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Abstract

Background: Gene expression is a central process in all living organisms. Central questions in the field are related
to the way the expression levels of genes are encoded in the transcripts and affect their evolution, and the
potential to predict expression levels solely by transcript features. In this study we analyze S. cerevisiae, a model
organism with the most abundant relevant cellular and genomic measurements, to evaluate the accuracy in which
expression levels can be predicted by different parts of the transcript. To this end, we perform various types of
regression analyses based on a total of 5323 features of the transcript. The main advantage of the proposed
predictors over previous ones is related to the accurate and comprehensive definitions of the relevant transcript
features, which are based on biophysical knowledge of the gene transcription and translation processes, their
modeling and evolution.

Results: Cross validation analyses of our predictors demonstrate that they achieve a correlation of 0.68/0.68/0.70/
0.61/0.81 with mRNA levels, ribosomal density, protein levels, proteins per mRNA molecule (PPR), and ribosomal
load (RL) respectively (all p-values <10−140). When we consider predictors that are based exclusively on the features
related to different parts of the transcript (5’UTR, ORF, 3’UTR), the correlations with protein levels were 0.27/0.71/
0.25 (all p-values <10−5), suggesting that the information in the UTRs is redundant, and features of the ORF alone
yield similar predictions to the ones obtained based on the entire transcript.

Conclusions: The reported results demonstrate that in the analyzed model organism the expression levels of a
gene are encoded in the transcript. Specifically, the prediction of a large fraction of the variance of the different
gene expression steps based on transcript features alone is feasible in S. cerevisiae. We report dozens of novel
transcript features related to expression levels predictions, demonstrating how such analyses can aid in
understanding the gene expression process and its evolution, and how such predictors can be designed for other
organisms in the future.

Background
Gene expression is a fundamental cellular process by
which proteins are synthesized based on the information
coded in the genes. Understanding gene expression, and
specifically how this process is encoded in the coding

regions and UTRs and thus affects transcript evolution,
has been the topic of dozens of papers in recent years
[1-5]. The two major steps of gene expression are the
transcription of the gene to mRNA molecules and the
translation of mRNA molecules to proteins by the ribo-
some [6]. The protein abundance of a gene is related to its
transcription rate/mRNA levels, its translation rate, and
the degradation rate of the corresponding mRNA mole-
cules and proteins. Specifically, if we assume constant
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mRNA levels, the translation rate should have a positive
effect on the protein abundance, while the degradation
rate should have a negative effect [7]. Expressly, it was
suggested that protein abundance is correlated with
adaptation to the tRNA pool [8], mRNA folding at the
beginning of the ORF [9], ORF length [10], GC content
[11], and various ancillary features of the 5’UTR [1]. In
addition, it was found that highly expressed genes tend
to evolve at a slower rate [12], and to have more protein-
protein interactions [13].
In most of the biomedical studies, the protein levels of

a gene are a far more important variable than its mRNA
levels. However, today it is relatively easy to measure
mRNA levels of genes [14], while for technical reasons
the technologies for performing large scale measurements
of protein abundance lag behind. For example, the GEO
database includes hundreds of thousands of large scale
measurements of mRNA levels, whilst there are only a few
such large scale measurements of protein abundance
[1,15-17]. Therefore, researchers from various fields are
forced to use mRNA levels, the rather rough proxy of
protein abundance, instead of the protein abundance
itself. Thus, in recent years most of the studies in the
field are aimed at predicting gene protein levels as
opposed to mRNA levels. Concurrently, technologies to
measure translation of mRNAs into proteins are now
rapidly emerging, transforming our understanding of the
proteome [1,9,15,17-31].
Previous studies aimed at predicting gene protein and

mRNA levels are based on two major approaches, the
machine learning approach and the biophysical
approach. The biophysical approach is usually based on
predictive simulations that are inspired by biophysical
understanding of the studied processes. The machine
learning approach, on the other hand, is based on statistical
predictive inference of relations between sequence features
and gene expression aspects, and it does not necessarily
requires prior knowledge of the biophysical gene expres-
sion mechanisms.
Specifically, the first and more traditional machine

learning approach includes, for example, codon compo-
sition features such as the Codon Adaptation Index
(CAI, [32]), which is a simple effective measure of
synonymous codon usage bias. The index uses a refer-
ence set of highly expressed genes from a species to
assess the relative merits of each codon, and a score for
a gene is calculated from the frequency of use of all
codons in that gene. The index assesses the extent to
which selection has been effective in modulating the
pattern of codon usage. Other ‘non biophysical’
approaches include regressors and various machine
learning techniques that are based on a combination of
transcript sequence features and various large scale
measurements related to gene expression [1,3,33].

