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Abstract

predictions in a large set of well annotated genomes.

Background: Genes occurring co-localized in multiple genomes can be strong indicators for either functional
constraints on the genome organization or remnant ancestral gene order. The computational detection of these
patterns, which are usually referred to as gene clusters, has become increasingly sensitive over the past decade. The
most powerful approaches allow for various types of imperfect cluster conservation: Cluster locations may be internally
rearranged. The individual cluster locations may contain only a subset of the cluster genes and may be disrupted by
uninvolved genes. Moreover cluster locations may not at all occur in some or even most of the studied genomes. The
detection of such low quality clusters increases the risk of mistaking faint patterns that occur merely by chance for
genuine findings. Therefore, it is crucial to estimate the significance of computational gene cluster predictions and
discriminate between true conservation and coincidental clustering.

Results: In this paper, we present an efficient and accurate approach to estimate the significance of gene cluster
predictions under the approximate common intervals model. Given a single gene cluster prediction, we calculate
the probability to observe it with the same or a higher degree of conservation under the null hypothesis of
random gene order, and add a correction factor to account for multiple testing. Our approach considers all
parameters that define the quality of gene cluster conservation: the number of genomes in which the cluster
occurs, the number of involved genes, the degree of conservation in the different genomes, as well as the
frequency of the clustered genes within each genome. We apply our approach to evaluate gene cluster

Background

Gene order-based analysis of whole genomes has become
an important field in comparative genomics. It is well
known that genomes evolve, not only at the level of
nucleotide sequence, but also by means of large-scale rear-
rangements, such as inversions and transpositions, as well
as changes of the gene content. Focusing on this higher-
level structure, genomes are usually modeled as sequences
of integers with genes belonging to the same gene family
represented by the same integer. If no selective pressure
was acting on whole genome evolution, gene order and
gene content would randomize over time. In reality, parti-
cularly in bacterial genomes, we observe low overall con-
servation of gene order between species, contrasted by a
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small number of well-conserved segments. These are often
referred to as gene clusters. Such local aberrations from
genome randomization provide evidence for various bio-
logical phenomena and are of high interest in functional
and evolutionary genomics [1-9].

When comparing a large number of genomes, the iden-
tification of these structures can be a challenging task
since conservation patterns may be highly variable across
species. Due to micro-rearrangements, gene order can
also vary between cluster occurrences. Gene insertions
and losses, or mis-annotations may lead to cluster occur-
rences interrupted by genes that do not belong to the
cluster, or containing only a subset of the clustered
genes. Moreover, a gene cluster may be present only in a
subset of the genomes under study. (A gene cluster dis-
playing all these features, except for mis-annotations, is
shown in Additional File 1) Taking these effects into
account in different ways, several models of gene clusters
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and algorithms for their detection have been suggested
[10-17].

However, it may as well be the case that seemingly con-
served patterns occur merely by chance. To estimate the
likeliness of such events, appropriate statistics are needed
to quantify the probability of finding gene clusters by
chance. Such statistics have been developed for some
gene cluster models, in particular r-windows [18-20],
segmental homologies (k-clumps) [21], and max-gap clus-
ters [22-24]. Other methods solve the problem of assign-
ing significance to predicted gene clusters in an ad-hoc
manner, including C-Hunter [25], OrthoCluster [26],
MCMuSeC [16], CYNTENATOR [27], and i-ADHoRe
[28]. In this paper we consider the gene cluster model of
approximate common intervals [15]. This can be easily
applied to a variety of use cases, as it offers a combina-
tion of parameter flexibility and efficiency of computa-
tion, even for very large data sets. The variant reference
gene clusters [17] proves especially useful. We provide a
statistical test for evaluating gene cluster predictions
against the null hypothesis of random gene order. For
our background model, we consider, for each genome G,
a random string S of the same length where each charac-
ter (gene) has a probability proportional to its frequency
in G. For multi-chromosomal genomes, or in cases where
the (unfinished) genome sequence consists of multiple
contigs, we do the same for each chromosome/contig
individually. We then estimate p-values, that is, the prob-
abilities of gene clusters of the observed quality or higher
being found in the random genomes by chance.

Since the random genomes are drawn independently, we
can proceed as follows: For each genome, we compute the
likelihood of a gene cluster occurring in the corresponding
random genome. These are the individual p-values for
each genome. Next, we demonstrate how to combine
p-values from individual genomes into one p-value for the
gene cluster. The problem of multiple testing is then con-
sidered by applying a false discovery rate control to mini-
mize this effect. Finally, we demonstrate that there is
excellent concurrence between our calculated p-values
and empirically determined p-values and that the method
is able to recognize known gene clusters from large geno-
mic data sets.

Methods

Preliminaries

We model a genome as a string over a finite alphabet
¥={1, ..., o} of gene family ids, such that genes
belonging to the same homology family are represented by
the same integer. In the following, we use the terms
“genome” and “string” and, also, “gene” and “character”
interchangeably. Given a string S, we denote its length by
|S| and refer to its jth character as S[i], 1 <i < |S|. A char-
acter ¢ € ¥ is said to occur at position j in S if S[i] =c.
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A substring of S from position a to p is denoted S[a, b] for
1<a<b< |S To capture the character content of
Sla, b] regardless of sequential arrangement and multiple
character occurrences, we define the character set of

Sla, b]as
CS(S[a, b]):={S[il:a<i<b} C) .

