
PROCEEDINGS Open Access

Finishing bacterial genome assemblies with Mix
Hayssam Soueidan1, Florence Maurier2, Alexis Groppi2, Pascal Sirand-Pugnet3,4, Florence Tardy5, Christine Citti6,7,
Virginie Dupuy8, Macha Nikolski2,9*

From Eleventh Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics
Lyon, France. 17-19 October 2013

Abstract

Motivation: Among challenges that hamper reaping the benefits of genome assembly are both unfinished
assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly
are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among
them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase.

Methods: In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft
assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus
speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities
of contigs and edges represent existing alignments between these extremities. These alignment edges are used for
contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that
maximizes the cumulative contig length.

Results: We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly
sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall
assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is
guided solely by standard assembly statistics, as is the case for de novo projects.

Availability: Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our
Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/.

Background
Moving a genome from the draft assembly stage to a com-
plete finished genome is a labor-intensive task requiring
time and further experimental work. This finishing step
aims to improve previously assembled draft sequences that
are often fragmented into hundreds of contigs. Finishing
frequently requires targeted sequencing to resolve remain-
ing issues such as misassembled regions and sequence
gaps, and tries to improve coverage and accuracy in poorly
covered regions of the genome. Consequently, the task of
producing a complete genome requires extensive experi-
mental work and is often out of reach for small labs.
While in silico finishing can not resolve all of these issues,

it represents a considerable speed-up of the finishing
process.
Genome assembly is a lively field that has produced in

the recent years numerous algorithms and tools, such as
MIRA [1], CLC (http://www.clcbio.com/genomics), ABySS
[2], etc. Assemblers differ in their algorithmic foundations
and present different advantages and pitfalls. In addition
to the sheer number of algorithmic solutions, any given
assembler can be run using a number of variations of its
parameter values (such as different k-mer sizes) and pro-
duce different results. Bring into that the fact that re-
assembling an already assembled genome based on a new
sequencing technology (e.g., Illumina vs Sanger) can reveal
sequences that are missing in the reference assembly [3],
and we end up with a very large space of easily obtainable
de novo draft assemblies.* Correspondence: macha.nikolski@labri.fr

2Univ. Bordeaux, CBiB, F-33000 Bordeaux, France
Full list of author information is available at the end of the article

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

© 2013 Soueidan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://github.com/cbib/MIX
http://services.cbib.u-bordeaux2.fr/mix/
http://www.clcbio.com/genomics
mailto:macha.nikolski@labri.fr
http://creativecommons.org/licenses/by/2.0

Armed with this observation, a number of projects aim
to take advantage of either different sources of sequencing
data or different assembly tools. Indeed, cross-platform
data merging is advantageous because sequencing plat-
forms have different biases [4] and thus assemblies gener-
ated from different platforms’ data can complement each
other [5]; [6]. Several software packages were developed in
order to capitalize on different advantages of existing
assemblers. Among these tools are GAM [7], minimus2
[8], MAIA [9], Reconciliator [10], Zorro [11] and GAM-
NGS [12].
MAIA relies on a finished reference in order to guide

the contig integration process; it is available as a MATLAB
package. Zorro proceeds by masking the repeated regions
known to cause problems during assembly. The minimus2
pipeline uses nucmer [13] to compute overlaps between
contigs. GAM-NGS, Reconciliator and Zorro rely on reads
in addition to assemblies for the merging process.
Even when there is no clearly defined reference

assembly, some tools still treat the two input assem-
blies differently; when referring to such setup we will
use the term of asymmetry. Graph Accordance Assem-
bly tool GAA [14] was developed in order to improve
global assembly quality starting from two assemblies,
one being the target and the other being the query. It
is based on the construction of an accordance graph
that encodes the alignment information between the
target and query assemblies. The user has to evaluate
and to choose the most reliable assembly that will be
the target - for which no clear-cut solution currently
exists.
The specific problem that we aimed to address in cur-

rent work is the high fragmentation of existing assem-
blies and the related to it reduced contig length. Such a
problem is particularly salient for the “old” and very
short (35nt to 45nt) NGS reads as for example those
generated by the very first NGS chemistry of Illumina
(formerly Solexa) technologies. The resulting draft
assemblies are highly fragmented. The challenge in the
case of Mycoplasma assembly project was to assemble
these genomes and to develop an in silico finishing
method in order to reduce the cost of returning back to
the wet laboratory.
Mycoplasma are a genus of mollicutes that are a class

of wall-less bacteria. Consequently, the most pertinent
evaluation of assembly tools’ performance is against bac-
terial benchmarks. A recent thorough evaluation of both
assemblers and assembly merging tools has been done by
Magoc and co-authors and provides a benchmark of 12
bacterial datasets called GAGE-B [15]. Most interestingly,
at the end of their manuscript the authors mention that
“over a large number of computational experiments,
most combinations of assemblers, k-mer values, and mer-
ging algorithms did not produce improvements, and

often produced inferior assemblies to the best individual
assembly”, with one exception where GAA produced
superior results. Thus, GAA was chosen to be tested
along with assembly tools in present work.
A very recent application GAM-NGS [12] attempts to

