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Abstract

Background: The capability of correlating specific genotypes with human diseases is a complex issue in spite of all
advantages arisen from high-throughput technologies, such as Genome Wide Association Studies (GWAS). New
tools for genetic variants interpretation and for Single Nucleotide Polymorphisms (SNPs) prioritization are actually
needed. Given a list of the most relevant SNPs statistically associated to a specific pathology as result of a
genotype study, a critical issue is the identification of genes that are effectively related to the disease by re-scoring
the importance of the identified genetic variations. Vice versa, given a list of genes, it can be of great importance
to predict which SNPs can be involved in the onset of a particular disease, in order to focus the research on their
effects.

Results: We propose a new bioinformatics approach to support biological data mining in the analysis and
interpretation of SNPs associated to pathologies. This system can be employed to design custom genotyping chips
for disease-oriented studies and to re-score GWAS results. The proposed method relies (1) on the data integration
of public resources using a gene-centric database design, (2) on the evaluation of a set of static biomolecular
annotations, defined as features, and (3) on the SNP scoring function, which computes SNP scores using
parameters and weights set by users. We employed a machine learning classifier to set default feature weights and
an ontological annotation layer to enable the enrichment of the input gene set. We implemented our method as a
web tool called SNPranker 2.0 (http://www.itb.cnr.it/snpranker), improving our first published release of this system.
A user-friendly interface allows the input of a list of genes, SNPs or a biological process, and to customize the
features set with relative weights. As result, SNPranker 2.0 returns a list of SNPs, localized within input and
ontologically enriched genes, combined with their prioritization scores.

Conclusions: Different databases and resources are already available for SNPs annotation, but they do not
prioritize or re-score SNPs relying on a-priori biomolecular knowledge. SNPranker 2.0 attempts to fill this gap
through a user-friendly integrated web resource. End users, such as researchers in medical genetics and
epidemiology, may find in SNPranker 2.0 a new tool for data mining and interpretation able to support SNPs
analysis. Possible scenarios are GWAS data re-scoring, SNPs selection for custom genotyping arrays and SNPs/
diseases association studies.
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Background
The increasing importance of high throughput molecular
biology techniques, such as whole genome genotyping
and next generation sequencing, has boosted the identifi-
cation of novel biomarkers for diseases having a genetic
component [1,2]. In particular, the evaluation of Single
Nucleotide Polymorphisms (SNPs) is very promising,
because they represent established single base variations
with respect to the wild type, and their knowledge can be
exploited to characterize each subject by associating a
specific phenotype with the corresponding genomic
pattern.
The human genome counts more than 10 million of

SNPs [3] and the number of SNPs with a minor allele fre-
quency over 10% is estimated to be perhaps as many as
five million [4]. SNPs are distributed throughout the
human genome and their effect on phenotype depends
on the biological role (e.g. exon or regulatory) and state
(e.g. silent or active) of the genomic regions where they
occur.
SNP knowledge is widely exploited for Genome Wide

Association Studies (GWAS) [5-7], identification of Copy
Number Variations (CNV) [8], and observations about
Population Stratification [9]. Nowadays, chip technolo-
gies allow the analysis of up to one million SNPs for each
patient. The selection of SNPs to be included in the ana-
lysis is a critical problem for genotype array providers,
which employ the non-random inheritance of these
genomic variations to identify TAG SNPs representing
haplotype blocks. A widely used approach to optimize
the SNP probe set relies on the concept of Linkage Dise-
quilibrium (LD) [10], which exploits a statistical similarity
measure between adjacent SNPs to compute, for each
couple of SNPs, the information improvement using both
of them or only the most representative one. LD mapping
is used to optimize the experimental information content
by containing the number of probes employed for the
genotype analysis into 1 million of TAG SNPs.
SNPs filtering and prioritizing methods are also very