The corresponding index interval [a, b] is termed a loca-
tion of C C T if and only if C = CS(S[a, b]). An interval
[a, b]is left-maximal if a = 1 or S[a — 1] ¢ CS(S[a, b]); it
is right-maximal if b = |S|or S[b+ 1] ¢ CS(S[a, b]); and
it is maximal if it is both left- and right-maximal.

Given k > 2 strings S;, ... Sk, k maximal intervals
written as k-tuple ([a1,b1], ..., [ar br]) are called com-
mon intervals in Sy, . .. S, if and only if

CS(Sila1, bi]) = ... = CS(Sklar, bi]) =: C.

Given that Sy, ..., S; are genomes, the above charac-
ter set C corresponds to a gene cluster with perfectly
conserved gene content.

In order to model gene clusters with incomplete con-
servation patterns, we quantify the differences in the
gene content of their approximate gene cluster occur-
rences via their symmetric set distance. This measure
defines the distance between two finite sets C and (' as
the cardinality of their symmetric difference:

D(C,C):=|C\C| +|C\C| =|cuC |-|CcNC].

This constitutes a metric and therefore meets all intui-
tive notions of a distance measure, such as validity of the
triangle inequality. In the context of gene clusters, it cor-
responds to a simple summation over the genes deleted
and the genes inserted into a cluster occurrence. Like
earlier character set based gene cluster models [29], it
disregards recurrences of genes within the same cluster
occurrence.

Based on this distance notion, we extend the concept of
character set locations towards approximate conserva-
tion: Given an integer § > 0, we define an interval [g, b] in
a string S as a §-location of character set C, if and only if,
D(C,CS(Sla, b)) <8, and CNCS(S[a, b]) # 9.

Let S1, . .., Sk be genomes over a gene alphabet X. Let
s > 2 be the minimum cluster size, § > 0 a distance
threshold and §’' a quorum parameter with 2 <k’ <k. A
reference gene cluster for parameters s, § and /' is a set of
genes C C ¥ with |C| > s such that C has an exact occur-
rence in one of the genomes and §-locations in at least
k' — 1 other genomes. In other words, there exist i,a, b
such that C = CS(Si[a, b]), and J € {1, ..., k} — {i} with
IJ| >k — 1such that each Sj has a §-location of C for all
jel

In [17] we studied the following problem: Given gen-
omes Sy, ... Spand parameters g, §, k, find all reference
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gene clusters C C X in Sy, .. ., Sy, and for each reference
gene cluster, output all its optimal §-locations. (A
§-location is not optimal if it is a subinterval of a
§-location that has a smaller distance to C.) We intro-
duced an efficient algorithm that runs in
O(k*n?8? + k*n?) time using O(kn?) space, where 7 is the
length of the largest genome [17]. The algorithm is exact,
meaning that it is guaranteed to find all reference gene
clusters and their optimal occurrences as specified by the
search parameters.

The above definitions do not take into account multi-
chromosomal genomes, or genomes that were not com-
pletely assembled and still consist of several contigs.
However, it is simple to extend these definitions, as well
as the remainder of this paper, to the multi-chromosomal
or multi-contig case. For example, we may assume that
the different chromosomes/contigs of one genome are
concatenated in a single string, separated by symbols
$ ¢ . We can then assume that neither a gene cluster
nor an interval is allowed to contain the character $.
Further details will be omitted, aside from saying that
some of the complexity bounds mentioned below actually
improve for multi-chromosomal and multi-contig
genomes.

Significance of a gene cluster for one genome

In this section we estimate the probability of a fixed
gene cluster C C ¥ having a §-location in a random gen-
ome S of length n, i. e. the p-value of finding an occur-
rence of C in genome § :

p-value = P(S has a §-location of C) (1)

In the following we assume that § < |C| — 2 holds.
Otherwise the p-value is equal to one whenever
CNCS(S) # 9, and zero otherwise. Let p(L,d) = p(L, d, C)
be the probability that a random occurrence of length L
has a symmetric set distance exactly 4 to C. Let
q(L,8) = q(L, 8, C) be the probability that it has a sym-
metric set distance of at most §. Note that p(L,d) and
q(L, §) depend on the cluster C; in the following, our nota-
tions omit this dependency for the sake of readability.

Then, ¢(L, §) = ZZ=0 p(L, d). To simplify our computa-

tion, we assume that occurrence probabilities are indepen-
dent for all intervals [a, b] where 1 < a < b < n. Clearly,
this assumption is not correct: Let A be the event that
interval [i, j] forms a §-location of C, and let B be the event
that interval [i, j+ 1] forms a §-location of C. The fact that
the intervals share all positions but one creates a number
of non-trivial dependencies. In case S[j + 1] € CS(S[i, j]),
the two events are either both true or both false. When
the distance between CS(S[i, j]) and C is smaller than
8, p(BJA) = 1, and vice versa. Such dependencies apply not
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only to [i,j] and [i,j + 1], but to all intersecting interval
pairs. However, we will show later on that the p-values
computed under this assumption are very close to the true
p-values, for any realistic choices of parameters. We esti-
mate the p-value for a single genome as

P(Shas a -locations of C) ~ 1 — 1_[ (1—q(b—a+1,98))

a<b

2
=1- J] (1—q(L,6))”*L”.()