merge two different assemblies by avoiding a mutual
alignment step and mapping the raw reads on the two
assemblies instead. The merging is based on the con-
struction of a graph where the number of reads mapped
on different regions is used to weight the edges and
determine the correctness of merging two regions. An
asymmetry is introduced between the two assemblies,
one called the master and the other the slave, master
assembly driving the merging process. Even if no clear
assembly improvement is reported in the paper, since
GAM-NGS was not included in the GAGE-B study, we
have included it in our own benchmarking.
In the current manuscript we describe Mix a finishing

algorithm that generates an assembly starting from differ-
ent genome assemblies with the main objective of redu-
cing contig fragmentation and maximizing the cumulative
contig length. We address this question for the case where
no reference genome is available and no asymmetry is
introduced in dealing with assemblies, case not previously
considered in literature. Moreover, we do not restrict our-
selves to using only two assemblies. To address the exces-
sive fragmentation, we propose a solution based on the
maximal path problem in order to extend the contig
length. To do this, we build a extension graph that con-
nects contigs by their mutual alignments and is used to
mix contigs when appropriate. We evaluate our Mix
algorithm on GAGE-B benchmark and apply it to novel
NGS data for 10 genomes from bacteria belonging to the
genus Mycoplasma. We show that contrary to other tools
that merge different assemblies, Mix clearly provides an
advantage in terms of genome fragmentation while preser-
ving the original assemblies characteristics in terms of
missing bases and misassemblies. We argue that it is thus
a good choice for de novo projects.

Methods
Mix algorithm takes two (or more) assemblies and gener-
ates another one that mixes them in order to extend the
length of resulting contigs. It builds an extension graph in
which for each alignment involving extremities of two
contigs we create vertices representing terminal aligned
fragments. Edges of this extension graph encode how
contigs are connected by an alignment. The resulting
output assembly corresponds to a set of longest paths in
this extension graph.

Preliminaries
A contig C is composed of its identifier id and its
sequence s, that is C = 〈id, s〉, its length is denoted by

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 2 of 11

|C| and is equal to |s|. An assembly is a set of contigs
A = {Ci}. Input assemblies are combined together
A = ∪Ai, where Ai are different assemblies, ideally pro-
duced by assemblers relying on different algorithmic
principles.
Definition 1 An alignment between two contigs Ci and

Cj is a tuple a = 〈Ci, Cj, bi, ei, bj, ej, l〉, where bi and ei (bj
and ej, respectively) are the beginning and end coordinates
of the part of Ci aligned on Cj (of Cj on Ci, respectively)
and l is the alignment length. A terminal alignment is an
alignment involving extremities of Ci and Cj, that is at
least one of the following is true.

bi ∈ {0, |Ci|} ∧ bj ∈ {0, |Cj|} bi ∈ {0, |Ci|} ∧ ej ∈ {0, |Cj|}
ei ∈ {0, |Ci|} ∧ ej ∈ {0, |Cj|} ei ∈ {0, |Ci|} ∧ bj ∈ {0, |Cj|}

Possible terminal alignments of two contigs Ci and Cj

are depicted in Figure 1.
An alignment set is denoted by A = {ai}. The set A is

built by aligning each assembly within A against the
others. When the context does not require otherwise,
we denote an alignment a by 〈Ci, Cj〉.
An extension graph is an overlap graph built over

terminal alignments in A. They are considered to have
the potential to “glue” contigs, lower their number and
maximize the cumulative contig length. Notice that to
do this, we only consider terminal alignments, i.e. those
that involve contigs’ extremities. Indeed, in current work
we do not question the internal logic of assembly tools
that produce input contig sets.
Each terminal alignment a = 〈Ci, Cj, bi, ei, bj, ej, l〉 is

encoded by eight vertices that correspond to the extremi-
ties of a on Ci and Cj. We distinguish boundary b and
internal i locations as well as how a contig is being read
(forward or reverse). Edges represent a way to “glue” Ci

and Cj together and are weighted. Edges that connect
boundary or internal nodes of different contigs carry
weight equal to l, those that represent the remaining
chunks of Ci and Cj carry weights equal to |Ci| − l and |Cj|
− l, respectively. See Figure 2 for illustration. When a con-
tig is involved in more than one alignment, its internal
nodes are connected by edges, thus allowing for “gluing”
more than two contigs. Weights for these edges are

deduced according to the intervals defined by alignments
on contigs.
To finalize the graph construction, two artificial nodes

are added: In and Out. These nodes are connected to
both extremities of each contig, allowing it to be read in
forward and reverse direction. In this extension graph
we look for paths that maximize the cumulative contig
length.

Mix algorithm
Preprocessing Input alignment set A is generated by
aligning each assembly in A against all of the others.
Before attempting to extend contigs, Mix first proceeds to
clean up the alignment set A in the following fashion.

1. If any self alignments 〈Ci, Ci〉 are present, they are
eliminated.
2. If two alignments 〈Ci, Cj〉 and 〈Cj, Ci〉 covering the
same region, are present in A, only one is kept.
3. Only alignments whose length l is greater than a
certain threshold ta are kept in A.
4. Alignments for which l/|si| >99% or l/|sj| >99%
are eliminated from A.
5. Alignments involving spurious contigs are elimi-
nated; spurious contigs are those that have been
aligned an abnormally high number of times. They
are detected by looking for outliers in the distribu-
tion of the number of alignments per contig.

