
PROCEEDINGS Open Access

Haploid to diploid alignment for variation calling
assessment
Veli Mäkinen*, Jani Rahkola

From Eleventh Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics
Lyon, France. 17-19 October 2013

Abstract

Motivation: Variation calling is the process of detecting differences between donor and consensus DNA via high-
throughput sequencing read mapping. When evaluating the performance of different variation calling methods, a
typical scenario is to simulate artificial (diploid) genomes and sample reads from those. After variation calling, one
can then compute precision and recall statistics. This works reliably on SNPs but on larger indels there is the
problem of invariance: a predicted deletion/insertion can differ slightly from the true one, yet both make the same
change to the genome. Also exactly correct predictions are rare, especially on larger insertions, so one should
consider some notion of approximate predictions for fair comparison.

Results: We propose a full genome alignment-based strategy that allows for fair comparison of variation calling
predictions: First, we apply the predicted variations to the consensus genome to create as many haploid genomes
as are necessary to explain the variations. Second, we align the haploid genomes to the (aligned) artificial diploid
genomes allowing arbitrary recombinations. The resulting haploid to diploid alignments tells how much the
predictions differ from the true ones, solving the invariance issues in direct variation comparison. In an effort to
make the approach scalable to real genomes, we develop a simple variant of the classical edit distance dynamic
programming algorithm and apply the diagonal doubling technique to optimise the computation. We experiment
with the approach on simulated predictions and also on real prediction data from a variation calling challenge.

Background
In the study of human genetics, variation calling from
high-throughput sequencing reads [1] is a revolutionary
technique. Conceptually, the process is remarkably simple.
Sequence random short fragments from donor DNA and
align them to the reference (consensus) genome. Outside
repetitive regions a good alignment is unique, hence if the
resulting multiple alignment (read pileup) has columns
where reads vote for something differing from the refer-
ence genome, the donor is very likely to actually contain
this variant in his/her genome. Numerous methods have
been proposed to fine-tune this simple scheme. One could
argue that this problem is actually an enormous local mul-
tiple alignment problem, and so it is not surprising that

methods trying to locally improve the alignment are able
to improve the accuracy. This standard approach only cap-
tures small scale variations, and the methods for discover-
ing large insertions, deletions, translocations, reversals,
etc., are more involved [2].
Surprisingly there has been no systematic approach for

studying the accuracy issue of variation calling predictions.
With real data sets one can always resort to Sanger
sequencing to validate the findings, but this is expensive.
With simulated data sets one can compare to the ground
truth and compute precision/recall statistics. A typical
simulated data set is produced by first applying random
mutations to a reference genome or selecting a random
subset of a predefined set of known frequent variations
in the population (or a mixture of these), to create an

* Correspondence: vmakinen@cs.helsinki.fi
Helsinki Institute for Information Technology, Department of Computer
Science, University of Helsinki, Helsinki, 00014, Finland

Mäkinen and Rahkola BMC Bioinformatics 2013, 14(Suppl 15):S13
http://www.biomedcentral.com/1471-2105/14/S15/S13

© 2013 Veli and Rahkola; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:vmakinen@cs.helsinki.fi
http://creativecommons.org/licenses/by/2.0

artificial donor genome. We consider here the setting of a
diploid genome, where this simulation is conducted twice,
taking into account heterozygousity/homozygousity infor-
mation on the variants to create a realistic diploid genome.
What we assume is that the alignment of the diploid gen-
ome to the reference is preserved. Then one can simulate
a random pool of short reads from the artificial diploid
genome with high enough coverage such that variation
calling is plausible. Once a list of predicted variants is pro-
duced, one can match it to the list of variants used for
creating the artificial diploid.
However, this direct comparison has the shortcoming

that invariances among predictions are not properly
considered. To see this, consider reference ACGGAAGGT,
donor ACGGT, and let the simulated real variant be dele-
tion of GAAG at position 3 (starting indexing from 0).
Predicted deletion AAGG at position 4 results in the
same donor, but pair-wise comparison of predicted and
real variants would not reveal this. While these kind of
simple invariances are easy to take into account, things
get much more involved with split/merged predictions
of various types. Clearly some kind of dynamic program-
ming approach would be required to find best editing of
the predicted variants to make them match the real
ones. Here we assume that the allowed variant types are
only insertions, deletions and substitutions, since rear-
rangements can always be modelled as series of the for-
mer type of operations.
Instead of correcting for the invariances in the manner