To minimize the effects of rounding error accumula-
tion, we instead compute

P(Shas a §-location of C) ~ 1 — exp ( Z (mn—L+1)-log (1 —gq(L 8))) (3)
which can be calculated with high accuracy, using
mathematical library functions for f(x) := exp(x) — 1
and g(x) :=log(x + 1).
Exact computation using dynamic programming
We need to compute p(L, d), the probability that the
character set of a random interval of length I, has a sym-
metric set distance d to a given (fixed) gene cluster C, for
all L and d < §. Let S; be a random string of length L, and
let P(c) denote the probability of character ¢ € ¥ for any
position of the random string. For a sub-alphabet &' C ¥,
set P(2') := £..5vP(c) The distance d between C and
CS (Si) can be partitioned as d = d_ + d,: Here, d_ is the
number of characters from C that are missing in Sy, and d,
is the number of additional characters in CS(St). Conse-
quently, we can partition the positions in S into two
types: those positions containing characters from C, and
those positions containing characters from C:= Y~ —C.
Assume that ] positions of S, are occupied by characters
from C, 0 <1 < L, and that [, — [ positions are occupied
by characters from C. We calculate

d
p(L, d) = Y BOIC\CS(S1) =d AICS(SNCI =d—d )
d =0

d L
=Y SRSl € C1<i <L) =IAIC\CS(S)| =d AICS(S\Cl=d—d ) (4)
d =0 I=0
d
po(l,L).p~(Ld).p"(L—1, d—d)

M-

=0 d =0

where po(l, L) is the probability of drawing a random
string of length [ with | characters from C and [ — ] char-
acters from C;p~(I,d ) is the probability that, for a ran-
dom string S of length | over the alphabet C, CS(S)) is
missing d_ characters from C; and p*(L — I, d — d ) is the
probability that, for a random string Sy of length | = [, — |
over the alphabet C, CS(Sy) contains d, = d — d different
characters. If all these values are known, we can compute
the desired probability using (4) in time O(dL). In practice,
we found that p~(I,d_) in (4) decreases rapidly with
increasing |. To this end, we can stop the summation, as
well as the computation of p~(I,d_) and p* (L — 1, d,), as
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d
soon as Z po(I,L).p~(1,d ). p*(L —1, d,) no longer con-
d =0
tributes to the sum.
Computing po(l, L) is straightforward, using the bino-
mial distribution: One can see that

po(l L) = (IZ) P (C) P (C)!

holds. It remains to be shown how to compute
p~(l,d-) for missing characters and p* (L —1,d,) for
additional characters.
Missing characters
We first demonstrate how to compute p~ (I, d-), the
probability that a random string S; of length | over the
alphabet C is missing 4_ characters from C. Let
h := |C| — d_ be the number of kits from CS(S;) in C. For
readability, we base our computation on the number of
hits . The order of the characters in the random string is
not relevant, so we simply check whether a certain char-
acter from C has been generated. The statistical equiva-
lent is rolling dice. We assume, for simplicity, that
C:={1, ... ,Z)}. Probabilities of the characters in C are
conditional probabilities of the same characters in ¥. We
define

plz, 1, h] := P(hdifferent outcomes for I1olls for # 1, ..., z).

So, plz, 1, h] is the probability that, by throwing ] dice
with numbers 1, ... ,z, exactly h different numbers have
been rolled. In the following, we not only iterate over the
number of rolled dice and different outcomes, but also
over the numbers that can be rolled. In cases where only
numbers 1, ... ,zoutof1, ... ,Z can be rolled, we can
calculate the conditional probability of each outcome
with the recurrence:

plz, 1, h] = P(no z rolled with I dice) - p|z — 1,1, h]

1
5
+ZIP’(Z times z rolled with I dice) - p[z— 1,1 — ¢, h — 1])( )

=1

We initialize p[z,0,0] =1, p[z,0,h] =0,p[z,1,0] =0,
and p[0,1, h] = 0 for all zand all , h > 0. The two missing
probabilities are computed using a binomial distribution.
In the end, p~(I,d_) = p|Z,1, h] is the probability that in
a random string of length ] over alphabet C, exactly  dif-
ferent characters from C have been generated. Computa-
tion takes O(|C|hl?) time and O(hl) space, as only the
values for z = Z need to be stored.

Additional characters

The recurrence introduced in equation (5), can also be
used to compute p*(l,d,). We need to set h:=d,, and
exchange the roles of C and C, Unfortunately the latter
modification has a strong impact on the practical runtime,
due to the linear dependence now being on the much
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larger |C| (compared to the rather small [C| for p~ (I, d_)).
However, we can mitigate this by pooling genes based on
the frequency of their occurrences in the original genome.
The genes within each pool have the same occurrence
probability in the random genome and need not be distin-
guished in our calculations. It is sufficient to know for
each pool how many of its genes originate from C, and C
respectively.