The biophysical approach is based on physical under-
standing of the gene expression process, and includes
computational biophysical models aimed at simulating
the translation process and other stages of gene expres-
sion. Though theoretical physical models and simulations
related to translation have been suggested over thirty years
ago [34,35], only recently have such approaches been
implemented on real large-scale genomic data. Biohysical
models aim at considering the dynamics and physical
nature of the process. The most basic features are the flow
of ribosomes and the interactions between them [7,36-38].
These features can be modeled in a deterministic [38], or
stochastic manner [7] in which the translation time of
each codon is a random variable (e.g. with exponential
distribution).
In this study we implemented, for the first time, a

combined approach which employs the machine learning
approach atop the biophysical one; in addition to the reg-
ular transcript features, various features and predictions
that are outputs of the biophysical models are exploited
and analyzed. We demonstrate the advantages of this
approach over the previous ones.
The major aims of this study are as follows (Figure 1):

1) Design accurate predictors of the protein levels,
mRNA levels, proteins per mRNA molecule (PPR, see
Additional file 1: Supplementary Methods), ribosomal
load (RL, see Additional file 1: Supplementary Methods),
and ribosomal densities of S. cerevisiae endogenous
genes based only on features of its transcripts. 2) Report
and understand the features with the highest contribution
to these predictors. 3) Compare the contribution of the
features in different parts of the transcript (5’UTR/ORF/
3’UTR) to the expression levels of the gene, via the quality
of the predictors based on each of these sets of features
separately. 4) All the predictors inferred here are based
solely on features of the transcript; in the strictest manner
we ensured that no transcript feature is directly or indir-
ectly based on gene expression measurements; this enables
us to infer relations between properties of the transcripts
and their expression aspects.

Methods
All the details of the Methods appear in the Additional
file 1 (Supplementary Methods).

Results
To understand the effect of transcript features shaped
by evolution on different stages of gene expression, we
compare the contribution of each part of the transcript
to protein abundance (PA), ribosomal density, mRNA
levels, proteins per mRNA molecule (PPR) and the ribo-
somal load (RL), by building regression predictors for
each segment, and for all the segments together.
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Focusing on the model organism S. cerevisiae, that has
relatively ample and diverse large scale genome-wide data.
The evolutionary systems biology approach suggested

in this study is novel for four main reasons. First, we gen-
erate for the first time a very large number of 5,323 tran-
script features related to computational biophysical
modeling of the gene expression process; many of these
features have been suggested and studied for the first
time. Second, we propose and analyze here, for the first
time, a combination of features related to the biophysical
aspects of gene translation (and other stages of gene
expression) via a machine learning approach. Third, we
demonstrate how our approach can help to better predict
variables related to gene expression, to rank different fea-
tures, and to improve the understanding of the biophy-
sics and evolution of gene expression. Finally, as
aforementioned all the transcript features analyzed here
are not based directly or indirectly on gene expression
measurements, enabling accurate estimation of the frac-
tion of gene expression variance that can be explained by
the transcript, and the way it was shaped by evolution.
An illustration of the approach appears in Figure 1.

Exploiting 5323 transcriptional features
The long list of features we extracted and analyzed, fol-
lowed with explanations of their rationale appear in the

Additional files 1, 2, 3. Briefly, we took into account
amongst other features of the transcript, the lengths of the
different segments, the ratios between the lengths of the
UTRs and coding sequences and UTRs, number of ATGs,
GC content, the predicted (MATLAB rnafold) and mea-
sured (PARS, [24]) folding energy in different parts of the
transcript (Additional file 1: Supplementary Methods), the
nucleotide context of the START codon [39]. In addition,
it was shown that ATG codons near the beginning of the
ORF may promote alternative translation initiation and
thus should be under selection for elimination in highly
expressed genes [40,41]; thus, we generated several fea-
tures related to this phenomenon, such as the distance of
the first alternative ATG from the main START codon,
number of uORFs which are additional Open Reading
Frames in the UTRs, what we termed sORFs which are
shifted Open Reading Frames beginning at alternative
ATGs downstream in the ORF from the main START
codon, and the ATG context score [40] (Additional file 1:
Supplementary Methods). To study the adaptation of
codons to the tRNA pool we also considered the tAI [42]
and the CAI, to estimate adaptations of the codons of
highly expressed genes to various cellular resources [32];
to consider the effect of codon order and interactions
between ribosomes on translation rates we consider the
Totally Asymmetric Simple Exclusion Process (TASEP)