sketched above, we propose to resort to a natural variant
of the familiar sequence level full-genome alignment. The
approach is as follows. First apply the predicted variations
to the consensus genome to create as many haploid gen-
omes that are necessary to explain the variations. Hetero-
zygous variations are only applied on one haploid and
homozygous variations on all. Second, align the haploid
genomes to the (aligned) artificial diploid genomes allow-
ing arbitrary recombinations. The intuition is that with
short read mapping one cannot usually obtain much hap-
lotype level information, but only determine whether the
variations are heterozygous or homozygous. The haploid
genome created by applying all non-overlapping predicted
variants is better the closer it is to an arbitrary recombina-
tion of the diploid alleles. This is what the approach mea-
sures by edit distance. If there are overlapping predicted
heterozygous variants, multiple haploid genomes are cre-
ated and compared with a (different) recombination of the
diploid alleles. Hence, the resulting haploid to diploid
alignments tell how much the predictions differ overall
from the true ones, solving the invariance issues in direct
variation comparison. To make the approach scalable to
real genomes, we develop a simple variant of the classical
edit distance dynamic programming algorithm and apply

the diagonal doubling technique to optimise the computa-
tion. We experiment with the approach on simulated pre-
dictions and on real prediction data from a variation
calling challenge [3].

Methods
Problem
Let B1 and B2 represent diploid genome sequences gener-
ated by applying mutations to a reference sequence P. Let
tables m1 and m2 store for each position in B1 and B2 the
corresponding position in P defined by the multiple
alignment of P, B1, and B2, which in turn is defined by
how P is mutated to B1 and B2. For example, the multiple
alignment

0123456 7 8
P AGCTGAT-A-C
B1 ACCTGATCACG
B2 ACCTGCT-ACC
is defined by homozygous substitution G->C at 1st posi-

tion of P , heterozygous substitution A->C at 5th position
of P , heterozygous insertion of C after 6th position of P,
homozygous insertion of C after 7th position of P, and
heterozygous substitution C->G at 8th position of P. The
corresponding mappings are
m1 01234566778
m2 0123456778
After simulating reads from B1 and B2, let some varia-

tion calling method end up with the above list of varia-
tions. Then one can construct a haploid genome A by
applying greedily all predicted mutations to P from left
to right. In the general case, one could be left with over-
lapping mutations. Then one should construct another
haploid genome applying all homozygous mutations as
well; it is possible that there are more overlaps because
of prediction errors [4], but since our simulated ground-
truth is diploid, generating more predicted genomes is
not beneficial in this case.
In our running example, all mutations can be applied

simultaneously, as there are no overlapping heterozygous
mutations. The result is A = ACCTGCTCACC, which can
be aligned to the above multiple alignment with no errors
by allowing the alignment to recombine B1 and B2 at the
positions they share in common with P. We call such a
recombination a valid reference guided recombination.
The result is shown below (lower case showing the align-
ment of A).
A ACCTGCTCACC
B1 ACCTGATcaCG
B2 acctgct-Acc

Invariance
To highlight the issue of invariance, let us consider a dif-
ferent reference P = GATCAATGAG, a single diploid B
and a haploid A given by some variation calling method.

Mäkinen and Rahkola BMC Bioinformatics 2013, 14(Suppl 15):S13
http://www.biomedcentral.com/1471-2105/14/S15/S13

