycle C and have opposite orientations according to
the arbitrary direction assigned to C (see Figure 3) [1].
Two distinct cycles C and C′ are said to be interleaving

when in the relational diagram there is at least one orange
edge of C between two orange edges of C′ and at least one
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orange edge of C′ between two orange edges of C. An
interleaving path connecting two distinct cycles C and C′
is defined as the smallest set of cycles C1, C2, ..., Ck such
that C1 = C, Ck = C′ and Ci and Ci+1 are interleaving for
all i, 1 ≤ i < k. An interleaving component or simply
component is then a maximal set of cycles C where
each C ∈ C is connected by an interleaving path to any
other C′ ∈ C.
Components can be of three types. The first type is a

2-cycle, that can never interleave with any other cycle
and is then called a trivial component. The other two
types are components of DCJ-unsorted cycles. Let C be a
DCJ-unsorted cycle in R(A, B). If C does not have a pair of
orange edges with opposite orientations, C is called a bad
cycle. Otherwise the cycle C is said to be good. A bad cycle
C cannot be split by any inversion applied to its orange
edges. However, if C is part of a component C that con-
tains at least one good cycle, it is always possible to apply
one or more inversions that split good cycles of C, so that
C becomes good and can then be also sorted with split
inversions [1]. Therefore, if a non-trivial component con-
tains at least one good cycle, it is called a good component,
otherwise it is called a bad component.
The relational graph represented in Figure 2 has four

components: one good (the cycle C1), two trivial (the
cycles C2 and C4) and one bad (composed of the two
interleaving bad cycles C3 and C5).

When R(A, B) has no bad components, it has been
long known that the inversion distance is equal to the
DCJ distance:
Lemma 1 (adapted from [2,15]). For two unichromoso-

mal circular genomes A and B, such that R(A, B) has no
bad component, dINV(A,B) = dDCJ(A,B) = |G| − c.
Cutting and merging bad components
While the DCJ distance is achieved with split inversions
only, bad components require neutral and/or joint inver-
sions to be sorted. Given an inversion r, we define the
DCJ-cost of r, denoted by ||ρ||, to be respectively 1 or 2
depending on whether r is a neutral or a joint inversion.
A neutral inversion, applied to any two orange edges of

the same bad cycle C, turns it into a good cycle [1]. Con-
sequently, if C is part of a bad component C, then C also
becomes a good component. This type of inversion is
said to be a cut of a bad component. It decreases the
number of bad components by one and, since it is a neu-
tral inversion, its DCJ-cost is one.
A joint inversion, applied to two orange edges of two

distinct cycles C1 and C2, turns them into a single good
cycle C. If C1 and C2 belong to two distinct components
C1 and C2 they are merged into a single good component
C that contains the good cycle C [1]. This type of inver-
sion is said to be a merging of bad components. It can
decrease the number of bad components by at least two,
and, since it is a joint inversion, its DCJ-cost is two.

Figure 3 Effects of an inversion in the diagram (from [10]). Observe that the inverted segment is inside the horizontal square bracket, that
shows γ2, γ3, ..., γ4, γ5 at the left side and γ5, γ4, ..., γ3, γ2 at the right side of both pictures. (i) If the edges are in the same cycle and
with opposite orientations, the inversion splits the cycle. Inversely, if the edges are in different cycles, the inversion joins them (independently of
the orientations of the original edges, that are omitted). (ii) If the edges are in the same cycle with the same orientation, the inversion is neutral
and the number of cycles remains unchanged.

Figure 2 Example of a relational diagram. For genomes A = (awd̄c̄ybz̄ēfxijhg) and B = (asbcduvefghitjr) the relational diagram

contains five cycles. Only cycle C2 is clean, while cycles C1, C3, C4 and C5 are labeled.
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The inversion distance between two unichromosomal
genomes A and B with equal content, denoted by
dINV(A, B), can be then represented by the following
equation:

dINV(A,B) = dDCJ(A,B) + τINV(A,B).

The value τINV(A, B) corresponds to the extra cost for
cutting and merging bad components. It can be efficiently
computed based on the direct analysis of R(A, B) [1]. In
the last section of this paper we will recall an alternative
approach [6,16], based on a tree structure that represents
the components of R(A, B).