Figure 1 A flow diagram and illustration of the study. A-B. Based on a biophysical understanding of the translation process we extract
features from the three parts of the transcript (5’UTR/ORF/3’UTR), corresponding to the three stages of translation (initiation, elongation,
termination); but also to other stages in gene expression (transcription, mRNA and protein degradation), and from the entire transcript. C. Large
scale cellular measurements of gene expression (mRNA, PA, RD) are collected and normalized. D.-F. Machine learning and feature selection
approaches are employed based on the features and cellular data (D.) to infer predictors of gene expression (E. ) and improve the biophysical
understanding of the gene expression process, its evolution, and its modeling (F.).
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translation rate prediction [43]. In addition, we considered
the number of base pairs in the two dimensional folding of
the mRNA in different parts of the transcript, measures of
codon bias and amino acid bias (also taking into account
the frequency of all codon and amino acid pairs) (see
Additional files 1, 2, 3 for a detailed description, number
and default value of the features in each predictor).
Features whose traditional estimation relies on expres-

sion levels were calculated in a novel manner independent
of the expression levels, so that they are solely derived
from the transcript (detailed description in the following
section and Additional file 1: Supplementary Methods).

Inferring families of predictors based on a robust
Jackknifing procedure
We built linear and non linear predictors for the three
parts of the transcript, the 5’UTR, ORF, and 3’UTR
separately, and also combining the three together, in the
following manner. The data was divided into terciles: a
train, test and validation set, performing this sampling
100 times, thus resulting with 100 predictors per seg-
ment/entire transcript. The split between train and test
helps avoiding over-fitting while repeating the procedure
enables estimating the robustness of the inferred features.
In addition, our approach shows that there is overlapping
between the different features; hence, many predictors
with similar performances exist. Our approach is similar
but not identical to the random forest approach (see,
for example [44], and a comparison in Additional file 1:
Supplementary Methods ).
Additionally, this enabled us to perform statistical ana-

lyses of the prevalence, and thus significance of features.
We implemented a greedy feature selection process, by
which in each iteration every feature is added respec-
tively to the growing regressor, and the feature contri-
buting to the highest correlation is selected (Additional
file 1: Supplementary Methods). At the end of each
stage, the current predicted regressor coefficients of the
selected features are assessed on the test set. The
selected regressor is then evaluated on the validation
set, in order to avoid overfitting.
The train set was utilized in-order to estimate features

whose calculation relies on expression levels, instead of
the highly expressed genes traditionally used for their
estimation. These features include for example the CAI,
tAI, TASEP and ATG Context Score (Additional file 1:
Supplementary Methods). In order to deduce the contri-
bution of expression levels via the optimization of such
features to our regressor scheme’s predictive power, we
also compared the attained results to the ones obtained
based on features that were estimated according to
expression level measurements.
To model non-linear relations we used Multivariate

Adaptive Regression Splines (MARS), which is a form of

regression analysis introduced in [45]. It is a non-
parametric regression technique, and can be seen as an
extension of linear models that automatically models
non-linearities and interactions. See Additional file 1
(Supplementary Methods) section for a detailed description
of our predictors’ methodology. The results of the non-
linear predictors are similar to those of the linear predic-
tors, providing an additional validation that the reported
results are robust and are not specific to the (linear)
model we chose to use here.
In each case mentioned above (gene expression measure,

type of the regressor, and the way the features are
inferred), we compute 100 predictors and report the per-
formances of the median predictor (among the 100 ones)
in terms of correlation with the real gene expression mea-
surements; the features are ranked based on the number
of times they appear in the different predictors (a score
between 0 - 100).
Throughout the figure legends the following acronyms

are used: × AA: × Amino Acid (e.g. C Amino Acid);
XXX cod: XXX Codon (e.g. ACG Codon); BP: Base
Pairs; ATG Dist: the distance of the first ATG in the
relevant transcript segment (5’UTR/ORF/3’UTR) from
the main start ATG; Best/Mean Rel ATG CS: The best
or mean relative ATG Context Score (see Additional file
1: Supplementary Methods), if Rel is omitted then it
refers to the absolute Context Score; 30C: first/last (if in
the 5’UTR) 30 codons of the relevant segment; F0,
F1, F2: we considered three reading frames, frame 0 is
identical to the reading frame of the gene ORF, frames
1 and 2 represent a frame shift of 1 or 2 nucleotides
relative to the main frame; FE: predicted folding energy
(see Additional file 1: Supplementary Methods); Parallel
Analysis of RNA Structure (PARS; see Additional file 1:
Supplementary Methods): measured folding energy;
expPARS: the exponent of the PARS score (see Addi-
tional file 1: Supplementary Methods).