Let f be the number of different occurrence frequencies
observed in the original genome, and let F1, . . ., Ff denote
the corresponding gene pools. Given a fixed gene cluster C,
we denote by FZC the subset of pool F,, 1 <z <f, that
consists only of genes from C, We then modify recurrence
(5) as follows:

plz, 1, h] = P(no gene of FC rolled with 1 dice)*plz — 1,1, h]
+ (i‘ “:)Z‘: ”(n»(e genesof FC, Wdiffernet ones, rolled with dice)*p [z — 1,1 — £, — '])

The initializations are the same as for the previous
recurrence. We can use the binomial distribution to com-
pute the value of P (no gene of cm rolled with ] dice) and
the same type of recurrence as in equation (5) to com-
pute the second probability, P(¢ genes of FZC, K different
ones, rolled with | dice). In the end, p* (1, d,) = p[f, 1, h] is
the probability that in a random string of length | over
alphabet C, exactly p different characters from C have
been generated.

Due to the second summation, the asymptotic time
complexity of the recurrence becomes O(fh’I?). We
observe that, in practice f, the number of different gene
occurrence frequencies is very small compared to ; and is
typically in the size range of large gene clusters. Also, the
vast majority of genes occur only once in a genome, with
pool sizes dropping quickly for larger occurrence frequen-

cies. Since } is bounded, not only by % but also by |FJ§|,

the quadratic dependence on } is unlikely to be relevant in
practice.

Next, we show how the values of P(¢ genes of FZC, W dif-
ferent ones, rolled with | dice) can efficiently be computed.
Ideally, we would like to precompute these values once for
every genome, providing constant-time lookup during
computation of p-values for the different gene clusters. At
first sight, these probabilities seem to be specific for each
cluster, as the gene pools need to be restricted to their
complement C. However, we know that all genes in a pool
have the same occurrence probability, therefore it is suffi-
cient to compute the above values for all residual pools,
after removing a certain number - not a certain set - of
genes. For small pools, which are in the majority, not
much extra work is required to do this for all possible resi-
dual sizes. For large pools exact computations may, in
practice, be too costly. In this case, we suggest working
with pools based on the complete alphabet ¥. Due to their
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size, the removal of a few elements has little influence on
the conditional probabilities of the remaining elements.

In practice, we use a faster, but less exact approach: We
replace the more accurate estimation of p*(l, d,) with a
much faster preprocessing that leads to almost identical
results. To this end, we compute a global P*(],d, ) for the
complete alphabet, C := %, during preprocessing. This is
achieved using recurrence (5). We then assume that, for
any cluster C with additional character probabilities
p*(l,d,), we have p*(l,d,) =~ P*(l,d,). In doing so, we
ignore the fact that the gene cluster C removes some of
the genes from the pool of potential additional genes.
Clearly, this computation can be carried out very quickly,
as we have to compute P*(l,d,) only once for each
genome. Depending on the distribution of occurrence
probabilities, the above approximation can distort the
results significantly. We account for this by setting
p*(L,d,) ~ (1 =P(C))* - P*(l,d,) thereby taking into
account the occurrence probabilities of the genes in C.

Significance of a gene cluster in multiple genomes

Thus far, we have concentrated on the probability of
observing gene cluster occurrences in a single genome.
To estimate the significance of observing a gene cluster
in multiple genomes, we need to combine the individual
probabilities into a single p-value. This gives the prob-
ability of observing a gene cluster C, at least as well
conserved in the randomized genomes as in the original
genome set.

We begin by formalizing the notion of “at least as well
conserved”. Consider the case where a §-location of C is
detected in all genomes Sy, .. ., S;. To simplify notation,
we assume that S, ..., S, are the remaining genomes
after removing the reference genome, the one from
which we took the interval to generate C. Clearly no
p-value estimation is necessary for this genome, and it
can be omitted from the following calculations. Let
d=(dy, ...,d;) be a distance vector, such that d; is
the distance between C and its best approximate occur-
rence in genome S;, 1 <i < k. We denote by d,,s the
distance vector observed for C and the original genomes.
To make different distance configurations comparable,
we need to define a linear order of all possible distance
vectors. We chose an ordering based on the total
distance, Zle d;. We denote by dps the sum distance of
d,ps. To exclude configurations with §-locations in fewer
genomes than observed in the original data, we further
require that each individual distance in the vector is at
most §. To calculate the probability of observing any dis-
tance vector that satisfies the above constraints, we define
the following recurrence:

min(d,3)
M[i, d] = Z (P(best §-location in S; has distance d'to C) - M[i — 1,d — d']). (7)

d'=0

Page 5 of 11

The base cases are M[0, 0] = 1, and M][0, d] = 0 for
d > 0. P(best §-locations in S; has distance 4 to C) equals
P(C has a d'-location in S;) — P(C has a (d' — 1)-location
in S;). These probabilities can be computed with equa-
tion (2). Summing over all M[k, d], 0 < d < dops gives
the desired p-value. i. e. the probability that C is at least as
well conserved in the randomized genomes as in the origi-
nal dataset. This computation takes time O(k?5?), as i and
d are bounded by k and d,,s, respectively, and we have
dobs =< k8.