Page 2 of 6

Let us assume that B and A differ from P by the following
variations

position P B
0 GA G
3 C CC
4 A C
7 G A

position P A
1 A T
2 T C
3 C CC
3 CA C
7 G A

The evaluation method used in Variathon 2013 [3] finds
only two common variations: the one in position 3 and
the one in position 7. Even if one was to use a method to
match two invariant variants that make the same effect to
the reference, this would not help in this example; only
when the variants are applied altogether, the result is the
same genome GTCCCATAAG:
P GATC-AATGAG P GATC-AATGAG
B G-TCCCATAAG A GTCCC-ATAAG
To allow approximate predictions and account for invar-

iance, we propose to compute the unit cost (Levenshtein)
edit distance between A and any recombination B1 and B2

according to their alignment.
The computation of such edit distance is an easy exten-

sion of the standard dynamic programming, and has been
studied earlier under name jumping alignments in the
context of amino acid sequences [5]. However, global
alignment of full genomes is infeasible using standard
quadratic time dynamic programming. Therefore we
extend the diagonal doubling optimisation [6] to compute
the edit distance in O (dn) time, where d is the least edit
distance between the haploid and any valid reference
guided recombination of the diploid genomes, and n is the
maximum of the input sequence lengths.

Algorithm
We simultaneously fill two dynamic programming matrices
(d1i,j1) and (d

2
i,j2
) such that (d1i,j1) (resp. (d

2
i,j2
)) gives the mini-

mum edit distance between A[0 ... i] and R[0 ... j’] such that
R[0 ... j’] is a valid reference guided recombination of B1

[0 ... j1] and B2[0 ... j2] ending at B
1 (resp. ending at B2). Fill-

ing the matrices is an easy extension of standard dynamic
programming for edit distance: take minimum across the
matrices at columns j1 and j2 such that B1 and B2 can
recombine. Such j1 and j2 values have the property that

m1[j1 − 1] = m2[j2 − 1] = j or

m1[j1 − 1] = m2[j2] − 1 = j

and

m1[j1 − 2] �= j �= m2[j2 − 2]

This results into algorithm 1, where call d = diploid_align
(A, B1, B2, m1, m2, reference length) returns the minimum

edit distance d between A and any valid reference guided
recombination of B1 and B2.
Proof of correctness for Algorithm 1
Definition 1. Let A and B be strings. Now ed(A, B) is

the Levenshtein edit distance between the strings A and B.
Definition 2. Let A, B1 and B2 be strings. Rj is the refer-

ence guided recombination of B1[0 ... k] and B2[0 ... v] that
minimises ed(A, Rj), where k = max{i | m1[i] ≤ j} (likewise
for v). R1

j is as Rj but the last character must be from the
string B1. R2

j is defined similarly.
Lemma 1. Let A, B1 and B2 be strings and Rj, R

1
j and R2

j
as above. Now

ed(Ai, Rj) = min

{
ed(Ai, R1

j)
ed(Ai, R2

j).

Algorithm 1 Haploid to diploid alignment algorithm.
function DIPLOID _ALIGN(A, B1, B2, m1, m2,
reference_length)
d1[length(B1) + 1][length(A) + 1]
d2[length(B2) + 1][length(A) + 1]
/* Initialise as in Levenshtein distance. */
function CALCULATE_COLUMN(matrix, col,
B_char)
for i ¬ 1, length(A) do

matrix[col][i] ← min

⎧⎨
⎩
matrix[col − 1[i] + 1]
matrix[col − 1[i − 1] + [A[i] �= B char]
matrix[col][i − 1] + 1

function MIN_FROM_TO(from, to)
for i = 1 ® length(A) do

to[i] ← min
{
to[i]
from[i]

column1 ¬ 1
column2 ¬ 1
for j ¬ 0, reference_length − 1 do
if m1[column1 − 1] = j then
CALCULATE_COLUMN(d1, column1, B1[column1
− 1])
column1 ¬ column1 + 1
if m2[column2 − 1] = j then
CALCULATE_COLUMN(d2, column2, B2[column2
− 1])
column2 ¬ column2 + 1

if m1[column1 − 2] = j and (m2[column2 − 1] = j +
1 or m2[column2 − 2] = j) then
MIN_FROM_TO(d1[column1 − 1], d2[column2
− 1])
if m2[column2 − 2] = j and (m1[column1 − 1] = j +
1 or m1[column1 − 2] = j) then
MIN_FROM_TO(d2[column2 − 1], d1[column1
− 1])

Mäkinen and Rahkola BMC Bioinformatics 2013, 14(Suppl 15):S13
http://www.biomedcentral.com/1471-2105/14/S15/S13