important in case of custom genotyping chip design, defin-
ing disease-oriented arrays by pre-selecting a set of SNPs
that can be related to a specific pathology. In this general
scenario, no automatic methods have been proposed to
support the identification of the most probable SNPs asso-
ciated to a pathology relying on the available biomolecular
knowledge.
On the other hand, GWAS can identify SNPs associated

to a disease working on genotypes and phenotypes analy-
sis. Generally, a GWAS output has to be interpreted con-
sidering the biological context to enrich the pure statistical
results, in which the effective disease related variations
could be dispersed among many less critical SNPs. This
process means to “re-rank” GWAS scores relying on SNP

properties (annotations), in order to shed light on varia-
tions that are effectively critical for the pathology in
analysis.
Herein we describe SNPranker 2.0, a system that

enables the prioritization of SNPs, which relies on a pre-
vious published version of the system [11]. SNPranker
2.0 ranks SNPs according to a user-selected set of fea-
tures, which in this version has been enriched with epige-
netics and functional genomics attributes, by employing a
novel data mining approach. SNPranker 2.0 provides a
machine learning derived scoring schema, which consists
of a data mining model, optimized against experimental
evidences by employing a genetic algorithm, for charac-
terizing SNPs related to an input dataset of genes, biolo-
gical processes or GWAS results. The system provides a
ranked list of SNPs as output, with annotations about
their statistical enrichment with respect to the most
represented pathologies.

Related works
The bioinformatics analysis of genotype experiments is a
complex task, which is usually addressed with statistical
methods, if sufficient knowledge is available to formulate
hypotheses, or using machine learning approaches, if it
is necessary to create classificatory rules relying on data
themselves.
Statistical approaches are commonly used in genetic

epidemiology and in many researches these methods
achieved good results [12,13]. Despite these successes,
they show some limits, which are mainly related to the
underlying statistical hypotheses. The computation of
P-values, which is a typical approach in GWAS, is prone
to bias in the selection of the studied population and the
capability of inferring correlations between genomic var-
iations and pathologies is inevitably restricted to the set
of TAG SNPs used as probe set (although a posteriori
imputing techniques can partially correct this issue, at
the price of a huge amount of computation). Statistical
approaches are solid, but the abstraction they use to
manage data often provides results difficult to interpret,
because best hits are selected without any correlation to
real genomic features that can be identified as causes of
the disease.
On the other hand, machine learning approaches are

very flexible thanks to their ability to directly create a
model from the data, although in well defined analysis
context (i.e. when hypotheses of statistical methods are
very solid) are considered less reliable. Considering SNP
prioritization as a classification problem, we chose a
supervised machine learning approach to generate a
function able to map inputs to desired outputs. While
employing a supervised method, the selection of the
training and validation sets must be carefully achieved,
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usually employing a cross-validation approach, since the
model is created on them.
Machine learning approaches have a long tradition in

bioinformatics, which requires the development of tools
and methods capable of transforming ‘omics’ data into
real knowledge about the biological underlying mechan-
ism [14-16]. Nonetheless, there are only few applications
developed to exploit machine learning approaches for
genetic features ranking in relation to specific diseases.
An example is Endeavour [17], a software that performs
gene prioritization for ranking candidate genes involved
in biological processes or diseases relying on their simi-
larity to known genes related to these phenomena.
Concerning SNP prioritization some solutions are

available, such as PupaSNP Finder [18], Wjst’s system
[19], PolyMAPr [20] and SNPselector [21]. These servers
usually integrate information from a variety of databases
and analytical tools in order to create a knowledge base
for SNP annotation, starting from public domain data-
bases, such as dbSNP [22], GoldenPath [23] and SNPper
[24], which contain well-organized catalogues of SNPs
and provide portals to search for fundamental informa-
tion about them. More recent solutions, which can be
used in the frame of GWAS, are FastSNP [25], which
employs a complete decision tree to assign risk rankings
for SNP prioritization, F-SNP [26] that integrates more
than 16 features for SNP annotation, SPOT [27] that
relies on GIN (Genomic Information Networks) scores
which are cumulative measures of the biological rele-
vance obtained by combining information across multi-
ple domains, and FitSNP [28] that provides predictions
about SNPs involved in diseases relying on a meta-ana-
lysis of microarray data. Even an R package available in
Bioconductor [29] has been developed in this context,
based on variance prioritization, which selects SNPs
having significant heterogeneity in variance per genotype
using a pre-determined P-value threshold.
The first version of SNPranker [11] was also a web