Runs, indel-potential and the DCJ-indel distance
Now we go back to the general DCJ distance, in which we
do not need to take care of bad components. We intro-
duce some definitions and concepts that will help us to
integrate indels into the general DCJ model. These con-
cepts are useful to show how to use DCJ operations to
minimize the number of indels to be performed. First
observe that a set of labels of one genome can be accumu-
lated with DCJs. For example, take the orange edges ctybt

and ehz̄bh from genome A in Figure 2. A DCJ applied to
these two edges could result in the new edges ctbh and
ehz̄ȳbt, in which the label z̄ȳ results from the accumulation
of the labels of the two original edges.
With this notion we can then recall the concept of run,

introduced in [8]. Given two genomes A and B and a
cycle C of R(A, B), a run is a maximal subpath of C, in
which the first and the last edges are labeled and all
labeled edges have the same color (belong to the same
genome). A run in genome A is also called an A-run, and
a run in genome B is called a B-run. We denote by Λ(C)
the number of runs in cycle C. A cycle has either 0, or 1,
or an even number of runs. As an example, note that the
cycle C1 represented in Figure 2 has 4 runs ({ahwdh} and
{ehz̄bh, bhct, ctybt} are A-runs, while {bt s̄ah} and {dhuvet}
are B-runs). When we apply split DCJs internal to a sin-
gle cycle of the relational diagram, we can accumulate an
entire run into a single edge [8].
In addition to being accumulated, runs can also be

merged by DCJ operations. Consequently, during the
optimal DCJ-sorting of a cycle C, we can reduce its num-
ber of runs. The indel-potential of C, denoted by λ(C), is
defined in [8] as the minimum number of runs that we
can obtain by DCJ-sorting C with split DCJ operations.
The indel-potential of a cycle depends only on its initial
number of runs:
Proposition 1 (from [8]). Given two genomes A and B,

the indel-potential of a cycle C of R(A, B) is given by

λ(C) =
⌈

�(C) + 1
2

⌉
, if �(C) ≥ 1. Otherwise, if Λ(C) = 0,

then λ(C) = 0.

Given two unichromosomal circular genomes A and
B, the DCJ distance of A and B and the indel-potential
of the cycles in R(A, B) allow us to easily compute the
DCJ-indel distance, that is the minimum number of DCJ
and indel operations required to sort A into B, denoted
by didDCJ(A,B).
Theorem 2 (from [8]). Given two unichromosomal cir-

cular genomes A and B, we have

didDCJ(A, B) = dDCJ(A, B) +
∑

C∈R(A, B)
λ(C).

Results
The inversion-indel distance between two unichromoso-
mal genomes A and B, denoted by didINV(A,B), is the
number of steps (inversions and indels) required to sort
A into B. It is lower bounded by the DCJ-indel distance
and can be represented by the equation

didINV(A,B) = didDCJ(A,B) + τ id
INV(A,B),

in which the value τ id
INV(A,B) gives the extra cost to

handle bad components of the relational graph.
In this section we present our results, assuming that in

R(A, B) the label of each orange edge is composed of at
most one marker from A and the label of each blue edge
is composed of at most one marker from B. We first
show how to optimally perform indels directly on the ori-
ginal genomes. Then we prove that τ id

INV(A,B) = 0 when
R(A, B) has no bad component, and finally we give a
lower and an upper bound for τ id

INV(A,B) when R (A,B)

has bad components.

Finding optimal integrations
In a DCJ-indel sorting scenario there are DCJ operations,
insertions of unique markers of B into A and deletions of
unique markers ofA from A. Although in an arbitrary sce-
nario the order of these operations may vary, from [17] we
know that insertions can always be moved ahead of the
DCJ operations, s.t. they occur in the first steps, and analo-
gously the deletions can be moved aback to occur after the
DCJ operations in the last steps. This separation of inser-
tions, DCJs and deletions within the sorting scenario also
appears in [18], where an alternative approach was pre-
sented to compute the DCJ-indel distance, based on the
concept of optimal completion. In this approach, each
indel is modeled as a circular chromosome, called circular
singleton, composed only of the markers that are inserted
or deleted by this indel. A completion of genomes A and B
adds i new circular singletons to A and k new circular sin-
gletons to B, yielding two multichromosomal circular
genomes that have the same content G ∪ A ∪ B. A com-
pletion is optimal when i + k =

∑
C∈R(A, B)λ(C) .
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Here we show how to build an optimal completion
using the relational diagram and the concepts of run and
indel-potential. Let r be a B-run of a cycle C in R(A, B),
composed of m labels (each label is composed of a single
marker, as stated earlier). Then let s be the circular single-
ton obtained from R(A, B) by walking through the path
that corresponds to r and concatenating its m labels. We
close the circular chromosome concatenating also the last
to the first label. Such a singleton s is called r-singleton.
The addition of the r-singleton s to genome A, yielding
genome A′, produces m − 1 new clean cycles in the
diagram, that is, the number of cycles in R

(
A′,B

)
is

c′ = c +m − 1, where c is the number of cycles in R(A, B).
Since the number of common markers between A’ and B
is |G′| = |G| + m, we have dDCJ

(
A′, B

)
= dDCJ (A, B) + 1.