Page 3 of 6

while m1[column1 − 1] ≤ j do
CALCULATE_COLUMN(d1, column1, B1[column1
− 1])
column1 ¬ column1 + 1

while m2[column2 − 1] ≤ j do
CALCULATE_COLUMN(d2, column2, B2[column2
− 1])
column2 ¬ column2 + 1

returnmin
{
d1[length(B1)][length(A)]
d2[length(B2)][length(A)]

Lemma 2. When a recombination

B2[0 . . . υ − 2]B1[k − 1 . . .]

is possible, that is,

m2[υ − 2] + 1 = m1[k − 1] or m2[υ − 2] = m1[k − 2],

it holds that

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
ed(Ai,R1

m1[k−2])
ed(Ai,R2

m2[υ−2])
+ 1

min

{
ed(Ai−1,R1

m1[k−2])
ed(Ai−1,R2

m2[υ−2])
+ δ

ed(Ai−1, R1
m1[k−1]) + 1

= ed(Ai,R1
m1[k−1])

where δ = 1 if A[i] ≠ B1[k − 1] and 0 otherwise.
Proof. First we observe that

m2 [υ − 2] + 1 = m1 [
k − 1

]
implies

m1 [
k − 2

] ≤ m2 [υ − 2] = m1 [
k − 1

] − 1.

Using this we get

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
ed(Ai,R1

m1[k−2])
ed(Ai,R2

m2[υ−2])
+ 1

min

{
ed(Ai−1,R1

m1[k−2])
ed(Ai−1,R2

m2[υ−2])
+ δ

ed(Ai−1, R1
m1[k−1]) + 1

= min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
ed(Ai,R1

m2[υ−2])
ed(Ai,R2

m2[υ−2])
+ 1

min

{
ed(Ai−1,R1

m2[υ−2])
ed(Ai−1,R2

m2[υ−2])
+ δ

ed(Ai−1, R1
m1[k−1]) + 1

and by Lemma 1

= min

⎧⎨
⎩

ed (Ai, Rm2 [υ−2]) + 1
ed(Ai−1, Rm2[υ−2]) + δ

ed(Ai−1, R1
m1[k−1]) + 1

= ed(Ai,R1
m1[k−1])

which is as claimed. Note that if m2[v − 2] = m1[k − 2],
the claim follows directly without the observation.
Lemma 3. If the strings B1 and B2 do not overlap, that is

m1 [
length

(
B1) − 1

]
< m2 [0] or

m
[
length

(
B2) − 1

]
< m1 [0]

then we can compute the diploid_align as the
Levenshtein distance between the string A and the
appropriate concatenation B1B2 or B2B1.
Theorem 1. The Algorithm 1 calculates

d1
[
k
]
[i] = ed(Ai,R1

m1[k−1])
) and

d2 [v] [i] = ed(Ai,R2
m2[υ−1])).

Proof. The proof is by induction over the index sum
i + k for the case

d1
[
k
]
[i] = ed(Ai,R1

m1[k−1])).

The other case is symmetric.
First consider the base cases. The algorithm initialises

the matrices as in the Levenshtein distance algorithm.
By Lemma 3 we can assume that the strings B1 and B2

overlap and thus no recombination needs to be consid-
ered before the first iteration of the algorithm. The base
cases are thus as required. Let us assume that the claim
holds for i + k < p + q. If the condition

m2 [
column2 − 2

]
== j and

(m1[column1 − 1] = = j + 1 or

m1[column1 − 1] = = j)

(1)

held on a previous iteration, then the minimum of the
columns d1[q − 1] and d2[column2 − 1] was assigned to
d1[q − 1]. It also means that

m2 [
column2 − 2

]
+ 1 = m1 [

q − 1
]
. (2)

Let δ = 1 if A[p] ≠ B1[q − 1] and 0 otherwise. Now the
algorithm calculates

d1[q][p] = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
min

{
d1[q − 1] [p]
d2[column2 − 1] [p]

+ 1

min
{
d1[q − 1] [p − 1]
d2[column2 − 1] [p − 1]

+ δ

d1[q] [p − 1] + 1

= min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

{
ed(Ap,R1

m1[q−2])
ed(Ap,R2

m2[column2−2])
+ 1

min

{
ed(Ap−1,R1

m1[q−2])
ed(Ap−1,R2

m2[column2−2])
+ δ

ed(Ap−1, R1
m1[q−1]) + 1

= ed(Ap,R1
m1[q−1])