tool for SNP prioritization. As many of the listed
resources, it relied on a data-warehouse approach for
collecting as many data about SNP features as possible,
to provide users the most complete annotation schema
according to the public available information. The inno-
vation of SNPranker concerned the use of an ontological
expansion to enrich the set of input SNPs with data
about semantic-associated genomic traits that could
have statistical correlations and functional influences on
the data provided by users. Nonetheless, in the first ver-
sion of SNPranker, as in many of the discussed solu-
tions, users must select weights of the SNP features
upon their expertise. At the best of our knowledge, no
methods are available in literature to evaluate SNPs by
features scoring through machine learning algorithm
using data mining approaches.

Methods
The core of the designed system can be decoupled into
five levels: (1) data integration, which consists in the crea-
tion of an integrated database starting from sparse and
heterogeneous biomolecular annotation data sources; (2)
ontological expansion, which enables the exploitation of
gene ontological annotations to enrich the initial list of
genes provided as input; (3) features set definition, which
includes the choice of the features characterizing each
SNP and the related weight in the scoring computation;
(4) scoring computation through web interface, which is
the computation of the function that provides a final score
for each SNP; (5) dataset enrichment analysis, which
allows to verify the statistical significance of most repre-
sented diseases and pathways. Figure 1 describes the logi-
cal schema of the SNPranker 2.0 pipeline. Following
subsections present in details the levels mentioned above.

Data integration
Similarly to the first implementation of SNPranker,
SNPranker 2.0 relies on a data-warehouse architecture,
which integrates public information about genes and
genes products, in order to provide a solid knowledge base
for the SNP scoring engine. As discussed in our previous
work [11], the advantage of this database is the use of a
strong systems biology approach for data organization,
combined with an ontology layer for the annotation of
retrieved data. An improvement of SNPranker 2.0 is the
use of the NDB engine of MySQL Cluster as backend ser-
ver that, in combination to the optimization of the data-
base schema, overcomes the latency problem of some
complex query requests.
The peculiarity of the developed database is represented

by the multi-level approach to data integration [30], which
enables a more comprehensive view of the examined pro-
cess or disease, therefore leading to a better selection of
the set of SNPs to be included in a disease-oriented cus-
tom chip or a better re-scoring of GWAS data.
The SNPranker 2.0 database presents a gene-centric

approach, which means that all tables are related to each
other using the concept of gene to create relation in the
data-warehouse schema, allowing the connection of
molecular levels to the pathway level. Human genes are
annotated employing, among other features, their sym-
bols, descriptions, aliases and sequences. Data about
SNPs are downloaded from GoldenPath [23], with refer-
ence to the hg18 genome assembly, which allows the
integration of data about chromosomal and contig posi-
tions, heterozygosity, alleles and functions of the related
DNA portions. Data about known genes and SNPs invol-
vement in particular diseases have been downloaded
from OMIM [31].
From the epigenetics point of view, UCSC tracks about

DNAse clusters, chromatin structures and methylation
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patterns have been downloaded and integrated in our
database for different tissues and cell lines in order to
characterize the specific activity of SNPs in particular
environments.
Concerning transcriptomics data, gene products have

been collected as lists of mRNA sequences, considering
alternative splicing patterns and miRNA binding regions
[32], which can be useful to characterize SNPs in the cor-
responding DNA regions. Since SNPs can modify the
mRNA produced from the same locus, by varying the
transcription start sites (TSSs), the protein coding DNA
sequences (CDSs) or the untranslated regions (UTRs),
gene isoforms are also stored in the SNPranker 2.0 data-
base, according to the NCBI RefSeq annotations [33].
Data concerning proteins have been retrieved from UNI-