Predictors of gene expression variables based solely on
features of the transcript
At the first stage we investigated how well measures of
gene expression can be predicted based on all the fea-
tures of the transcript. To this end as aforementioned,
for all the gene expression variables we repeatedly
sampled a tercile of the data (train set), inferred greedily
a predictor based on the transcript features, terminating
its construction based on the second tercile (test set;
Additional file 1: Supplementary Methods), and imple-
mented it on the remainder of the data (validation set;
Additional file 1: Supplementary Methods). Figure 2A-C
includes the dot plot and correlation of the predicted vs.
real protein levels (A), ribosomal densities (B), mRNA
levels(C), and Figure 3A-B includes the dot plot and
correlation of the predicted vs. estimated ribosomal load (A),
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and proteins per mRNA molecule (B), respectively, for
the median linear and non-linear predictors (Additional
file 1: Supplementary Methods). As can be seen in
Figures 2, 3 for the linear/non-linear regressors, all the
correlations are significantly high – a correlation of
0.70/0.71 with protein levels (based on 20/10 features
on average), 0.68/0.7 with ribosomal density (based on
24/11 features on average), 0.68/0.68 with mRNA levels
(based on 22/12 features on average), 0.81/0.81 with
ribosomal load (based on 24/13 features on average),

and 0.61/0.62 with proteins per mRNA molecule (based
on 18/11 features on average), (all p-values < 10-270),
with all the predictors based on less than 24 features on
average. These results are significantly higher than those
previously reported for biophysical based models [7] or
machine learning based models [3] alone (and when con-
sidering only transcript features). Specifically, the results
demonstrate that variables related to the expression
levels can be predicted with very high accuracy based on
the transcript alone (correlation above 0.61 in all cases).

Figure 2 Entire Transcript linear and non-linear predictors results. Dot plot of the predictions vs. measurements for the validation set of the
predictor with the median results for the A. protein levels, B. ribosomal densities, C. mRNA levels, for the entire transcript based on the, the
combined linear (LIN) and non-linear (MARS) predictors (Additional file 1: Supplementary Methods). The best features according to the number
of predictors they participated in (Additional file 1: Supplementary Methods) of the D. protein levels predictor, E. ribosomal density predictor, and
F. mRNA levels predictor, for the entire transcript, for the combined linear (LIN) and non-linear (MARS) predictors (Additional file 1:
Supplementary Methods).
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Figure 2D-F includes the top features used in many of
the predictors (maximal value is 100, as the number of
predictors built for each translation measure), for real
protein levels (D), ribosomal density (E), and mRNA
levels (F), and Figure 3C-D for the estimation of riboso-
mal load (C), and proteins per mRNA molecule (D)
respectively. These features can elucidate the different
mechanisms of gene expression, the way the efficiency of
transcription and translation is encoded in the transcript,
and the manner in which evolution shapes transcript
sequences. The following is a brief set of examples:
One prominent feature is the tAI, which is based on

the adaptation of codons to the tRNA pool of the organ-
ism [42]; as can be seen, tAI is a top feature in the case of
mRNA, PA, and RL predictions. It was suggested that
tAI, a measure of the adaption to the tRNA pool is higher
in highly expressed genes due to stronger such selection
in these genes [36,42,46]. Specifically the adaptation to
the tRNA pool affects the translation elongation speed
and thus improves the translation rate, hence effecting
PA in a causal way [8] (a possible explanation for the
observed contribution of this feature to PA prediction);

in addition, it is known that there is a contrapositive
relation between ribosomal speed and density [9,47];
thus, high translation elongation speed should decrease
ribosomal density and therefore decrease the cost of pro-
tein expression in a non-causal way [9]; this relation is
more important in genes with high mRNA levels and/or
high ribosomal density that potentially consume more
ribosomes (a possible explanation for the observed contri-
bution of this feature to mRNA, PA, and RL predictions).
The strength of the folding along the different parts of

the RNA transcript is also known to contribute to the
efficiency of various gene expression steps, including
translation initiation [8,9,48] and translation elongation
[49,50]. Folding was also suggested to be under stronger
selection (for strong folding) in highly expressed genes
possibly to prevent aggregation of mRNA molecules [49].
Indeed, we see in all predictors (mRNA, RD, RL, PA, and
PPR) variables related to the folding of the mRNA and its
GC content in different parts of the transcript.
Another important feature that appears in the cases of

RD and PPR prediction is the length of the ORF or
transcript, supporting the conclusion that highly