When a gene cluster is observed only in a subset of the
studied genomes, it becomes tricky to define the meaning
of “at least as well conserved”: Is a gene cluster better con-
served if it occurs in many genomes at a low quality, or in
fewer genomes but at higher quality? We suggest that the
latter should be given preference. Otherwise, there is the
risk of systematically preferring gene clusters that occur in a
large number of genomes, yet only incompletely in the form
of one or two genes, over clusters that are very well con-
served but only in a small number of genomes. We believe
that the latter are the more interesting cases. Therefore we
say a gene cluster C with §-locations in ' out of k genomes
and sum distance d,, is conserved at the same or better
quality in the randomized genomes, if it has §-locations in
at least ¢/ of them, and the best };’ §-locations (from [ differ-
ent genomes) have a sum distance of at most dgps to C.
Unfortunately the recurrence used in equation (7) cannot
be extended to compute the corresponding probabilities.
We need to track the sum of the }/ smallest distances below
8, after processing the first i < k genomes. This value cannot
be computed in a simple recursive manner, as there is no
optimal substructure underlying the problem: The sum,
after processing i genomes, depends not only on the sum
before the genome was added and the distance for the new
genome, but also on the previous number of distances
below § and the values of these distances. Only with all of
this information is it possible to decide whether or not the
distance encountered for the new genome needs to be
added to the sum. In the absence of an efficient dynamic
programming approach, we need to sum probabilities over
all j,5*1 distance vectors. This becomes infeasible for larger §.

In order to avoid exponential running time, we studied
a simpler approach where we use a fixed distance thresh-
old ¢’ for all genomes. This can be either the original
threshold §, or the largest entry in dps, i. €. the largest of
the distances between C and its best §-location in each
genome.

As a consequence, we do not need to sum over pair-
wise distances in the recurrence, but over the number
of genomes that contain a §’-location. Let pj be the like-
lihood of a §’-location in genome Sj, computed using
equation (2). The likelihood of having §’-locations in
exactly i out of j genomes S1, ...,S;, 1 <i<j<k can
be computed using the recurrence
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Qlij] = (1=p)-Qlij—1] +p-Qi—1,j—1]. (8)

The base cases are Q[0, 1] =1 —p1, Q[1, 1] =py, and
Qli,j] = 0 for all i > j. The likelihood of finding at least /
§'-locations in  genomes is then the sum over all Q[i, k|
with ¥’ < i < k. Computation requires O(k?) time. This
method will be referred to as “global distance bound”.

Unfortunately, the above approach has the following
problem: Consider two (otherwise identical) gene clus-
ters, both found in three genomes. The first cluster is
found with distances 0, 1 and 4 in the three genomes; the
second cluster with distances 3, 4 and 4. Common sense
tells us that the first gene cluster is more significant,
because it is less likely to occur by chance. However, the
approach described above will come up with identical
likelihoods, as, in both cases we have §’ = 4. In fact, for
the first cluster it may be beneficial to exclude the last
occurrence, as this may lead to a smaller p-value; we
omit the details.

To ensure that gene clusters of this type are evaluated
differently while keeping the computational complexity
reasonable, we resort to the following simplification:
Recall that §’ < § is the maximum distance of the cluster
to any occurrence. For genomes where we do not detect
a §-location, we use the single-genome p-value with
distance threshold §’; for genomes other than the refer-
ence genome that contain a §-location (and, hence, a
§'-location), we use the single-genome p-value with dis-
tance threshold given by the distance of the detected
interval in this genome. In the above example, for the
first cluster, we use distance threshold O for the first
genome, 1 for the second genome, and 4 for the third
genome; for the second cluster we use distance thresh-
old 3 for the first genome and 4 for the remaining two.
This method will be referred to as “individual distance
bounds”.

False discovery rate control

Since we are testing significance not only for a single
gene cluster, but for the complete set of gene cluster pre-
dictions reported by a search extending over all possible
reference intervals, we need to adjust our p-values
accordingly. We use false discovery rate (FDR) control
[30] to counteract the problem of multiple testing. In
detail, we sort all the clusters by their p-value and multi-
ply the p-value p of any gene cluster with the number of
possible reference intervals in all k genomes divided by
the index i in the sorted cluster list:

k nj.(nj + 1)
21
FDR )= 2 )
pi " =pi ; )
where 11, ..., 1 are the genome lengths. This is a

conservative estimation and comes at the cost of

Page 6 of 11

increasing the probability of producing false negatives.
That is, gene clusters that should be regarded as signifi-
cant may be declared non-significant after the FDR
correction. In addition, equation (9) actually overesti-
mates the number of gene clusters tested as we do not
take into consideration certain gene clusters that appear
multiple times in a genome (and should be tested only
once). We do not use the more powerful Sidak correc-
tion [31], as independence of the different tests cannot
be guaranteed. FDR-corrected p-values can be larger
than one, which solely indicates that this correction is
conservative.

Evaluation of p-value accuracy for a single genome

We now evaluate the accuracy of the p-value estimation
we introduced above for a single genome. Recall that we
use two simplifications to keep this task computationally
feasible. First, we assume that the intervals within a gen-
ome do not overlap, in order to gain statistical indepen-
dence of the probabilities ¢(L, §) in equation (2). Second,
we employ a heuristic approach to deal with additional
characters in cluster occurrences. To show that our cal-
culations are still sufficiently accurate, we compare our
estimated p-values with p-values derived empirically
from large-scale simulations of random genomes.

Two simulation studies were performed, one with biolo-
gical data and one with simulated data. To reduce simula-
tion time, we performed the first study on four, somewhat
small, bacterial genomes with just 600 to 850 genes each,
namely Buchnera aphidicola APS, Ureaplasma urealyti-
cum, Mycoplasma pneumoniae, and Borrelia burgdorferi.
We downloaded these genomes from the NCBI database
[32] and assigned homology families, using GHOSTFAM
[33] with standard parameters. Ten billion random
sequences were then generated, with the same length and
character frequencies as the original genomes.