PROT [34], for the identification of functional domains,
and from the Protein Data Bank [35], to integrate informa-
tion about structural models.
The systems biology knowledge base has been created

by querying databases of biochemical pathways (KEGG
[36]) and reactions (Reactome [37]) searching all human

gene products, while information about protein-protein
interactions (PPIs), collected from BioGRID [38], have
been employed to complement the available data about
hub proteins and neighbourhoods that are crucial for
network based analyses.
SNPranker 2.0 exploits this multilevel knowledge inte-

gration as key infrastructure to perform SNP scoring. In
this updated version of the database the set of features
considered for SNP prioritization consists of more than 30
elements. A complete overview of integrated features is
presented in Additional File 1.

Ontological expansion
The SNPranker 2.0 database has been built on a strong
ontology layer, in order to provide a reliable framework
for data integration and an improved engine for gene and
SNP lists enrichment and annotation. In particular, genes
and pathways data have been annotated with terms from
the Gene Ontology [39] and the KEGG Pathway Ontol-
ogy, respectively. By exploiting the ontological annotation
of genes, in fact, it is possible to measure gene similarity,

Figure 1 General schema of SNPranker 2.0 pipeline. The SNPranker 2.0 reference database collects data from various public data sources
using a gene-centric design. This infrastructure represents the core of the SNPranker 2.0 pipeline, which starts with a list of genes (or a
biological process or a list of SNPs) as input. If required, the ontological expansion retrieves all genes related to input ones according to a user
defined similarity measure and threshold. SNPranker 2.0 performs the score computation using selected features and their corresponding
weights, and a final table of SNPs is returned to users with a prioritization score for each SNP.
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which then can be used to expand the initial gene lists.
SNPranker 2.0 provides two similarity measures, which
differ for taking into account the bare ontological terms
(Rel measure [40-42]) or for considering also the ancestor
terms following the ontological tree (Wang measure
[43]).
Considering one of the ontologies provided by SNPran-

ker 2.0 and a particular similarity measure, from an input
gene list g1 the system generates the list g2 ⊇g1, which con-
tains also the genes that correlate with the genes in the list
g1 according to the selected similarity threshold.

Features weight definition
The features are the characteristics of SNPs that repre-
sent the a priori knowledge of their underlying biology,
which is the base for modelling the biomolecular infor-
mation related to these polymorphisms. In this data
mining approach, users can select the features they
would like to consider for SNP evaluation and assign a
custom relevance to these features in the score
computation.
An added value of this work is the pre-computation of

an optimal set of weights for the features to provide by
default suitable ranked SNP lists associated to the dis-
ease genes provided as input. The idea is to give a gen-
eral scoring model, which can predict the importance of
each attribute in a generic pathological context, assuring
a valuable SNP ranking. A machine learning approach
has been used to find this parameter setting, which is
proposed by default in the SNPranker 2.0 web site. To
find the appropriate weights, we formulated an optimi-
zation problem, solved using a genetic algorithm, which
considers as fitness the system sensitivity and involves
cross-validation during the assessment of candidate
weights. In other words, we exploit a genetic algorithm
to optimize a model from the data, which is a classical
method of supervised machine learning. The combina-
tion of this machine learning approach with a frame-
work that allows users to perform a fine-tuning of the
system parameters (useful for verifying the effect of
changes in the features and relative weights on the final
SNP scores) realizes the data mining approach.
In detail, feature weights must be processed through

the scoring function in order to obtain a single and sig-
nificant score for each SNP. The scoring function g
maps the values returned by the selected features and
the weights vector w ∈ R

n (where n is the number of
features) to a single final value, used to calculate the
SNP ranking. The function g is computed as the sum of
the values returned by the single features according to
their weights w:

g :
(
. . . fn,w

) �→ w1f1 + w2f2 + . . . + wnfn (1)