Figure 3 Entire Transcript linear and non-linear predictors results. Dot plot of the predictions vs. estimated measurements for the validation
set of the predictor with the median results for the A. ribosomal load, and B. proteins per mRNA molecule, for the entire transcript, for the
combined linear (LIN) and non-linear (MARS) predictors (Additional file 1: Supplementary Methods). The best features according to the number
of predictors they participated in (Additional file 1: Supplementary Methods) of the C. ribosomal load predictor, and D. proteins per mRNA
molecule predictor, for the entire transcript, for the combined linear (LIN) and non-linear (MARS) predictors (Additional file 1: Supplementary
Methods).
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translated genes in yeast are under selection to be more
compact (e.g. to minimize cellular resources such as the
metabolic costs needed for their synthesis) [51].
Interestingly an important feature related to RD is the

folding at the beginning of the 5’UTR, which is known
to be related to the efficiency of translation initiation
(strong folding decreases the efficiency of translation
initiation [9,47]). In the case of mRNA levels, the folding
and nucleotide composition of the 3’UTR are important
features that may be related to the mRNA degradation
rate [52,53].
Finally, a long list of codons and amino acids appears

in the different predictors.
Among others, the frequency of the codons GGT and

CTC appear in the mRNA predictor and tend to have
negative coefficients, while codon CCC tends to have a
positive coefficient. These codons can be related to
mRNA levels in a causal way; for example, by increasing/
decreasing transcription efficiency or effecting degrada-
tion rate. These codons may be related to mRNA levels
in a non-causal way by having positive/negative effect on
translation and since PA and mRNA levels tend to
correlate.
Codons features tend to appear also in other predic-

tors, for example, the codons CGA and ATA appear in
the RD predictor and tend to have positive coefficients;
the codons GCC and ATC tend to appear in the PA
predictor with positive coefficients; the codons ATA and
GCC tend to appear in the PPR predictor with positive
coefficients; codons CGA and CCC tend appear in the
RL predictor with negative coefficients.
As mentioned, the predictors also include features such

as tAI that correspond to codon elongation rates; thus,
this fact may suggest that these codons are not repre-
sented accurately in the current elongation rate measures
(e.g. the tAI and CAI).

Predictors based on the 5’UTR, ORF, and 3’UTR features
separately
At the next stage, we aimed at understanding the quality
of prediction that can be gained when using features of
each of the main parts of the transcript (5’UTR, ORF, and
3’UTR) separately. Such an analysis can help us under-
stand the relative contribution of each stage of translation
(initiation, elongation, termination) to the overall trans-
lation efficiency. In addition, we aimed at better under-
standing the relevant gene expression features of each of
these three parts as shaped by evolution. Furthermore, as
there is much redundancy among the different features,
such that certain features may mask other important ones
in the combined regressor, we inferred the five aforemen-
tioned predictors (PA, RD, mRNA, RL and PPR) on the
basis of the transcript’s three main parts separately.
A summary of the results appears in Figures 4, 5, 6, 7, 8, 9.

As can be seen, the correlations obtained for the linear
and non-linear predictors respectively based on the fea-
tures of the ORF alone (Figure 6A-C and 7A-B) are very
similar to the ones obtained when considering the entire
transcript (Figure 2A-C and 3A-B), correlations of 0.71/
0.72 with PA (based on 20/12 features on average), 0.67/
0.69 with RD (25/12 features on average), 0.67/0.68 with
mRNA (20/11 features on average), 0.80/0.81 with RL (22/
10 features on average), and 0.61/0.62 with PPR (19/9
features on average) respectively (all p-values <10−35), sug-
gesting that for inferring a good predictor of endogenous
gene expression, the information in the UTRs is redun-
dant. This result supports the conjecture that though
some of the gene expression regulation mechanisms are
known to be encoded mainly in the UTRs (e.g. mRNA
degradation and translation initiation), evolution shaped
ORFs in such a way that gene expression measurements
can be inferred accurately based on the ORF alone.
The correlations of the linear and non-linear predictors

respectively that are based on the UTRs were markedly
lower: correlations of 0.27/0.21 with PA (8/3 features on
average), 0.32/0.30 with RD (13/5 features on average),
0.27/0.26 with mRNA (10/4 features on average), 0.34/
0.32 with RL (9/7 features on average), and 0.21/0.14
with PPR (3/5 features on average) respectively in the
case of the 5’UTR features based predictors (all p-values
<10−5); correlations of 0.25/0.18 with PA (11/7 features
on average), 0.36/0.34 with RD (18/4 features on aver-
age), 0.54/0.54 with mRNA (11/8 features on average),
0.61/0.61 with RL (13/5 features on average), and 0.52/
0.47 with PPR (10/2 features on average) respectively in
the case of the 3’UTR features based predictor (all
p-values <10−5).
The relevant features in the case of the 5’UTR (Figures