Starting with A filtered by criteria 1-5 and A, Mix
proceeds to build the corresponding extension graph G.
Algorithm Once the extension graph is built we are

looking for ways to traverse this graph while maximizing
the path length. More formally, we identify in the exten-
sion graph the Maximal Independent Longest Path Set
problem (MILPS) that we define as follows. Let G = 〈V, E,
w, In, Out〉 be a directed weighted graph G with positive
weights denoted by w(e) for any edge e Î E; and let In ⊆ V
and Out ⊆ V be two pre-defined sets of nodes correspond-
ing to the entry and exit points of G. In general, one can
add two vertices: one of in-degree 0 to serve as entry point
and one of out-degree 0 to serve as exit point. A path P in

Figure 1 Possible extension alignments between Ci and Cj. Arrows stand for contigs’ orientation, b and e stand for beginning and end
coordinates of the alignment on each contig. Reverse cases are not depicted (i.e. where b and e positions are inverted).

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 3 of 11

G is a sequence of |P| vertices and we denote by P(i) the
vertex at position i in P. A path is said to be simple if
none of its vertices appears twice.
Definition 2 An Independent Longest Path Set (ILPS)

of G is a set of simple paths P such that

1. ∀P ∈ P, P starts in In and ends in Out, i.e. P(0) Î
In and P|P| Î Out,
2. ∀ Pi, Pj ∈ P; i ≠ j implies Pi ∩ Pj ⊆ In ∪ Out,
3. ∀ P of G from In to Out and ∀Pi ∈ P, either P
and Pi are independant, i.e. P ∩ Pi ⊆ In ∪ Out; or P

is subsumed by Pi, i.e.
∑

k
w(P(k)) ≤

∑
k
w(Pi(k)); or

P is not simple.

Definition 3 A Maximal Independent Longest Path
Set (MILPS) is an ILPS Psuch that | ∪ P |is maximal over
all possible ILPS, that is it covers a maximum number of
vertices.
Note that for any graph G, the MILPS is uniquely

defined up to a relabeling of vertices. It follows immedi-
ately that if a vertex o Î Out is reachable from a vertex
i Î In, then ∃P
= ∅ and P contains the longest simple
path between i and o. Similarly, if an non empty MILPS
exists for a graph G, it necessarily contains the longest
path between In and Out.
In general, the longest path problem (LPP) is NP-hard

(by reduction from a Hamiltonian path problem) and is
hard to approximate. Even if a graph admits an Hamilto-
nian path of length n, it is impossible to find paths of

length n - nε for any ε >0 unless P = NP [16]. However,
trees and directed acyclic graphs are examples of non-tri-
vial graph classes for which the longest path problem can
be solved in linear time. In the same paper the authors
show that LPP can be solved in polynomial time for (ver-
tex/edge) weighted tree-like graphs. Authors of [17] pro-
posed another practical solution for the LPP for the case
of combinational circuits that contain cycles. We propose
here a solution exploiting the relative tree-like structure
of our extension graphs.
As we impose no restrictions on A, we have no guaran-

tee that the resulting extension graphs are acyclic, and
thus solving MILPS is at least NP-hard. However, we
empirically determined that we obtain extension graphs
that are most of the time sparse and often even acyclic.
Given that sparse graphs are “locally tree-like” (meaning
that a typical node is not part of a short cycle) [18], a
simple algorithm based on local cycle decomposition is
computationally tractable. The main idea behind our
algorithm is to iteratively identify longest paths in G,
where at each iteration we work on the restriction of G
where no elements of the previous longest path can be
traversed. To compute the longest path, G is decomposed
into acyclic and cyclic parts. The cyclic parts of G corre-
spond to its strongly connected components (SCCs). For
each SCC, we determine the subset of vertices that are
entry and exit points; and enumerate all simple paths
between them. This set of enumerated paths is then
inserted in G in lieu of the SCC. This operation yields an

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l
ll

Figure 2 Extension graph for two terminal alignments. Terminal alignments a between contigs A, B and g between B, C are each represented
by eight nodes. Nodes encode the extremities of the alignment on each contig (border b and internal i extremities) and the direction in which it is
read (forward! or reverse). Edges encode the possible “glue” between contigs. Light gray edges represent a given alignment on the contig and
carry no weight. Turquoise edges connect two contigs within an alignment and are labeled by its length (la and lg). Black edges connect to the In
and Out nodes, allowing for reading each contig in both directions as well as complex paths and are labeled by the remaining contig length (lA, lB and
lC). Notice that values of lB on the left-hand side of the figure and on the right-hand side are not the same as they depend on the alignment length;
they are |B| − la and |B| − lg, respectively. Orange edges connect the extremities of different alignments in which one contig can participate: here
a and g for B. Their weights are deduced from the corresponding intervals (here |B| − la − lg for both).