This strategy allows the computation of the final SNP
score as a single real number.
Starting from a set of genes associated by experimental

evidence to specific pathologies, a genetic algorithm has
been implemented in order to achieve the w that mini-
mizes the distance among the set of SNPs retrieved by
the system and the list of SNPs experimentally associated
to the same disease. The optimal values of the weights w
were found taking into account the specificity of the
SNPranker 2.0 predictions. To this end, we considered,
as input, all the genes and SNPs associated with a set of
16 pathologies, reported in Additional File 2, as described
in OMIM. Given the set S of SNPs si (i ∈ {1, 2, ..., |S|})
containing all the SNPs associated to the genes of the
considered pathologies, taking into account a flanking
region of 100,000 bp, and defining A as the set of SNPs
certified by OMIM as involved in the disease, we mini-
mise

argminw∈R30

(
1 − |P|

|P| + |N|
)

(2)

where the sets P ⊆ A is the set of true positives
included in the high scoring SNP list.
Y = {si|σi(w) > ε} , where σi(w) is the score of the SNP
si and ε is a constant value and N ⊆ A (P ∩ N = ∅) is the
false set of negatives. The optimisation process was car-
ried out by evaluating feature coefficients by employing
a genetic algorithm for all the pathologies in our set.
The system was implemented in Python and the
machine learning approach was developed employing
the Pygene library [44]. Score calculations and SNP sort-
ing were implemented by embedding C code with SWIG
[45], in order to minimize the time needed for fitness
evaluations. In our model, all individuals are generated
randomly by selecting coefficients between 0 and 1. The
fitness is calculated first by filtering scores with a
threshold Tε defined as

Tε = εσi (w) (3)

where ε is computed with steps of 0.1 starting from
0.1 to 1.0 and then by evaluating the sensitivity of the
method as defined by Eq. 2. Since in our model the
objective of optimization is the sensitivity, we have
forced unlikely fitness to configurations that are unable
to filter out a reasonable number of SNPs. To control
the filtering capability, we decide to ensure that the
ratio between filtered SNPs and the total amount of
SNPs considered must be lower than the threshold Tr,
defined as:

Tr =
|Y|
|S| (4)
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In order to estimate how well our predictive model per-
forms, we chose to exploit the Leave One Out Cross Vali-
dation approach. This model implies that a single disease
of the considered set is used as validation data, while the
remaining pathologies are used for training the model.
This operation is repeated for all the pathologies in the set
used for this machine learning approach, such that each
disease is employed once as validation data. Then, the
average of the sensitivity in each test case is evaluated in
order to compute the predictive capability. The genetic
algorithm was run considering 100 generations, each of
which composed by 120 individuals. The top 50 indivi-
duals are selected for the next generation. In detail, in
each generation 10 new randomly generated individuals
are added to the population, 10 individuals are taken
unmodified from the previous generation and 100 indivi-
duals are generated by the recombination of the best 50
individuals of the previous generation. Figure 2 shows the
fitness trend during the optimization.
In this way, a total of 640 simulations were run, by

choosing iteratively one of the 16 pathologies as test set
and evaluating 10 steps of Tε (from 0.1 to 1.0) and 4 steps
of Tr (from 0.25 to 1.0). Once all the simulations were
completed, we validated the parameters configurations
against each disease previously chosen as test case for
such simulation: for each validation test, we evaluated
the fitness with Eq. 2 and we determined the sensitivity,
the specificity, and the accuracy of that parameter config-
uration. Then, we calculated the average values of such

indexes for all the 16 simulations with the same Tε and
Tr, in order to estimate how accurately our predictive
model will perform in practice. All the data relative to
genetic evolutions of parameter configurations have been
collected according to same values of Tε and Tr, in order
to estimate the performance of the predictive model, as
reported in Additional File 3. The best parameters for
assigning higher scores to diseases associated SNPs deter-
mined using our machine learning approach are visible as
default feature weights in the SNPranker 2.0 home page.
Pathologies, however, are characterized by different traits,
and so each parameter configuration may work better
with certain diseases rather than others. For this reason,
users can directly set each feature weight on the basis of
the aims of their specific study. This fine-tuning proce-
dure is possible by associating each feature to a weight
that represents the importance attributed by users to the
feature in the final SNP score computation.