4, 5) in all the gene expression measurements include the
folding strength (and GC content) at the end of the
5’UTR, which is related to translation initiation efficiency
via ribosomal binding efficacy [8,9,48]. An additional fea-
ture is the length of the 5’UTR which is shorter for highly
expressed genes (average length of 67.88 for the top 2%
highly expressed genes, as opposed to 82.58 for the rest
of the genes). Finally, many features are related to alter-
native translation initiation from the 5’UTR and include
the number of alternative ATGs, their distance from the
beginning of the ORF, and the optimality of the nucleo-
tide context of the alternative ATGs to translation initia-
tion [39,40]. These features may affect the rate and
efficiency of translation initiation of the major ORF in
the transcript and thus effect in a casual way the PA, RD,
PPR, and RL; the mRNA is probably related to these vari-
able in a non direct/causal way: highly expressed genes
(e.g. in terms of PA and RD) are selected for efficient
translation initiation and are also selected for higher
mRNA levels.
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The relevant features in the case of the ORF (Figures 6, 7)
are generally similar to the ones obtained for the entire
transcript (Figures 2, 3). Specifically, they include the tAI,
features related to mRNA folding, and ORF length.
In addition, also in this case, the predictors included

features related to the frequency of codons and amino
acids; for example:
The frequency of the codons CCC, TTG, and GGT

appear in the ORF based mRNA predictor and tend to
have negative coefficients; the codons AGG and ATA
tend to appear in the ORF based RD predictor with
negative and positive coefficients respectively; the

codons CGA and GCC tend to appear in the ORF based
PA predictor with positive coefficients; the codons GCC
and ACC tend to appears in the ORF based PPR predictor
with positive coefficients; and the codons CCC and CGA
tend to appear in the ORF based RL predictor with nega-
tive coefficients respectively. These results support the
conjecture that the frequency of the different codons affect
various aspects of gene expression in a way not modeled
via conventional measures such as tAI, CAI, TASEP, etc.
Interestingly, the most relevant features in the case of

the 3’UTR (Figures 8, 9) are similar to the ones obtained
for the 5’UTR. The top features include the 3’UTR

Figure 4 5’UTR linear and non-linear predictors results. Dot plot of the predictions vs. measurements for the validation set of the predictor
with the median results for the A. protein levels, B. ribosomal densities, C. mRNA levels, for the 5’UTR linear (LIN) and non-linear (MARS)
predictors (Additional file 1: Supplementary Methods). The best features according to the number of predictors they participated in (Additional
file 1: Supplementary Methods) of the D. protein levels predictor, E. ribosomal density predictor, and F. mRNA levels predictor, for the 5’UTR
linear (LIN) and non-linear (MARS) predictors (Additional file 1: Supplementary Methods).

Zur and Tuller BMC Bioinformatics 2013, 14(Suppl 15):S1
http://www.biomedcentral.com/1471-2105/14/S15/S1

Page 8 of 15



length and aspects of its mRNA folding. Additional features
are related to possible alternative translation initiation from
the 3’UTR, and include the number of alternative ATGs,
their distance from the end of the ORF, and the optimality
of the nucleotide context of the alternative ATGs to transla-
tion initiation. This is possibly related to the fact that during
the eukaryotic translation initiation there is interaction
between the 3’ end (poly A at the 3’UTR) of the transcript
and the initiation complex at the 5’ end (5’UTR) of the tran-
script [6]; the pre-initiation complexes scanning the 5’end
of the transcript may diffuse to its 3’end with high probabil-
ity and perform undesired initiation event that are selected
against in highly expressed genes.

Predictors including features of the transcript optimized
via mRNA levels
In this section, we briefly report the results obtained
based on transcript features, of which some (e.g. tAI,
ATG context, TASEP, etc), include parameters that
were optimized/inferred based on mRNA levels mea-
surements. For example, the tAI includes weights corre-
sponding to codon-tRNA interaction efficiency which
were inferred based on the correlation between the tAI
and mRNA levels in S. cerevisiae [42].

First, it is not clear if such an optimization can
improve the predictions. Second, it is interesting to see
the predictions of variables such as PA and PPR based
on the mRNA dependent features (see Additional file 1:
Supplementary Methods for more details).
In the current analyses, the set of transcript features

includes 5432 features (see Additional files 1, 2, 3 for a
detailed description including list of features and default
value of the features in each predictor). All the detailed
results appear in the Additional file 1 (supplementary
material); here we only report the highlights.
First, we investigated how well measures of gene

expression can be predicted based on all the features of
the transcript, when optimizing the relevant features via
mRNA levels. Figure S1A-C in Additional file 1 includes
the dot plot and correlation of the predicted vs. real
protein levels (A), ribosomal densities (B), mRNA levels
(C), and Figure S2A-B in Additional file 1 includes the
dot plot and correlation of the predicted vs. estimated
ribosomal load (A), and proteins per mRNA molecule
(B), respectively, for the median linear predictors (Addi-
tional file 1: Supplementary Methods). As can be seen
in Additional file 1: Figures S1-S2 all the correlations
are significantly high – a correlation of 0.77 with protein