Furthermore, the cycle C in R(A, B) is transformed into a
cycle C’ in R

(
A′,B

)
, containing the same labels of C

except for the m labels of the run r.
Proposition 2. If we add the r-singleton of a B-run r to

genome A yielding genome A’, the overall indel-potential
is achieved, that is,

∑
C′∈R(A′, B)λ(C′) =

(∑
C∈R(A, B)λ(C)

) − 1
(Analogous for the addition of the r′-singleton of an r′-run
A to genome B.)
Proof. Let C be the cycle that contains the B-run r in

R(A, B). We then add the r-singleton to genome A yielding
genome A′ . If C originally had only one or two runs, then
it is clear that the sum of the indel-potentials in R

(
A′,B

)
decreases by one with respect to R(A, B). If C originally
had four or more runs, two A-runs of C are merged into a
single run in R

(
A′,B

)
, and this also guarantees that the

sum of the indel-potentials decreases by one. □
For describing the indels in our inversion-indel model,

we still need to integrate the singletons so that we obtain
a unichromosomal genome. Again, let r be a B-run and
let A′ be the genome composed of A and the r-singleton.
We know that dDCJ

(
A′, B

)
= dDCJ (A, B) + 1 and, to inte-

grate the singleton, we need to apply exactly one DCJ to
two orange (or two blue) edges of a cycle of R

(
A′,B

)
,

such that one is part of the chromosome of A and the
other is part of the r-singleton [4,19]. An optimal integra-
tion is then an integration that preserves the runs of the
diagram.
Proposition 3. Any integration of the r-singleton of a

B-run r into the chromosome of A that creates a new clean
cycle in the relational diagram is optimal. (Analogous for
the integration of anA-run into the chromosome of B.)
Proof. The integration only affects one cycle C of the

diagram, by splitting it into two cycles. If one of these two
cycles is clean, then we know that all runs of C remain
together in the other cycle, that is, the runs of the diagram
are preserved. □
With the previous results we have a straight recipe for

the construction of an optimal integrated completion of
genomes A and B. At each step we can decide arbitrarily

whether we optimally integrate the r-singleton of a B-run
to A, or the r′-singleton of an A-run to B, until no more
runs exist in the relational diagram. In the end we have
two unichromosomal circular genomes A∗ and B∗ with the
same content.
As an example, let us build one optimal integrated

completion for genomes A = (axc̄ybz̄d̄) and B = (aubcvd),
whose relational diagram has one cycle C with four runs,
see Figure 4 (i). We have l(C) = 3, thus we need to per-
form three optimal integrations. We first do an integra-
tion of the singleton (zy), composed of the labels of an
A-run, into the chromosome of genome B, creating
B′ = (aubcvdzy). After this step, R

(
A, B′) has three cycles,

one with two runs. In the second step, we do an integra-
tion of the singleton (v̄u), composed of the labels of the
last B-run, into the chromosome of genome A, creating

A∗ = (axc̄ybz̄d̄v̄u). Now R(A∗, B′) has five cycles, one with
an A-run. We finally do an integration of the singleton
(x), composed of the labels of the last A-run, into the
chromosome of genome B′ , creating B∗ = (axubcvdzy),
yielding R(A∗, B∗) composed of six clean cycles, see
Figure 4 (ii). Indeed, dDCJ(A, B) = dDCJ(A∗, B∗).

Finding safe integrations - the inversion-indel distance in
the absence of bad components
Let A and B be two unichromosomal circular genomes
with unequal contents such that R(A, B) has no bad com-
ponent. A safe integration is an optimal integration in A
yielding A′ (respectively in B yielding B′ ), such that also
R

(
A′,B

)
(respectively R

(
A, B′) has no bad component.