Scoring computation through web interface
We developed the web site using object oriented pro-
gramming languages exploiting PHP and JavaScript
technologies. Performances are improved using the NDB
engine of the MySQL Cluster, which works as backend
database, in order to minimize times needed for query
executions. Through the web interface, users can run
analyses using three types of input: a list of genes, a bio-
logical process, and a list of SNPs. For each of these
three choices, it is possible to perform the ontological

Figure 2 Fitness optimization trend of the genetic algorithm. The figure shows that the optimization algorithm is able to minimize the
fitness value within the limit of 100 generations.
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expansion, customizing the similarity measure and its
relative scoring threshold.
Once users complete their selections and start the com-

putation, SNPranker 2.0 first extracts all the SNPs related
to the selected genes (or biological process), then com-
putes the ontological expansion (if required), and finally
computes the score for all the input SNPs according to
the selected features and weights. For each SNP, all
selected features are presented in a final table combined
with each score, showing both the original data, for anno-
tation purpose, and the related scores. The web interface
displays on the fly all the results and, at the end of the
computation, output SNPs can be effectively ranked
according to their scores, which are available in the last
column of the output table. When the result page is com-
pletely loaded, a link to download output data in com-
pressed format is presented at the bottom of the table and
the SNP list enrichment tools about pathways and diseases
become available to users.

Dataset enrichment analysis
The enrichment of the ranked SNP list, considering
KEGG pathways [46], GO [47] terms and OMIM gene
and genetic disorders [31], is a valuable tool to interpret
the output of the system. For example, considering the
annotation of the top ranked SNPs in terms of KEGG
pathways, it is possible to verify if the system has privi-
leged genomic features belonging to a particular biologi-
cal network. At the same way, an enrichment of best hits
in a particular genetic disorder according to OMIM can
be a clear indication that identified SNPs are effectively
involved in a specific disease. The enrichment is com-
puted by comparing the total number of genes that have
a particular ontological annotation with respect to the
number of top ranked genes with the same annotation
(considering the genes that bring the identified SNPs).
Statistical significance of the enrichments is assessed
with appropriate hypergeometric tests, which permit to
verify if the number of occurrences of a particular onto-
logical annotation in the top ranked list of SNPs is by
chance. Due to the high number of P-values computed
for this analysis, the statistics is corrected using the False
Discovery Rate control method [48], using the “phyper”,
“dhyper” and “p.adjust” routines available in R [49].

Results
SNPranker 2.0 is available to users through a web interface
accessible at the URL http://www.itb.cnr.it/snpranker.
Figure 3 shows a screenshot of the home page.

System input and features selection
The system takes as input a list of genes, a set of SNPs
or a biological process. Genes and SNPs can be provided
as comma separated values of IDs (EntrezGene or

GeneSymbol for genes, RS identifiers for SNPs). For the
biological process option, the web interface provides an
auto-completion box with the GO names of biological
processes. Once a particular biological process is
selected, all genes annotated with this GO term are pro-
vided as input to the system. Since many SNPs are not
directly associated to genes because of their inter-genic
localization, SNPranker 2.0 provides a parameter for
customizing the flanking regions.

Ontological expansion
The ontological expansion is an important method for
studying SNPs related to pathologies, since it allows to
extend the analysis to SNPs that could potentially be
involved in a pathology onset, but are not annotated as
disease associated and have not being highlighted in
more traditional approaches. The inclusion in the com-
putation of SNPs belonging to genes that are annotated
similarly to those provided as input permit to increase
the number of associated SNPs under analysis. For this
reason, the ontological expansion enriches the input list
g1 by adding new genes that are biologically related with
them, relying on GO terms. The biological relationship
among genes is evaluated through two semantic similar-
ity metrics (referred as Rel and Wang in the web page),
which compare the GO terms associated with each gene.
Depending on the interests of the user, for each gene in
g1, the system retrieves a number of genes with the high-
est semantic similarity according to their Gene Ontology
annotations.