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 4 of 11

acyclic graph. In such a graph, longest paths between In
and Out are determined by a greedy approach based on
topological ordering. The complete solution is described
in Algorithm 1.
Algorithm 1 Maximal Independant Longest Path Set
Require: Directed weighted graph G = 〈V, E, w, In,

Out〉
Ensure: Maximal Independant Longest Path Set P
1: Let C be the set of non singleton strongly con-

nected components of G
2: Let R be a mapping V ® V used to store the initial

label R(v) of a vertex v; R(V) ← V
3: if C ≠ ∅ then
4: for each strongly connected component c Î C do
5: Mark entry {vin} (resp. exit {vout}) vertices of c, s.

t. (v, vin) Î E, v; /∈ c (resp. (vout, v) Î E, υ /∈ c)
6: Let P be the set of all simple paths from {vin} to

{vout} in c, by performing |c| iterations of a breadth-first
traversal rooted at the entry vertices
7: for each path p Î P do
8: Insert a novel path p’ in G, with w(p′

(i)) ← p(i)
and with R(p′

(i)) ← p(i)
9: end for
10: end for
11: end if
Ensure: G is acyclic
12: Let W be a mapping V → R indicating the accu-

mulated length W(v) down to node v; W(In) ← 0
13: Let Pred be a mapping V ® V indicating the pre-

decessor Pred(v) of v in the current longest path; Pred
(In) ← ∅
14: P ← ∅
15: repeat
16: for v in the topological ordering of G starting at

In and ending at Out do
17: Let V ′ = {υ ′ ∈ V|(υ ′,υ) ∈ E,
 ∃ p ∈ P ,υ ′ ∈ p ∨ υ ′ ∈ R(p)}
18: Pred(v) ← arg maxv’ÎV’ (W(υ’) + w(v’, v))
19: W(υ) ← maxυ’ÎV’ (W(υ’) + w(υ’, υ))
20: end for
21: Walk up the graph to construct the path p by let-

ting p ← Pred*(Out)
22: P ← P ∪ {

p
}

23: until p = ∅
24: return R(P), the MILPS with re-labeled vertices
In the case where G is acyclic, this algorithm is linear in

the number of vertices. However, if G contains a cycle, the
number of vertices that are added during the decomposi-
tion of a strongly connected component is exponential in
the size of the strongly connected component. In our
experiments (see Results section), we applied Mix over
300 different combinations of assemblies of bacterial gen-
omes, and only two of them yielded assembly graphs with
cycles, that were of tractable size.

Once the MILPS in the extension graph are built, we
use the information stored in the graph to glue and
stitch contigs corresponding to each extension path.
Pruning A pruning step is performed over the set of

remaining contigs and extension paths. This step ensures
that duplication is lowered. Indeed, one of the main
drawbacks of merging two assemblies of the same gen-
ome is that most of the information is duplicated. In
order to reduce this effect, we compute a coverage graph
which is a directed graph with an edge between v and v’
if portions of the nucleotide sequence of v is found in v’.
Based on this graph, we can determine which contigs are
entirely or to a large extent contained into other contigs
or paths. These covered contigs are then removed from
the final assembly. To build the coverage graph, we start
by generating a coverage matrix that indicates how much
an element of the current assembly graph (either a contig
or an extension path) is covered by another element. To
compute the coverage, we reuse the initial set of align-
ments A to determine how many nucleotides of a source
element are found in the target element. This coverage is
computed for each possible pair. The coverage matrix is
then thresholded to only keep pairs of elements with
high coverage (90 % in our experiments). We then con-
sider this thresholded matrix to be the adjacency matrix
of a directed graph. This requires to decide the direction
of inclusion for each pair where the coverage is above the
threshold. This direction is determined by selecting as
source the element with the highest ratio of covered
nucleotides. In the case of ties, the shortest element is
elected as source. This edge-orientation strategy can
nonetheless produce cycles in the coverage graph as sev-
eral contigs from different assemblies can be highly simi-
lar. In such cases, cycles are broken by selecting the
element with the longest nucleotide sequence from each
strongly connected component. We then perform a topo-
logical sort on the coverage graph and systematically
remove contigs that are not covering any contig but that
are covered by other contigs or paths.

Results
Performance evaluation
We evaluated the performance of Mix on the GAGE-B
data set [15] against both raw assemblies and two tools
that allow combining assemblies, GAA (best in GAGE-B
study) and GAM-NGS (not previously evaluated). The
benchmark provided by GAGE-B concerns 8 bacterial
genomes. Starting point data consists of HiSeq and
MiSeq Illumina reads (sometimes both, sometimes just
HiSeq). Tools tested in the GAGE-B study include 8
assemblers and 2 merging algorithms, minimus2 and
GAA. These latter have been chosen since they are
(almost) reference free, contrary to the others. As already

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 5 of 11

stated in the Background section, mixing assembly tools
mostly provided inferior results, however for some cases
GAA managed to improve the N50 size with an increase
of >80%.
We applied GAA and GAM-NGS for all pairwise

combinations of 8 assemblers twice (accounting for the
asymmetry). We evaluated Mix results against those for
the 8 assemblers, as well as merged assemblies produced
by GAA and GAM-NGS. All evaluations were per-
formed using QUAST [19] under the same parameters
as GAGE-B. Three different types of metrics are used by
QUAST. First, classical assembly statistics based on the
distribution of the length of each contig of an assembly.
These statistics do not require any reference genome
and are used to measure the fragmentation of an assem-
bly. A second set of statistics is derived from an align-
ment of the assembly against a reference genome.
Contigs that are aligned over distant locations in the
reference genome or that contain misassemblies are
split, and fragmentation is measured over the split con-
tigs. Using these alignments, additional measures report
the ratio of duplication as well as the fraction of the
reference genome that is covered by an assembly. A
third, more robust, statistics is derived from the conser-
vation of gene products. These last two statistics can be
measured only if a fully assembled and annotated refer-
ence genomes is provided.
In total 1171 different assemblies were produced by