In Figure 5 we perform an optimal but not safe integra-
tion, producing a bad component in the relational dia-
gram. Even several bad components can be created by an
optimal integration, but, fortunately, it is always possible
to perform a safe integration, as shown in the following.
Let the size of a component C in R(A, B) be the total

number of orange (or blue) edges in the cycles of C.
Furthermore, let C1 and C2 be two components in R (A,B).
If each orange edge of C1 is between two orange edges
of C2,, the component C1 is said to be nested within C2.
Otherwise, if C1 is not nested within C2 and C2 is not
nested within C1, the components C1 and C2 are said to be
independent. Two independent components C1 and C2 are
said to be linked if the leftmost orange edge of C2 appears
immediately after the rightmost orange edge of C1 in
R(A, B). In this case the rightmost orange vertex of C1 and
the leftmost orange vertex of C2 represent extremities of
the same marker g ∈ G. The marker g is said to be a link
of C1 and C2. A sequence of k linked components is called
a chain of size k.
Without loss of generality, let all markers in B have the

same orientation and let R(A, B) have only one component
C, that is good. Assume that an optimal integration of a
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singleton s in A yielding A′ creates, besides one or two tri-
vial components, exactly one good component C1 and one
bad component C2 in R

(
A′,B

)
. If necessary, we can flip

genome A′ so that the markers within C2 in A′ have the
same orientation as the markers in B. Furthermore, due to
the circularity of the genomes, we can rotate the diagram
so that R

(
A′,B

)
is a chain of exactly two linked compo-

nents C1 and C2. A link of C1 and C2 is within the optimal
integration. If we then do an alternative optimal integra-
tion of s in the middle of the bad component C2 (see
Figure 6), we obtain A′′ . In R(A′′, B)we have either a sin-
gle bad component smaller than C2, or no bad component.
(In general, there can be other components in R

(
A′,B

)
nested within C1 and C2, but each one of these is either
trivial or has at least one edge within and at least one
edge outside the integrated cluster. In any case, since the
component in R(A, B) was good, at least one component
in R

(
A′,B

)
has to be good. By extending the approach

illustrated in Figure 6 we can show that all components
but C2 are merged into a single good component and
only one bad component, strictly smaller than C2, can
exist in R(A′′, B).)
Proposition 4. Let r be a B-run in R(A, B). At least

one optimal integration of the r-singleton into the

chromosome of A is safe. (Analogous for the integration
of an A-run in B.)
Proof. Assume that each optimal integration of the

r-singleton in A, yielding A′ , creates at least one bad
component in R

(
A′,B

)
. Then, among all possible opti-

mal integrations of r, assume that we take one that
produces a bad component C ′ of the smallest size. It is
always possible to perform another optimal integration of
r, as described in Figure 6, in the middle of the bad com-
ponent C ′, transforming A′ into A′′ , so that we create a
clean 2-cycle in R(A′′, B) . Either R(A′′, B) does not have
any bad component (then we have a contradiction to the
assumption that all optimal integrations create bad com-
ponents), or it has a bad component C′′ (then C′′ must be
strictly smaller than C ′, and we have a contradiction to
the assumption that C ′ was a bad component with the
smallest size). □
The results presented above give rise to the following

theorem:
Theorem 3. For two unichromosomal circular genomes

A and B, such that R(A, B) has no bad component, we
have didINV(A,B) = didDCJ(A,B).
Proof. We know that there is at least one safe integra-

tion for each run and that by integrating one run per

Figure 4 Optimal integrated completion of two genomes. (i) For genomes A = (axc̄ybz̄d̄) and B = (aubcvd) we show positions for

optimally integrating the singletons in R(A, B). (ii) In the resulting genomes A∗ = (axc̄ybz̄d̄v̄u) and B∗ = (axubcvdzy), there are five more

common markers between A∗ and B∗, but also five more cycles in R(A∗, B∗) .

Figure 5 Optimal but not safe integration. For genomes A = (ac̄bed) and B = (abxcydze), an optimal but not safe integration of the

singleton (xyz) produces A′. In R
(
A′,B

)
we have two clean 2-cycles (C3 and C4), one good component C1 = {C1} and one bad component

C2 = {C2}. The marker y is a link of C1 and C2 and is adjacent to d in genome B. This information is used to find an alternative optimal
integration for the singleton (xyz), as we will show in Figure 6.
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step we perform exactly
∑

C∈R(A, B)λ(C) integrations,
yielding genomes A∗ and B∗ with the same content, such
that R(A∗, B∗) has no bad component. Then we have
dDCJ(A,B) = dDCJ(A∗,B∗) = dINV (A∗,B∗). □
Since the DCJ-indel distance can be computed in linear

time, the same is true for the inversion-indel distance in
the absence of bad components.