Mäkinen and Rahkola BMC Bioinformatics 2013, 14(Suppl 15):S13
http://www.biomedcentral.com/1471-2105/14/S15/S13

Page 4 of 6

where the first equality holds by the induction
assumption. The second equality holds as by equation
(2) we can use Lemma 2 with the assignment v := col-
umn2 and k := q.
If condition (1) did not hold on the previous iteration,

no minimisation was performed. Thus the algorithm cal-
culates

d1[q] [p] = min

⎧⎨
⎩
d1 [q − 1] [p] + 1
d1[q − 1] [p − 1] + δ

d1[q] [p − 1] + 1

= min

⎧⎨
⎩
ed (Ap, R1

m1 [q−2]) + 1
ed(Ap−1, R1

m2[q−2]) + δ

ed(Ap−1, R1
m1[q−1]) + 1

= ed(Ap,R1
m1[q−1])

which is correct, as no recombination could be made
at this point.
Diagonal doubling
The runtime optimisation known as diagonal doubling [6]
can be used also with Algorithm 1. The idea of the original
algorithm is as follows. Consider checking whether the
Levenshtein edit distance between two sequences of length
n is at most k, where k is a given cutoff. Then it is enough
to do computation on diagonals i − j such that |i − j| ≤ [k/
2], since every change of diagonal costs 1; any path visiting
a cell outside this diagonal zone results into edit script
with cost more than k. With unknown cutoff, it is easy to
see that starting with k = 1, doubling the value of k at each
iteration, recomputing the diagonal zone, and stopping the
doubling when the computed distance value remains
unchanged, results in an O (dn) time algorithm, where d is
the edit distance. The idea works with technical changes
for two sequences of different length. With some care, one
can perform the computation in O (d) space.
To modify the optimisation for our haploid to diploid

alignment, the following details need to be taken into
account. Because the two columns calculated by the algo-
rithm at every iteration may not completely overlap, one
needs to make sure that the minimisation step is done cor-
rectly. The minimum of the two columns can only be
taken for the overlapping part. Because of the two
Levenshtein calculations, we also need to choose the start-
ing cutoff values with care. In particular one needs to start
with max(|length(A) − length(B1)|, |length(A) − length
(B2)|), so that the diagonal is big enough to cover the bot-
tom right corner in both matrices.
The diagonal doubling does not affect the correctness of

the Algorithm 1. The same argument as in the case of
Levenshtein distance applies here. Let us assume that we
are interested only on edit distances less than a certain
cutoff value. As both matrices contain a Levenshtein dis-
tance, it must be that the values grow monotonically when

we deviate from the diagonal. Thus, when taking the mini-
mum between the two columns, the values outside the
overlapping area must be greater than the current cutoff
value. This means that the optimum edit distance must
derive from the values in the overlapping area.

Results and discussion
To test the algorithm, we implemented it in C with the
diagonal doubling optimisation [6]. The diploid_a-
lign algorithm was first tested with generated data.
Two diploid strings were generated from a DNA string
of appropriate length. Single inserts, deletes and substi-
tutions were applied each with probability of 0.003, and
with probability 0.5 they were applied to both diploids.
This gives approximately n/100 variations in a string of
length n. The algorithm was then run five times with
the original string as the haploid input and an average
of the runtimes was taken. The test machine was a lap-
top with a Intel Core 2 Duo T7300 2GHz processor
running Linux. The results are shown in the Table 1.
The actual distance is always about half the generated
amount of variations, as nearly half the variations are
heterozygous and in those cases one allele has the same
base as the haploid input (original sequence).
The second test used artificially generated diploids

from human chromosome 20 created for a pilot varia-
tion calling challenge, Variathon 2013 [3]. From each of
the two submissions taking part in the challenge we cre-
ated one predicted haploid by a simple script that
applied the predicted variants to the reference genome.
These predicted haploids were then aligned to the
diploid. Table 2 shows the original evaluations from the
challenge (first 6 columns) and our new evaluation with
edit distance. As can be seen, our evaluation agrees with
the evaluation done for the challenge.
We also ran a small experiment to highlight the issue of

invariance. With the example given in Section Methods,

Table 1 Results of running diploid_align with
generated data.