Our reference gene cluster detection algorithm [17] was
applied to the four original genomes, with three different
parameter settings (=1, s=4), (§=3, s=6), and
(6 =5, s=9). The quorum parameter was set to }/ = 2 in
each case. This search returned 459 gene clusters. We
computed for each gene cluster C, the p-value of each
occurrence, excluding the reference interval. This was
done with equation (2), by setting the threshold to §’, the
symmetric set distance between C and the character set of
the occurrence. Next, the p-value for a genome with ran-
domized gene order containing a §’-location of C was
empirically determined. To this end, all random genomes
corresponding to the genome where the occurrence was
observed were searched for intervals with a symmetric set
distance of, at most, §’ to C. The number of genomes with
at least one such occurrence was divided by the total num-
ber of tested genomes. This gives an empirical estimate of
the true p-value. When no occurrences were found, we
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omitted the pair from further analysis, as this shows the
empirical p-value to be out of the scope of the current
evaluation. This resulted in the omission of 277 gene clus-
ters. The maximum p-value calculated for any such
omitted pair was 9.23 - 10", Therefore all of the omitted
values fall into the 95% Agresti-Coull confidence interval
[34] of finding no occurrences, that has an upper bound of
4.64 - 107'°. (Note that when searching for gene clusters,
what matters in p-value estimation is the order of magni-
tude. For example, p-values 2.7 - 107>%% and 5.4 - 1073%°
differ by a factor of two; still, we would regard a gene clus-
ter with either of these p-values as highly significant).

For the remaining 182 gene clusters, we have plotted
the calculated p-values against the empirical p-values in
Figure 1. Unless our independence assumption is
severely violated, this should result in points close to
the main diagonal. Note that both the calculated
p-values and the empirical p-values can deviate from the
true p-value; this estimate becomes highly inaccurate,
particularly for very small empirical p-values, as only
few of the billions of genomes contain an occurrence of
the gene cluster.

Nevertheless, we find an excellent agreement between
the calculated p-values and the empirical p-values. For
numerical comparison of these values, we transform
both into the log scale: Otherwise, almost all p-values
are far too small to contribute to Pearson correlation or

103
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108
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109

10-10
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calculated p-value

Figure 1 Comparison of empirical and calculated p-values
for bacterial genomes. Comparison of empirical and calculated
p-values for gene clusters from four bacterial genomes (log-log

plot, N = 182). Pearson correlation of log-log-pairs is

r=+0.9976775 (r2 = 0.9953604) coefficient of
determination of log-log-pairs is RZ = 0.9951 661 (identity in
red). Error bars visualize the 95% Agresti-Coull confidence interval.
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coefficient of determination. The Pearson correlation of
the log-log pairs is r = +0.9976775 (1* = 0.9953604).
As we want to use the calculated p-values as a predictor
of the empirical p-values, we also computed the coeffi-
cient of determination

i x)?
>ilvi— )_’)2

where the Vi are the observations (log empirical
p-values), the xi are the predictions (log calculated
p-values), and 7 is the mean of the observations. For the
bacterial genomes, we achieve R? = 0.9951661. The
observed deviations for small probabilities must be attribu-
ted to the fact that, for these reference gene clusters, ten
billion random genomes are not enough to give a good
estimate of the true value. It appears very likely that the
empirical p-value is inaccurate, rather than the calculated
p-value.

We argue that these results strongly indicate that our
calculated p-values are very close to the true values;
hence, although equation (2) does not take into account
statistical dependencies, our calculations are still highly
accurate.

The number of p-value pairs in the above study is rela-
tively small and not sufficient to firmly conclude that our
calculations are accurate. To obtain a greater degree of
certainty, we performed a second study using random
genomes. Here, random genomes of different sizes and
with different character distributions were generated. In
order to create random genomes with similar characteris-
tics to true biological data, we studied the gene family
size distribution in real genomes. (A complete list of the
genomes can be found in Additional file 1). Gene family
size appears to roughly follow a heavy-tailed distribution
(Additional file 1). The Pareto distribution was therefore
selected for simulating genomes. The probability density
function is:

R*=1

(10)

In the following calculations, we use x;,; = 1, so that
each gene appears at least once. The bacterial genomes
we use later on for our evaluation approximately follow
a Pareto distribution with o = 2.8 (Additional file 1).

For each random genome we uniformly draw its length
n € [1250, 1750]. To select the character content of the
genome, we repeat the following: We choose the next
character and draw the number of occurrences of this
character in the random genome using the above Pareto
distribution. We repeat this until all n positions of the
random genome are filled, discarding surplus copies of
the last added character. In this manner, we generated
ten genome contents.
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To generate a random gene order, we could concate-
nate the genes and shuffle the resulting string. To speed
up computations, we proceeded in a slightly different
way: Instead of generating a random genome and then
searching for reference gene clusters, we simply assume
a gene cluster C to be present. To obtain useful p-values
we combined different strategies to construct C: (1) nine
clusters are chosen with two to ten genes using the most
commonly occurring genes; (2) nine clusters are chosen
with two to ten genes using the rarest genes, usually
occurring only once; (3) 82 clusters are chosen with two
to ten genes, randomly selected. For each of these 100
gene clusters we randomly choose a maximum allowed
distance § € [0, |C| — 2]. As mentioned earlier, for higher
values of § exact p-values can be easily computed, simply
by testing whether a single gene from C is present in the
genome.