Bounds for the inversion-indel distance in the presence of
bad components
Now we will give bounds to the extra cost for handling
bad components in R(A, B). Without loss of generality,
let us assume that, if R(A, B) has at least two compo-
nents, the first and the last orange edges of R(A, B)
belong to two distinct components. Recall that R(A, B)
represents the relation between two circular chromo-
somes, thus its first orange edge comes right after its last
orange edge.
Let C1, C2 and C3 be three distinct components in R(A, B)

such that if we take the rightmost orange edge of C1 and
look at the following orange edges one by one, we always
find an edge of C3, before finding an edge of C2. In the
same way, if we take the rightmost orange edge of C2 and
look at the following orange edges one by one, we always
find an edge of C3, before finding an edge of C1. The com-
ponent C3, is then said to separate C1 and C2. (In Figure 2
the good component {C1} separates the trivial component
{C2} from both the trivial component {C4} and the bad
component {C3, C5}. Similarly, {C3, C5} separates {C4}
from both {C2} and {C1}.) By joining two cycles C1 and C2,
that belong to two distinct components C1 and C2, we
merge not only the components C1 and C2, but also all
components that separate C1 and C2, into a single compo-
nent C. Even when all merged components are bad, the
new component C is always good [1].

The extra cost for handling bad components can be
computed using an approach from [6,16], in which a tree
structure is defined representing the linking and nesting
relationship of the components of R(A, B).
The component tree
The component tree T (A, B) is a rooted tree with two
types of nodes, defined as follows [16]:

1. Each component is represented by a round node.
2. Each maximal chain is represented by a square
node whose children are the round nodes that repre-
sent the components of this chain.
3. A square node is either the root, or the child of
the smallest component in which this chain is
nested.

A round node is called a bad node, drawn in white, if
it represents a bad component. Otherwise it is called a
good node, drawn in black. (A good node can be a trivial
or a good component.) Figure 7 (i) shows an example of
T (A, B).
Reducing T to T′. Let T′ be the unrooted tree that

corresponds to the smallest subgraph of T (A, B) that con-
tains all bad nodes. Let a long branch be a branch in T′
that contains two or more bad nodes.
Covering the bad nodes. A path P in T′ can be short, if

P contains only one vertex, or long, if P contains at least
two vertices. A cover of T′ is defined as a set of paths that
contain all bad nodes of T′. The cost of a cover is given by
the sum of the costs of its paths and an optimal cover of T′
is a cover with the minimum cost.
Computing τINV (A, B). For the inversion model, by

assigning the cost of one to each short path and the cost
of two to each long path, it has been shown in [6,16] that
the cost of an optimal cover of T′ corresponds exactly to
the value τINV(A, B) and can be computed as follows:

Figure 6 Our approach to find an alternative to an optimal integration that creates a bad component. Observe that, from R
(
A′,B

)
to

R(A′′, B) , only the orange edges marked with the symbol \\were transformed into the orange edges marked with the symbol \\. All the other
edges of the diagram were preserved. While the distinct cycles C3 and C4 of R

(
A′,B

)
are merged into a single cycle in R(A′′, B) , the cycle C2 of

R
(
A′,B

)
is split into two cycles in R(A′′, B) . The hat on markers b and x indicates that we make no assumptions about the orientation of theses

markers (but we know they have the same orientation in A′ and A′′ ). (i) After the first integration we have a good component C1 at the left side,
and a bad component C2 at the right side (at the interval yz...wc...ed...a of A′ ). The marker y is a link of C1 and C2 and is adjacent to d in

genome B. (ii) If we do the optimal integration inside C2, so that y is adjacent to d in genome A′′ , we create the clean 2-cycle C′
2. . There can be a

bad component in R(A′′, B) (at the interval c...ez...w of A′′ ), but it is strictly smaller than C ′
2..
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Theorem 4 (from [6,16]). Let w be the number of leaves
of T′. Then

τINV(A,B) =
{
w + 1 if w is odd and all leaves are on long branches,
w otherwise.

The costs of cutting and merging bad components in the
inversion-indel model
Recall that the DCJ-cost of an inversion r is denoted by
||ρ|| and corresponds respectively to 1 or 2 depending
on whether r is a neutral or a joint inversion. Further-
more, let l0 and l1 be, respectively, the sum of the
indel-potentials for the components of the relational
diagram before and after the inversion r. We then have
�λ(ρ) = λ1 − λ0 and we also define the cost of r to be
�d(ρ) = ||ρ|| + �λ(ρ).
Each cut is a neutral inversion r that has ||ρ|| = 1. If r

cuts a bad component C that contains only cycles with at
most two runs, it is clear that r cannot save indels. In this
case, Δd(r) = 1. However, if C contains a cycle C with at
least four runs, it is possible to apply r such that two
A-runs and two B-runs are merged. This reduces the
number of runs by two, that is, ��(ρ) = −2, hence
�λ(ρ) = −1 and Δd(r) = 0.
Each merging is a joint inversion r that has ||ρ|| = 2.