input size runtime in seconds variations distance

10000 0.014000 95 48

20000 0.054000 190 90

30000 0.168000 291 145

40000 0.258000 382 190

50000 0.446000 478 236

60000 0.562000 561 281

70000 0.712000 656 329

80000 1.122000 745 377

90000 1.262000 843 419

100000 1.748000 931 460

1000000 148.619995 10051 4983

Mäkinen and Rahkola BMC Bioinformatics 2013, 14(Suppl 15):S13
http://www.biomedcentral.com/1471-2105/14/S15/S13

Page 5 of 6

Invariance, the evaluation method used in Variathon 2013
[3] finds only two common variations, as claimed. Not
surprisingly, the edit distance between the diploid and the
haploid is zero, as in both cases the variations when
combined produce the same genome GTCCCATAAG.

Conclusions
We proposed an approach for assessing variation calling
predictions in the case of artificial diploid genomes, using
a modification of global alignment with a diagonal dou-
bling optimisation to compute it on large inputs. The
motivation for the approach was to avoid the invariance
problems of direct variation comparison.
We tested the approach on a haploid instance to show

its robustness and scalability to complete (small) genomes.
We also compared the output of our algorithm with
applicable evaluations from a variation calling challenge
and the results agreed.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VM developed the idea. JR worked out the details of the algorithm,
implemented it, and ran the experiments. Both authors contributed to the
writing. Both authors read and approved the final manuscript.

Acknowledgements
We wish to thank the organisers and participants of the Variathon 2013
challenge for the data used in our experiments. Especially we wish to thank
Krista Longi for the artificial diploid genome data set.

Declarations
Publication of this article was supported by the Academy of Finland under
grant 250345 (CoECGR).
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 15, 2013: Proceedings from the Eleventh Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
14/S15.

Published: 15 October 2013

References
1. Nielsen R, Paul JS, Albrechtsen A, Song YS: Genotype and SNP calling

from next-generation sequencing data. Nat Rev Genet 2011, 12(6):443-451.
2. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M,

Krabichler B, Speicher MR, Zschocke J, Trajanoski Z: A survey of tools for
variant analysis of next-generation genome sequencing data. Briefings in
Bioinformatics 2013 [http://bib.oxfordjournals.org/content/early/2013/01/21/
bib.bbs086.abstract].

3. Variathon 2013. [http://bioinf.dimi.uniud.it/variathon].
4. Wittler R: Unraveling overlapping deletions by agglomerative clustering.

BMC Genomics 2013, 14(S-1):S12.

5. Spang R, Rehmsmeier M, Stoye J: A Novel Approach to Remote
Homology Detection: Jumping Alignments. Journal of Computational
Biology 2002, 9(5):747-760.

6. Ukkonen E: Algorithms for approximate string matching. Information and
Control 1985, 64(1-3):100-118.

doi:10.1186/1471-2105-14-S15-S13
Cite this article as: Mäkinen and Rahkola: Haploid to diploid alignment
for variation calling assessment. BMC Bioinformatics 2013 14(Suppl 15):
S13.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Table 2 Results with predicted haploids from Variathon.

haploid tp fp fn precision recall edit distance runtime in minutes

GBT 66190 323 29714 0.995 0.690 23232 690

BoBiocomp 86589 2288 9267 0.974 0.903 17422 380

Mäkinen and Rahkola BMC Bioinformatics 2013, 14(Suppl 15):S13
http://www.biomedcentral.com/1471-2105/14/S15/S13

Page 6 of 6

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.ncbi.nlm.nih.gov/pubmed/21587300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21587300?dopt=Abstract
http://bib.oxfordjournals.org/content/early/2013/01/21/bib.bbs086.abstract
http://bib.oxfordjournals.org/content/early/2013/01/21/bib.bbs086.abstract
http://bioinf.dimi.uniud.it/variathon
http://www.ncbi.nlm.nih.gov/pubmed/23369161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12487762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12487762?dopt=Abstract

	Abstract
	Motivation
	Results

	Background
	Methods
	Problem
	Invariance

	Algorithm
	Diagonal doubling

	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