We then proceeded as described above, comparing the
calculated p-value to an empirical p-value obtained from
one billion random draws. From the 10 - 100 = 1000 gene
clusters tested, we omitted 249 p-value pairs where no
occurrences were empirically observed. The maximum
calculated p-value for any such omitted pair is 2.45 - 10~°,
while the upper bound of the 95% Agresti-Coull confi-
dence interval for observing no occurrence is 4.64 - 10~°.
To further increase the accuracy of the empirical estima-
tion of the 49 clusters that were found between one and
ten times only, we did an additional nine billion random
draws. For five clusters, we still observed less than ten
occurrences; the largest calculated p-value among these
clusters is 5.40 - 107'°, the upper bound of the 95%
Agresti-Coull interval for observing nine occurrences is
1.74 - 107°. As for these cases the empirically determined
p-values are presumably inaccurate, we excluded them
from our analysis.

For the remaining 746 gene clusters, the calculated
p-values vs. empirical p-values are plotted in Figure 2.
Again, we see an excellent agreement between calcu-
lated and empirical p-values: Pearson correlation of the
log-log pairs is r = +0.99989 (r? = 0.999783), and the
coefficient of determination of the log-log pairs is

R? =0.99975

Results

To evaluate our method, we used a dataset of 119 bacter-
ial genomes from the RefSeq database [32]. A complete
list of the genomes can be found in Additional File 1.
This dataset has previously been used by Ling et al. [16]
for the evaluation of the MCMuSeC software; we
removed 14 plasmids. A partitioning of the genes of
these genomes into homology families is available based
on COG (Clusters of Orthologous Groups) numbers [35].
We deliberately ran our analysis on this set of well-
described bacteria to facilitate evaluation of our cluster
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Figure 2 Comparison of empirical and calculated p-values for
simulated data. Comparison of empirical and calculated p-values
for random gene clusters in random genomes (log-log plot,

N = 7406). Pearson correlation of log-log-pairs is

r= +0.99989 (r2 = 0.999783) coefficient of

determination of log-log-pairs is R2 = (.99975 (identity in red).

predictions based on the annotations provided in the
database.

We searched for reference clusters with Mycobacter-
ium tuberculosis CDC1551 (refSeq NC_002755)
as the reference genome, which contains 4189
genes. We used five different combinations of § and s,
namely (§=0,s=4), (§=1,5s=5), (6=2, 5s=06),
(6=3,s=7)and (6 =5, s =8). The quorum parameter
was set to k' = 10 in each case. Finding the gene clusters
took about 9.3 minutes on a laptop computer (run as a
single thread on an Intel i5 M520 processor, 2.40 GHz,
8 GB RAM). For multiple genome p-value calculation,
we applied the “individual distance bounds” method.
Computing p-values for the resulting 582 gene clusters
(including duplicates) required 1.2 minutes. The p-values
were FDR-corrected for the 8, 775, 955 intervals in the M.
tuberculosis genome. Gene cluster lists were merged and
duplicate occurrences removed. For gene clusters where at
least one occurrence, in one of the genomes, intersected,
we report only the one with the smaller p-value. This
resulted in 63 gene clusters. The best 20 are shown in
Table 1; the complete list can be found in Additional File 1.
The gene cluster with the best p-value (3.24 - 107"*% after
FDR correction) is found in 108 out of the 119 genomes; it
contains nine genes with functional annotations linked to
the 50S and 30S ribosomal subunits. By contrast, the sec-
ond most significant gene cluster appears in 114 genomes
and shows a much higher degree of conservation with
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Table 1 Top 20 gene cluster predictions
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distance to ref.

ID G GN min max avg p-score corr. p-score description
1 9 108 2 5 28 131443 130749 30S/50S ribosomal subunit
2 7 114 0 3 1.6 1258.12 1251.18 30S/50S, rpoA, infA
3 6 91 0 2 0.7 103147 1024.83 ATP synthase
4 9 57 0 5 14 896.31 890.57 NADH dehydrogenase
5 8 108 3 5 4.1 716.68 711.29 305/50S ribosomal subunit
6 8 88 0 5 42 569.88 564.63 phosphate ABC transporter
7 8 93 0 5 4.1 486.80 48167 infB, rfbA, nusA, hypothetical protein
8 8 79 3 5 46 367.33 362.27 putative/peptide ABC transporter
9 8 62 3 5 44 29441 28940 sugar ABC transporter
10 8 65 2 5 4.1 290.24 28524 N-acetylmuramoyl, cell division
11 4 33 0 0 00 27299 26755 succinate dehydrogenase
12 8 51 3 5 49 221.73 21679 pdhA/B/C
13 8 48 2 5 49 216.54 21162 ATP-dependent (Clp) protease, trigger factor
14 8 58 0 5 42 21612 21120 50S L31, prfA, thrA/B/C, rho, hemK
15 8 50 4 5 49 213.61 208.70 hisA/C/F/H
16 6 32 0 2 1.7 200.11 194.80 dnaA/N, gyrA/B, reck
17 6 27 1 2 1.7 194.39 189.10 carA/B, pyrC/B/R
18 8 67 4 5 50 192.56 187.69 elongation factor Tu, G; 30S S7
19 8 29 4 5 45 190.62 185.75 sulfate ABC transporter
20 8 44 2 5 43 181.13 176.28 argB/C/D/G/H/F/R