Features set
The home page of SNPranker 2.0 shows to users all the
available features for the final SNP ranking, grouped by
semantic and functional characterization. Default values
of feature weights derive from our machine learning algo-
rithm and are listed in Table 1. Although the huge pre-
sence of SNPs in introns, these are localized at lower
positions within the ranked list obtained with the opti-
mised feature weights, while at the top of it many “frame
shift”, “missense” and “start codon” are concentrated.
Other SNPs occur, in order of appearance, hence of
decreasing importance, in “start codon”, “missense”, 3’
and 5’ UTR regions, or even 3’ and 5’ near gene. Impor-
tantly, users can customize the set of features to process
for the final score both by selecting or deselecting each
feature and by modifying the weights of the features
according to their expertise. Tuning a weight means
changing the relevance of a biomolecular aspect, which
reflects on the final SNP prioritization. For instance, if
users are interested in studying the effect of a poly-
morphism on the abundance of a transcript, they can
assign higher relevance to SNPs occurring in regulatory
regions, such as the 5’ near gene region.
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Figure 3 SNPranker 2.0 home page screenshot. A screenshot of the SNPranker 2.0 home page, with feature sections collapsed and
expanded: the protein section gives an example of the available features with their relative weights. At the bottom, in the scoring function
section, an information balloon is opened.
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A description of each feature is available within the
web interface in an intuitive balloon text close to each
feature name. For example, considering the epigenetics
features, a user can select a particular tissue or a cell
line, while in case of selection of the general feature
only, without the detail of tissue or cell line, the average
values are considered for the score computation.

SNP ranking
Once all values have been computed, the last step con-
sists in ranking all SNPs relying on their scores. Due to
the great amount of SNPs potentially reported as output,
SNPranker 2.0 allows users to cut the list at a given
threshold, based on a percentile of the total number of
SNPs. Moreover, the enrichment tools allow testing if the
provided SNP list is enriched of genes associated with a
particular disease or pathway. The final list of enriched

SNPs with scores is specifically aimed at supporting the
evaluation of disease associated SNPs.

Discussion
The SNPranker 2.0 tool has been validated using OMIM
data, considering a set of pathologies influenced by
recognized SNPs. For each disease the list of associated
genes has been given as input to the system and the list
of ranked SNPs has been compared to the set of SNPs
provided by OMIM for the same disease.
Optimal feature weights were found in order to obtain

the best sensitivity, which is the system capability of
detecting correct cases, but other indexes such as specifi-
city, which evaluate the capability of the system to filter
incorrect cases, and accuracy, which measure the degree
of closeness of our classification to real cases, should be
taken into account. This is due to the fitness dependence

Table 1 Default feature weights as result of the optimization process.

Section Feature Name Feature Weight

SNPs and Genes MAF 0.3133

Localization 0.7052

Essential Genes 0.2665

Phylo 0.5797

Lamina associated domains 0.2444

Epigenetics and transcription regulations Open Chromatin 0.1596

Chromatin Structure 0.7525

Methylation (seq regions) 0.4009

Methylation 0.3743

CpG Island 0.8992

DNase clusters 0.9558

TSS (eponine) 0.3705

CpG islands, promoters, first exons 0.9665

FOX2 CLIP-seq 0.5608

TAF1 binding sites 0.2468

Intergenic regulatory elements 0.4006

TSS (SwitchGear) 0.6773

Regulatory regions (OregAnno) 0.8818

TFBS (TRANSFAC) 0.8243

TXN factor ChIP-Seq 0.4477

Enhancers (VISTA) 0.9571

Translation regulations Alternative Splicing 0.7032

miRNA binding regions 0.8358

Proteins Hub protein 0.5796

Protein Domain 0.6316

PolyPhen 0.5678

SNPs 3D 0.5977

LS-SNP 0.3158

Protein Interactions 0.3728

PTM 0.5399

Disease Pathologies OMIM 0.2904

The table presents the SNP features used by SNPranker 2.0 with their default weights, according to the optimization performed using the genetic algorithm
(sensitivity = 0.814, specificity = 0.761 and accuracy = 0.761).
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on Tr (the ratio between high scored SNPs and the total
number of evaluated SNPs), which makes sensitivity
more unfavourable in case of higher Tr.
Therefore, fitness values proposed by the machine