Figure 5 5’UTR linear and non-linear predictors results. Dot plot of the predictions vs. estimated measurements for the validation set of the
predictor with the median results for the A. ribosomal load, and B. proteins per mRNA molecule, for the 5’UTR linear (LIN) and non-linear (MARS)
predictors (Additional file 1: Supplementary Methods). The best features according to the number of predictors they participated in (Additional
file 1: Supplementary Methods) of the C. ribosomal load predictor, and D. proteins per mRNA molecule predictor, for the 5’UTR linear (LIN) and
non-linear (MARS) predictors (Additional file 1: Supplementary Methods).
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levels (based on 18 features on average), 0.67 with ribo-
somal density (based on 20 features on average), 0.92
with ribosomal load (based on 21 features on average),
and 0.71 with proteins per mRNA molecule (based on
19 features on average), (all p-values < 10-141).
From the results we learn that the prediction of post-

transcriptional aspects of gene expression (i.e. measure-
ments that are not mRNA levels) cannot be improved
significantly when adding mRNA levels information
indirectly, i.e. features derived from it. In addition, the

results demonstrate that combining the machine learn-
ing and biophysical approach can yield improved corre-
lation with PA than the one obtained before for each of
the approaches separately [3,7]. One central feature that
appears in almost all the entire transcript based predic-
tors (RD, PPR, mRNA, RL) is the Totally Asymmetric
Exclusion Process (TASEP); as mentioned this feature is
based on a biophysical simulation of gene translation
and considers the adaptation of codons to the tRNA
pool but also (among other aspects) the order of codons.

Figure 6 ORF linear and non-linear predictors results. Dot plot of the predictions vs. measurements for the validation set of the predictor
with the median results for the A. protein levels, B. ribosomal densities, C. mRNA levels, for the ORF linear (LIN) and non-linear (MARS) predictors
(Additional file 1: Supplementary Methods). The best features according to the number of predictors they participated in (Additional file 1:
Supplementary Methods) of the D. protein levels predictor, E. ribosomal density predictor, and F. mRNA levels predictor, for the ORF linear (LIN)
and non-linear (MARS) predictors (Additional file 1: Supplementary Methods).
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Thus, this result supports the conjecture that the order
of codons and not only their content/average value has
important contribution to various gene expression
aspects, and evolution shapes the codon order in endo-
genous genes to optimize the different stages of the
gene expression process [36,40,50,54].

Conclusions
We report a new strategy for predicting and analyzing
gene expression that is based on exploiting features of
the transcript, performing feature selection, and merging
them via a regression model. The study connects fea-
tures of the transcript shaped by its evolution and mea-
surements of various steps of gene expression.
The results gained in this study are numerous and are

founded on deep biophysical analyses and modeling of
this process. Amongst others, we show that different
stages of the gene expression process can be predicted
with very high accuracy (all correlations above 0.61)
based on only around 10-24 features (for the regressors
based on the entire transcript), which are based solely
on transcript nucleotide/codon composition. We show
that PPR predictors based on ORF features are signifi-
cantly more qualitative (twice higher correlation) than

predictors based on the UTRs alone; this result supports
the hypothesis that translation elongation (and not only
initiation) is also a rate limiting stage of gene transla-
tion, and affects translation in a causal or non-causal
way; thus, aspects of this process are encoded in the
ORF, and evolution shapes ORFs’ content based on the
proteins they encode, but also based on their gene
expression regulation.
It is important to understand that the causal relations

reported in this study, based on endogenous genes, are
not always clear; this is related to the fact that often
highly expressed genes are under evolutionary selection
for various features that do not improve translation in a
direct way. Thus, these features may have significant
correlations with genes’ protein levels, which are not
causal, nor do they affect their translation efficiency. For
example, the frequency of an amino acid in a gene can
have high correlation with its protein levels due to the
specific functionality of the highly expressed proteins,
and not due to the fact that this amino acid indeed
improves the translation rate.
One interesting result reported here is the significant

correlations between the transcript based predictors of
mRNA levels and the actual mRNA levels (correlation

Figure 7 ORF linear and non-linear predictors results. Dot plot of the predictions vs. estimated measurements for the validation set of the
predictor with the median results for the A. ribosomal load, and B. proteins per mRNA molecule, for the ORF linear (LIN) and non-linear (MARS)
predictors (Additional file 1: Supplementary Methods). The best features according to the number of predictors they participated in (Additional
file 1: Supplementary Methods) of the C. ribosomal load predictor, and D. proteins per mRNA molecule predictor, for the ORF linear (LIN) and
non-linear (MARS) predictors (Additional file 1: Supplementary Methods).
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of 0.68). This is surprising since it is assumed that tran-
scription is mainly regulated via the promoter (which is
not part of the transcript), while translation is regulated
via patterns that appear in the transcript. This result
supports the conjecture that aspects of the mRNA elon-
gation and degradation steps (and not only translation)
are also partially encoded in the transcript and thus may
affect its evolution.
The reported results suggest several interesting future

directions:
First, in this study we decided to concentrate on S.