crossing each species, master and slave assembler data-
sets (for GAM and GAA) and all possible pairs of assem-
blers for Mix . All original assemblies were downloaded
from the GAGE-B website, they consist of contigs assem-
blies and correspond to HiSeq libraries, with the excep-
tion of B. cereus for which we used assemblies based on
MiSeq libraries in order to match the GAGE-B setup.
Only 13 species/merger/assemblers combination are
missing from the full factorial setup. Figure 3 reports the
NA50 distributions per species and assembly merger con-
trasted with single (unmerged) assemblies. Two species
are missing from this figure, X. axonopodis and A. hydro-
phila, since the strain sequenced during the GAGE-B pro-
ject is too distant from the reference genome to compute
a NA50 value (this holds for all assemblies for these two
species). In setups where a close-enough reference genome
is not available, the sole statistics available to “score”
assemblies are based on fragmentation measures, notably
the N50. To simulate such reference-less setup, we
selected for each species and each assembly merger the
top 5 assemblies when ranked by N50. By analyzing how
these “blindly” selected top N50 assemblies are scored
with regards to statistics based on a reference genome, we
can analyze the soundness of this selection heuristic.
In Figure 3, we observe that for all but S. aureus

either GAM-NGS or Mix improve the single assembly

substantially. Notably for B. cereus, for which the authors
of GAGE-B already reported some improvement over sin-
gle assemblies when using GAA, we manage with GAM or
Mix to improve even more. The best Mix assembly for B.
cereus stitches 90 contigs from MaSuRCA and 105 from
SOAP into 47 contigs (including 4 extension paths),
improving the NA50 score by 97%(NA50 of 487kb). For
five out of six species, one of the top 5 assemblies gener-
ated by Mix is better than the best GAA, GAM and single
assemblies. In particular, Mix significantly improves statis-
tics measuring fragmentation of assemblies (for complete
results, see results and figures available at https://github.
com/cbib/MIX), as well as alignments of contigs. Similar
plots and tabular data for other QUAST statistics are
available on the accompanying MIX website. These also
show the asymmetry in the results when one or another of
assemblies is treated as target (resp., master) by GAA
(resp., GAM-NGS).
Of particular concern when merging multiple assemblies

is the potential increase in duplication. Indeed, the bottom
panel of Figure 3 shows that overall, the mean duplication
ratio for Mix is higher than for other assemblers, the
worst case happening for V. cholera where one of Mix top
5 assemblies has a duplication that is out of range of the
others. It is worth noting however that generally the dupli-
cation ratio of Mix assemblies stays within the same range
as that produced by other assemblers (on the order of
1-2%). Finally and most importantly, we also observe that
selecting assemblies solely based on the N50 value often
selects the best assemblies, as validated by additional refer-
ence-genome based statistics.

Application to Mycoplasma genomes
We have assembled the 10 newly sequenced genomes of
bacteria belonging to the genus Mycoplasma. Mycoplas-
mas are small bacteria often portrayed as the best repre-
sentative of the minimal cell. Indeed, their genomes are
extremely reduced (i.e., 0.58 to 1.4 Mbp) with a low GC-
content, most of them ranging from 24 to 30%. For the
Mycoplasma genomes the available NGS data consisted in
454 and Illumina (mate paired) reads, produced in the
frame of the ANR EVOLMYCO project (see Table 1).
To build input assemblies we have chosen three

assemblers: ABySS, MIRA and CLC. Two of them were
chosen based on the GAGE-B study by considering the
following points.

1. SPAdes [20] was the winner in terms of N50. How-
ever it produced a large number of small, unaligned
contigs and was consequently excluded from our study.
2. ABySS consistently produced assemblies with the
fewest errors and had the second best N50.
3. MIRA produced a large corrected N50 with errors
occurring mostly in smaller contigs.

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 6 of 11

https://github.com/cbib/MIX
https://github.com/cbib/MIX

Moreover, MIRA and ABySS rely on different algorith-
mic methods (overlap/layout/consensus and deBruijn
graph construction, respectively). Two other considera-
tions were taken into the account for the Mycoplasma
case-study. First, ABySS was specifically developed for very
short reads, which is the case for our application (see
Table 1). Second, MIRA aims at combining reads from

different sequencing technologies, which is the case for
the Mycoplasma data (Illumina and 454). We have added
the CLC Assembly Cell (based on the deBruijn graph), a
commercial solution that was not part of the GAGE-B
evaluation, but shows high N50 statistics.
ABySS was run over a large span of k-mer values (25 to

36) for each genome and the best solution in terms

Figure 3 Comparison of (A) NA50 and (B) duplication ratio measures for GAGE-B benchmark. (A) For six bacterial genome (six panels),
eight assemblies were provided by GAGE-B, and were merged either with GAA (64 combinations), GAM-NGS (64 combinations) or Mix (28
combinations only since no asymmetry between input assemblies is introduced) or not further processed (Single Assembly). The resulting
assemblies were accessed against the reference genome by QUAST and the length of the shortest aligned contig from all that cover 50% of all
assembly (AKA NA50 or “corrected N50”) for each possible combinations of species, mergers and assembers are reported as points (Top panel).
The higher the better. Box-plots indicate the quartiles of the distribution of NA50. For each species and mergers, the top 5 combinations of
assemblies according to N50 were selected, and their NA50 are depicted using large triangles. Panel (B)) report the duplication ratio of the same
assemblies, the horizontal dashed line indicate a perfect ratio of 1.