The cost of each merging depends on the runs of the
affected cycles. A cycle with no run is represented by
Cε. Let CA (respectively CB) be a cycle with an A-run
(respectively a B-run). Similarly, let CAB, be a cycle with
two or more runs. In Table 1 we show the costs of the
different types of joint inversions.
The colored component tree
All components that have a cycle of type CAB can be
merged together into a single (good) component with
cost 0, thus we assume that R(A, B) has at most one com-
ponent C of this type. Furthermore, if C is bad, we also
assume that it has no cycle with four or more runs.
(Otherwise it could be cut with cost 0.)

With these assumptions, we build the component tree
T (A, B) as described previously. Then we transform
T (A, B) into To (A, B), by adding at most two colored
dots to each round node, as follows: we add an orange
dot, if at least one cycle of the corresponding compo-
nent has an A-run; and a blue dot, if at least one cycle
of the corresponding component has a B-run. Figure 7
(ii) shows an example of To (A, B).
Reducing To to T′

o Let T
′
o be the unrooted tree that

corresponds to the smallest subgraph of To (A, B) that
contains all bad nodes. The leaves of T′

o are bad compo-
nents. Let v be a leaf of T′

o and let t be the subtree of
To (A, B) rooted at v. In T′

o, the leaf v will then have the
union of all colored dots from t.
Computing τ id

INV(A, B). The cost of a short path here is
also one. On the other hand, the cost of a long path is either
one, if its endpoints share at least one colored dot, or two
otherwise. An optimal cover of T′

o corresponds to the value
of τ id

INV(A, B). However, the problem of computing this
value is very intricate, even when each node has at most
one colored dot, as we can see in Figure 7 (iii) and (iv).
Below we give a lower and an upper bound for

τ id
INV(A, B), but finding an exact formula to compute this
value is left as an open problem.

Figure 7 Examples of component trees. (i) The tree T (A, B) for the relational diagram represented in Figure 2 has one bad (white) and three good

(black) nodes, and (ii) the corresponding colored tree To (A, B). Here, the indel-type of each cycle is given. In both cases the trees T′ and T′
o are

composed of a single bad node. (iii) An example of a T′
o to show that a greedy strategy, of maximizing the merging of leaves with the same colored

dot, does not work. If we merge the two leaves with blue dots the cost of the cover is 5. However, if we merge twice a leaf with a blue dot and a leaf

with no dot (the longer paths), the cost is 4. (iv) Another example of a T′
o to show that, on the other hand, if we merge the leaves of the longer path

we have a cost of 3. But if instead we merge the two nodes with blue dots and the two nodes with orange dots, the cost is 2.

Table 1 Types of joint inversions (C∗ represents a cycle
with any number of runs, Δd(r) = 2 + Δl(r)).

sources resultant Δl(r) Δd(r)

Cε + C∗ C∗ 0 2

CA + CB CAB 0 2

CAB + CAB CAB -2 0

CA + CA CA -1 1

CB + CB CB -1 1

CA + CAB CAB -1 1

CB + CAB CAB -1 1
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Proposition 5. Let τ id
INV(A, B) be the cost of an optimal

cover of T′
o. We then have:

⌈w
2

⌉
≤ τ id

INV(A, B) ≤ w + 1,

where w is the number of leaves in T′
o.

Proof. The lower bound can be obtained when w ≤ 1 or
when all leaves share at least one colored dot (in this case,
all paths have cost 1). The upper bound occurs when w is
odd, all leaves are clean (have no colored dot) and are on
long branches (the greatest value of Theorem 4). □

Conclusions
In this work we have revisited the inversion-indel distance
between two unichromosomal genomes A and B with
unequal contents. We have shown that, when the rela-
tional diagram R(A, B) has no bad component, the inver-
sion-indel distance is equal to the DCJ-indel distance of A
and B and can be computed in linear time. We also gave a
lower and an upper bound for the extra cost τ id

INV(A, B) of
handling bad components in R(A, B). However, finding an
exact formula to compute this value is very intricate and
was left as an open problem.
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