cerevisiae as this organism has the most high quality

large scale measurements of gene expression. It will be
interesting to generalize the reported results to other
organisms, including multi-cellular organisms, when
such data is available.
Second, as aforementioned, one interesting conclusion

reported in this study is the predictors based on the
ORF are significantly better than those based on the
UTRs; and that the information encoded in the UTRs is
redundant as it does not significantly improve the ORF
prediction. It will be challenging to show that this con-
clusion is not due to the fact that the ORF simply tends
to be longer than the UTRs (mean ORF length is 1490.8

Figure 8 3’UTR linear and non-linear predictors results. Dot plot of the predictions vs. measurements for the validation set of the predictor
with the median results for the A. protein levels, B. ribosomal densities, C. mRNA levels, for the 3’UTR linear (LIN) and non-linear (MARS)
predictors (Additional file 1: Supplementary Methods). The best features according to the number of predictors they participated in (Additional
file 1: Supplementary Methods) of the D. protein levels predictor, E. ribosomal density predictor, and F. mRNA levels predictor, for the 3’UTR
linear (LIN) and non-linear (MARS) predictors (Additional file 1: Supplementary Methods).
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while mean 5’UTR/3’UTR lengths are 82.33/133.62).
This is not a trivial task as there is no simple mathematical
model that describes the way regulatory information is
encoded in the transcript considering the interaction of
the transcript with other cellular properties, and the over-
lapping of different types of information encoded in it (e.g.
the amino acid content of a protein; see the Additional file
1: Supplementary Methods regarding initial analyses we
performed to answer this question).
Third, the features inferred here can teach us about

transcript evolution and the way its expression aspect
constraints its evolution. We show that various expression
aspects of genes can be predicted solely based on their
transcript; specifically, that highly expressed genes tend to
have specific codons, shorter UTRs, improved tAI and
CAI, weak/strong folding in different parts of the tran-
script, and more. These features probably tend to optimize
expression in various ways; thus, the results reported here
support the conjecture that ‘synonymous’ mutations (in
terms of the effect on the amino acid content) influencing
these features should affect the fitness of the organism,
and thus should not be treated as synonymous. Various
such mutations have been previously reported [5,55]; the

long list of features reported here may provide additional
such cases, which can be considered when estimating
non-neutral/neutral evolution [56,57]. More generally, the
results reported in the current study suggest that the ORF
and UTRs of a gene are shaped by the different stages of
their expression levels, thus we need to consider gene
expression when developing models for studying genome
evolution.
Finally, we believe that the lists of new relevant fea-

tures reported in the current study, which are based on
the way evolution shapes the expression of endogenous
genes, can teach us about novel mechanisms related to
gene expression regulation and modeling. Specifically,
we report a set of codons and codon pairs that have sig-
nificant effect on the prediction quality given traditional
measures of codon bias and elongation efficiency. These
features may affect expression levels via various mechan-
isms including: 1) regulation of tRNA levels not accurately
modeled in current codon bias and translation elongation
features/indexes [32,37,42]; 2) translation frame shifts [58];
3) transcription elongation efficiency [59]; 4) and tRNA
recycling [54]. To better understand the biophysical rules
of these features and to infer causality, we suggest to

Figure 9 3’UTR linear and non-linear predictors results. Dot plot of the predictions vs. estimated measurements for the validation set of the
predictor with the median results for the A. ribosomal load, and B. proteins per mRNA molecule, for the 3’UTR linear (LIN) and non-linear (MARS)
predictors (Additional file 1: Supplementary Methods). The best features according to the number of predictors they participated in (Additional
file 1: Supplementary Methods) of the C. ribosomal load predictor, and D. proteins per mRNA molecule predictor, for the 3’UTR linear (LIN) and
non-linear (MARS) predictors (Additional file 1: Supplementary Methods).
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explore them via experiments that include introducing
them into a reporter gene and measuring the effect of
these features on changes in its expression levels measure-
ments, and/or by multi-organism studies of their evolu-
tionary patterns.

Additional material

Additional file 1: Contains the supplementary methods and some
additional results.

Additional file 2: Main scheme regression features. A short
description of all the features utilized in the study, in the main regressor
scheme.

Additional file 3: Expression dependant scheme regression features.
A short description of all the features utilized in the expression
dependant scheme.
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