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 7 of 11

assembly statistics was retained each time for further
assembly combination.
Input assemblies for each of the 10 Mycoplasma gen-

omes were combined using GAA, GAM-NGS and Mix .
GAA and GAM-NGS were applied twice to each pair of
input assemblies, owing for the asymmetry in their solu-
tions. Mix was applied once to each pair of input assem-
blies as well as to all three input assemblies taken
together. Results of these computations as well as NGS
reads are available at http://services.cbib.u-bordeaux2.fr/
mix/. In Figure 4 we compare these assemblies using the
standard genome assembly statistics applicable when no
reference genome or annotations are available. We observe
that we are able to significantly reduce the fragmentation
with Mix, as exemplified by the substantial decrease in the
number of contigs as well as the size of the largest contigs.
This improvement is not counterbalanced by an increased
duplication or by a loss of putative functional genomic
content.
Core genome conservation GAGE-B study was based

on genomes having a complete reference sequence with
known proteome. This was particularly useful in order to
evaluate the biological pertinence of assembly results. Our
Mycoplasma study is though truly de novo and we do not
have reference genomes. However, Mycoplasmas are a
well studied genus where a large number of genomes are
fully sequenced and annotated.
This provided us the opportunity to evaluate how the

core genome is preserved by assemblers and their combi-
nations. Indeed, core genome is defined as the set of
genes present in all strains. We have computed the core
genome based on the 31 Mycoplasma complete genomes
(Table 2) according to two criteria. First, predicted pro-
teins from each of the genomes included in the set have
to be present in each cluster. Second, one single homolog
per genome has to exist to avoid paralog ambiguity. The
10 draft genomes used for our study were naturally

excluded from the genome set. The computed Myco-
plasma core genome contains 170 clusters of direct
orthologs, most of which are related to basic cell machin-
ery. The sequences of the core genome depend on the
genomes already available (thanks notably to the EVOL-
MYCO project).
Since these clusters represent highly conserved

sequences corresponding to essential genes, ideally, each
cluster should be found in the assembled genomes.
Moreover, sequence conservation should be preserved
over entire length of the protein. To measure this, we
first align each protein sequence of each cluster against
each assembly. For each cluster, the alignment with the
highest e-value is retained. Since our aim is to find
entire protein/gene sequences, the alignment length is
very important. Indeed, if the sequence is not entirely
conserved, this can signify that it has been fragmented
during assembly: either one part is located at an extre-
mity of one contig and another part at the extremity of
an another contig, or in the worse case, it can be the
marker of a misassembly.
Hence, for each assembly and for each cluster, given

the length lA of the best scoring alignment, and the
length lP of the protein representing the cluster, we use
the percentage of the expected length that is effectively
aligned against the assembly, lA/lP. For a given threshold
0 ≤ t ≤ 100, we count clusters that have at least one
protein that aligns with lA/lP > t. In Figure 5, we present
the results for all the studied genomes, and for three
values of t: 50%, 85% and 99.99%.
Notable negative cases for our approach are MCCP

and MBVG, where Mix produced lower quality results.
However, on the other cases it shows better conserva-
tion of core genome. Importantly, in the case of Mix
this conservation is consistent between different combi-
nations of input assemblies, as exemplified by a shorter
inter-quartile range than that of other tools.

Table 1 Summary of NGS reads volume used for genome assembly of 10 Mycoplasma genomes

Genomes Abbreviations 454 mate pair Illumina

#reads med. size #reads size

Mycoplasma auris 15026 MAUR 107423 152.32 4386186 36

Mycoplasma bovigenitalium 51080 MBVG 132462 156.01 28752688 36

Mycoplasma ovipneumoniae 14811 MOVI 97641 160.49 6889585 36

Mycoplasma bovis 1067 MBOVb 203245 166.97 35808407 36

Mycoplasma mycoides subsp. capri PG3 MMC 265968 145.12 4817991 36

Mycoplasma capricolum subsp. capripneumoniae 99108 MCCP 150110 134.31 32510614 36

Mycoplasma mycoides subsp. mycoides B345/93 MSCb 247991 142.42 5342924 36

Mycoplasma mycoides subsp. mycoides C425/93 MSCc 186553 162.18 3585785 36

Mycoplasma mycoides subsp. mycoides Gemu Goffa MSCe 132717 168.14 28776419 36

Mycoplasma mycoides subsp. mycoides KH3J MSCd 163636 169.86 31781063 36

Raw data has been first processed for quality.

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 8 of 11

http://services.cbib.u-bordeaux2.fr/mix/
http://services.cbib.u-bordeaux2.fr/mix/

Discussion
Despite the progress of sequencing technologies and of
bioinformatics methods, de novo assembly of genomes
remains a challenge with a lot of hurdles. The cost of
sequencing falling down and the computing capacity

increasing, de novo assemblies of genomes are released
at an increasingly fast pace.
The goal of our work was to combine the strengths

and to balance the weaknesses of different assembly pro-
grams in order to lower contig fragmentation. A similar

Figure 4 Comparison of single and merged assemblies for Mycoplasma. For ten bacterial My- coplasma genomes (ten columns), we
generated three assemblies using CLC, MIRA and ABySS, that were subsequently merged either with GAA, GAM-NGS or Mix (28 combinations);
or not further processed (Single Assembly). The resulting assemblies were assessed using standard statistics for genome assemblies (four rows):
Number of contigs, size of the largest contig, N50, number of genes of more than 300bp identified by the GeneMark gene finder. For the
number of contigs, the lower the better. For the other three statistics, the higher the better.