The first 20 gene clusters found when searching Mycobacterium tuberculosis CDC1551 against 118 bacterial genomes. Clusters are sorted by p-values, computed
using the “individual distance bounds” method. “G" is the number of different genes in the reference gene cluster; “GN” is the number of genomes where the
reference gene cluster is found; “distance to ref.” indicates the observed distances between the reference gene cluster and its occurrences. The “p-score” is the

negative log;, of the p-value, before and after FDR correction.

regards to inserted and deleted genes. However, it contains
just seven genes (functional annotation is also 50S/30S
ribosomal subunits); its p-value is 6.61 - 107'%°2, The cluster
in position four of the list (NADH dehydrogenase) is only
contained in 57 genomes. The p-value, of 2.68 - 107", is
still very low as it contains nine genes and a low average
distance of 1.4.

We have also computed p-values using the “maximum
distance bound” method, see Additional file 1. The best
scoring cluster, in both cases, is part of the 30S/50S ribo-
somal subunit, with nine conserved genes. However, using
the “maximum distance bound” method, the best scoring
occurrence of this cluster is only found in 66 genomes,
with a p-value of 1.19 - 107°*, while the occurrence in 108
genomes only receives a p-value of 1.43 - 1077** due to its
maximum distance of only five. The p-value for the 66
genomes occurrence using the “individual distance
bounds” method is 2.37 - 10~°*’, while the 108 genomes
occurrence receives a p-value of 3.24 - 1073%,

None of the clusters in the above experiments have a
corrected p-value anywhere close to 0.05, the typical
threshold used to discriminate significant from non-
significant observations. To get some insight into this
“grey area” where no confident predictions can be made,
we studied gene cluster predictions with a corrected p-
value close to 0.05. We obtained these in three runs of

our program, (s=3, 8=1, K =9),(s=4, §=4, k' =8)
and (s =6, § =7, K = 7). For each setting we collected
all predictions with a p-value > 0.05 (corrected p-score <
-1.3), and also the same number of predictions with the
biggest p-values < 0.05. The complete list of these 84 pre-
dictions can be found in Additional file 1. We compared
the predictions with known E. coli operons that we
obtained from the RegulonDB database [36]. As can be
seen in Additional file 1 most of the 84 predictions above
and below the threshold contain at least one operon.
A more formal analysis of these findings is hard to obtain
with the limited data available. What appears to be a
false positive prediction based on RegulonDB, may in fact
be an unknown gene cluster, or one that is not well
enough confirmed to appear in the database. Also a non-
significant prediction, that is in fact a confirmed operon,
does not mean that our p-values are too strict. Statistical
significance by itself is simply not a necessary condition
for a biological gene cluster.

Conclusion and outlook

In this paper, we presented the first statistical model to
estimate the significance of gene cluster predictions
under an approximate common interval-based gene clus-
ter model. The underlying p-value calculations integrate
all parameters that influence the quality of gene cluster
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conservation. Namely, the number of genomes in which
the gene cluster is detected, the size of the gene cluster,
the degree of conservation within the different occur-
rences, as well as the genome-wide frequencies of the
genes involved. To keep the computation time feasible,
we had to make some simplifying assumptions in the
p-value calculation, but we have experimentally shown
that our estimations are remarkably close to empirically
derived p-values. An analysis of a set of well annotated
genomes has proven that our method is able to re-
discover known, highly conserved gene clusters with
p-values clearly showing that such conservation did not
occur by chance. The gene cluster at position 20 in our
output list (functional annotation: arginine biosynthesis)
still receives a highly significant p-value of 5.20 - 10777,
We also studied clusters with low significance and
observed known operons with p-values below the signifi-
cance threshold of 0.05, as well as unknown clusters with
significant p-values. However, due to the limited data
available it was not possible to distinguish between false
and true positives.

Although the simplifying assumptions seem to have
little effect in practice, it would be an interesting next
step to study more accurate models in the future. In
particular, the assumption that the probabilities of
observing a cluster are statistically independent in over-
lapping intervals could be omitted. This could be
achieved by accounting for such dependencies in our
calculations, for example by employing the inclusion/
exclusion principle. Alternatively our present p-value
approximation might be amenable to control by the
Chen-Stein method [37].

Another strong assumption in our model is that any
two genomes show fully randomized gene order, unless
evolutionary pressure prohibits it. This assumption may
be violated if we analyze genomes of closely related spe-
cies or strains. In this case, significances will be overrated
by our p-value estimation. For the dataset analyzed in
this study at least, this problem is less severe than one
might expect. Even strains of the same species show a
relatively high amount of random shuffling (Additional
file 1). Nevertheless, by lowering the quorum parameter
to k' = 5, we observe that many conserved regions are
detected, where all or most species are Mycobacteria. In
cases where more closely related strains are analyzed, we
suggest several workarounds in Additional file 1. In the
future, it will be an interesting problem to include
incomplete randomization into our statistical model.

Additional material

[ Additional file 1: (PDF). ]
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