Table 2 Genomes used for the core genome computation

M. gallisepticum R High M. gallisepticum R Low M. gallisepticum F

M. genitalium G37 M. pneumoniae M129 M. penetrans HF-2

U. parvum 21815 U. urealyticum 33699 U. parvum 700970

M. agalactiae 5632 M. agalactiae PG2 M. bovis PG45

M. bovis Hubei M. fermentans JER M. synoviae 53

M. pulmonis UABCTIP M. hyopneumoniae 232 M. hyopneumoniae J

M. hyopneumoniae 7448 M. hyorhinis HUB-1 M. mobile 163K

M. mycoides subsp. capri GM12 M. arthitidis 158L3-1 Mesoplasma florum L1

M. mycoides subsp. capri 95010 M. hominis PG21 M. leachii 99

M. mycoides subsp. mycoides PG1 M. mycoides subsp. mycoides Gladysdale M. leachii PG50

M. capricolum subsp. capricolum 27343

The core genome is defined as the set of orthologous genes present in all strains.

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 9 of 11

goal has been previously explored by a number of
papers, and in particular by the authors of GAA [14]
and GAM-NGS [12]. A recent GAGE-B evaluation for
bacterial genomes of assemblers and assembly mergers
concluded that the latter did not provide any advantage
and even sometimes worsened the results. GAM-NGS
was not included in that study.
In current work we have described Mix , the first truly

reference-free assembly merger. Our solution is based on
solving the Maximal Independent Longest Path Set pro-
blem, known to be NP-hard, but tractable for this particu-
lar application and problem sizes. Evaluating Mix on the
GAGE-B bacterial dataset, we show that our approach
consistently lowers genome fragmentation without com-
promising biological relevance (ex., as measured by the
alignment against the reference). Moreover, in the case of
Mix choosing the final result based on N50 statistics main-
tains high assembly quality. Comparatively to Mix, both
single assemblers as well as GAA and GAM-NGS provide

poorer results in these terms. Nevertheless, a certain draw-
back of our approach lies in the duplication ratio. This
should however be modulated by the fact that it generally
stays within 1 to 2% range.
We conclude that Mix provides a sound approach for

genome finishing in the context of de novo projects,
where the final choice can be done based on the N50
statistics. Best resulting assemblies for Mycoplasma gen-
omes are currently being annotated and will be shortly
submitted to the EMBL.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HS and FM have written the code and performed the evaluation on GAGE-B
and Mycoplasma datasets. HS and MN have designed the data structure,
proposed the algorithmic solution and drafted the manuscript. PSP, FT, CC
and VD have constructed the core genome and validated the Mycoplasma’s
assemblies. MN and AG have supervised the project. All of the authors have
proof-read the manuscript.

Figure 5 Core genome conservation. For ten bacterial Mycoplasma genomes, assembled using using CLC, MIRA and ABySS and then either
left as is (single-assemblies) or combined using GAA, GAM-NGS or MIX or; we determined how much a core genome defined over the whole
genus of Mycoplasma is preserved for these ten genomes. The core genome is a set of 170 clusters of orthologous genes present in all strains.
For each combination of species, single assemblies and merger, this figure report the distribution of the number of clusters of the core genome
for which we can find at least a single gene present with 99% identity in the assembly.

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 10 of 11

Acknowledgements
This work was supported by EVOLMYCO French Ministry of Research ANR-07-
GMGE-001 grant. HS is supported by an ERASysBio+ EU ERA-NET Plus
scheme in FP7 (project LymphoSys). Genome sequencing was done by the
Genoscope (Centre National de Séquençage, Evry, France). Computer
resources for assembly were provided by the computing facilities MCIA
(Mésocentre de Calcul Intensif Aquitain) of the Université de Bordeaux and
of the Université de Pau et des Pays de l’Adour.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 15, 2013: Proceedings from the Eleventh Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
14/S15.

Authors’ details
1Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066CX
Amsterdam, The Netherlands. 2Univ. Bordeaux, CBiB, F-33000 Bordeaux,
France. 3Univ. Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140
Villenave d’Ornon, France. 4INRA, UMR 1332 Biologie du Fruit et Pathologie,
F-33140 Villenave d’Ornon, France. 5Anses, Laboratoire de Lyon, UMR
Mycoplasmoses des Ruminants, F-69364 Lyon, France. 6INRA, UMR1225, F-
31076 Toulouse, France. 7Univ. Toulouse, INP-ENVT, UMR1225, F-31076
Toulouse, France. 8CIRAD, UMR CMAEE, Campus de Baillarguet, F-34398
Montpellier, France. 9Univ. Bordeaux, CNRS / LaBRI, F33405 Talence, France.

Published: 15 October 2013

References
1. Chevreux B, Pfisterer T, Drescher B, Driesel A, Muller W, Wetter T, Suhai S:

Using the MiraEST assembler for reliable and automated mRNA
transcript assembly and SNP detection in sequenced ESTs. Genome Res
2004, 14(6):1147-59.

2. Simpson J, Wong K, Jackman S, Schein J, Jones S, Birol I: ABySS: a parallel
assembler for short read sequence data. Genome Res 2009, 19(6):1117-23.

3. Ye L, Hillier L, Minx P, Thane N, Locke D, Martin J, Chen L, Mitreva M,
Miller J, Haub K, Dooling D, Mardis E, Wilson R, Weinstock G, Warren W: A
vertebrate case study of the quality of assemblies derived from next-
generation sequences. Genome Biol 2011, 12(3):R31.

4. Harismendy O, Ng P, Strausberg R, Wang X, Stockwell T, Beeson K,
Schork N, Murray S, Topol E, Levy S, Frazer K: Evaluation of next
generation sequencing platforms for population targeted sequencing
studies. Genome Biol 2009, 10:R32.

5. Diguistini S, Liao N, Platt D, Robertson G, Seidel M, Chan S, Docking T,
Birol I, Holt R, Hirst M, Mardis E, Marra M, Hamelin R, Bohlmann J, Breuil C,
Jones S: De novo genome sequence assembly of a filamentous fungus
using Sanger, 454 and Illumina sequence data. Genome Biol 2009, 10:R94.

6. Nagarajan H, Butler J, Klimes A, Qiu Y, Zengler K, Ward J, Young N, Meth B,
Palsson B, Lovley D, Barrett C: De Novo assembly of the complete
genome of an enhanced electricity-producing variant of Geobacter
sulfurreducens using only short reads. PLoS One 2010, 5(6):e10922.

7. Casagrande A, Del FC, Scalabrin S, Policriti A: GAM: Genomic Assemblies
Merger: A Graph Based Method to Integrate Different Assemblies.
Bioinformatics and Biomedicine 2009, 10.1109/BIBM.2009.28.

8. Sommer D, Delcher A, Salzberg A, Pop M: Minimus: a fast, lightweight
genome assembler. BMC Bioinformatics 2007, 8:64.

9. Nijkamp J, Winterbach W, van dBM, Daran J, Reinders M, de Ridder R:
Integrating genome assemblies with MAIA. Bioinformatics 2010, 26(18):i433-9.

10. Zimin A, Smith D, Sutton G, Yorke J: Assembly reconciliation. Bioinformatics
2008, 24:42-5.

11. Argueso J, Carazzolle M, Mieczkowski P, Duarte F, Netto O, Missawa S,
Galzerani F, Costa G, Vidal R, Noronha M, Dominska M, Andrietta M,
Andrietta S, Cunha A, Gomes L, Tavares F, Alcarde A, Dietrich F, McCusker J,
Petes T, Pereira G: Genome structure of a Saccharomyces cerevisiae strain
widely used in bioethanol production. Genome Res 2009, 19(12):2258-2270.

12. Vicedomini R, Vezzi F, Scalabrin S, Arvestad L, Policriti A: GAM-NGS:
genomic assemblies merger for next generation sequencing. BMC
Bioinformatics 2013, 14(7):1-18.

13. Kurtz A, Phillippy A, Delcher A, Smoot M, Shumway A, Antonescu C,
Salzberg S: Versatile and open software for comparing large genomes.
Genome Biology 2004, 5(2):R12.

14. Yao G, Ye L, Gao H, Minx P, Warren W, Weinstock G: Graph accordance of
next-generation sequence assemblies. Bioinformatics 2011, 28:13-6.

15. Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon L, Salzberg S:
GAGE-B: An Evaluation of Genome Assemblers for Bacterial Organisms.
Bioinformatics 2013.

16. Karger D, Motwani R, Ramkumar G: On Approximating the longest path in
a graph. Algorithmica 1997, 18:82-98.

17. Hsu YC, Sun S, Du DC: Finding the longest simple path in cyclic
combinational circuits. Computer Design: VLSI in Computers and Processors,
1998 ICCD ‘98 Proceedings International Conference on 1998, 530-535.

18. Bollobas B: Random Graphs Academic Press; 1985.
19. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool

for genome assemblies. Bioinformatics 2013, 29(8):1072-1075.
20. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A, Lesin V,

Nikolenko S, Pham S, Prjibelski A, Pyshkin A, Sirotkin A, Vyahhi N, Tesler G,
Alekseyev M, Pevzner P: SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. J Comput Biol 2012, 19:455-477.

doi:10.1186/1471-2105-14-S15-S16
Cite this article as: Soueidan et al.: Finishing bacterial genome
assemblies with Mix. BMC Bioinformatics 2013 14(Suppl 15):S16.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Soueidan et al. BMC Bioinformatics 2013, 14(Suppl 15):S16
http://www.biomedcentral.com/1471-2105/14/S15/S16

Page 11 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.ncbi.nlm.nih.gov/pubmed/15140833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15140833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19327155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19327155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19327155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17324286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17324286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18057021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23323762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23323762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14759262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22025481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22025481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23665771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23422339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23422339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22506599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22506599?dopt=Abstract

	Abstract
	Motivation
	Methods
	Results
	Availability

	Background
	Methods
	Preliminaries
	Mix algorithm

	Results
	Performance evaluation
	Application to Mycoplasma genomes

	Discussion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors' details
	References