learning algorithm should be carefully considered,
because simulations that can identify almost all the dis-
ease associated SNPs do not filter out SNPs with the
same effectiveness, and so the specificity and the accu-
racy indexes tend to lower values. Vice versa, greater
values of accuracy and specificity mean less predictive
power of the system.
The use of Tr = 0.25 and Tε = 0.3 seems reasonable,

since it results in 81% of associated SNPs with an accu-
racy and specificity of 76%. In some considered cases,
(such as Cystic Fibrosis, Sickle Cell Anaemia, and Hae-
mophilia) the top ranked SNPs show a statistically sig-
nificant enrichment (P < 0.05, hypergeometric test)
concerning SNPs known to be associated with the tested
pathologies. In Huntington’s disease, the first three
SNPs appearing in the ranked list are exactly those
reported in OMIM for this pathology.
We tested SNPranker 2.0 using different parameters

and here we discuss two case studies: the first scenario
is a search for semantic annotation and the second case
is a comparison with a GWAS output.
In the first case we started from a gene, BCL2, known

be associated with a disorder, B-Cell Cll/Lymphoma 2, as
reported in OMIM. We collected all pathologies related
to BCL2 from the Genecards database [50] and we
looked at these disorders into OMIM, finding related
genes. In Genecards, BLC2 is mentioned in different dis-
orders, from lymphoma to cancer and leukaemia. We
queried OMIM for the most important genes associated
to these pathologies and we obtained a list of genes. We
validated SNPranker 2.0 results considering output genes
(those associated with the provided ranked SNPs) with

respect to this list and we found that most disease related
genes are effectively identified by an ontological expan-
sion performed using the Wang similarity measure with
threshold of 0.2. Table 2 (upper rows) reports these
results, summarizing the similarity scores.
For the second case, we compared our results with the

tests of Chen et al. [51] looking at the “bipolar disorder”
in the GWAS catalogue [52], using the reference of Le-
Niculescu et al. [53]. Considering the gene KLF12 as
input, since it is mentioned as one of the most important
gene related to bipolar disorders, the ontological enrich-
ment using the Wang similarity measure with a threshold
of 0.3 returns a large set of 532 genes that belong to simi-
lar GO biological processes. Considering these genes, we
confirmed that 52% of disease genes have been correctly
returned, while the remaining are genes that could indir-
ectly affect disease associated genes. Table 2 (lower rows)
summarizes the similarity scores that we obtained from
our ontological similarity enrichment given the input gene
KLF12, with respect to known disease genes. The list of
output prioritized SNPs, computed with default weights,
returned most of the confirmed disease associated SNPs,
according to Chen et. al [51] data, as reported in Table 3.
We noted that scores slightly depends on user settings
and thus outputs can differ among diverse input para-
meters set up. Statistically, the more genes are semanti-
cally similar to the input ones the more their related SNPs
appear at higher positions within the ranked list.

Conclusions
Given the need of tools for SNP prioritization, we
updated our prototype system by developing SNPranker
2.0, a web based system that performs data mining of
public available biomolecular knowledge of SNPs.
SNPranker 2.0 is based on a gene-centric data-warehouse
approach, which exploits a machine learning method to

Table 2 Semantic similarity analysis of tested genes.

OMIM Disorder Gene Symbol Similarity score

Input Gene Known Associated

B-Cell Cll/Lymphoma 2 BCL2 CDKN2A 0.389

MYC 0.305

TP53 0.434

BRCA1 0.382

BRCA2 0.329

CCND1 0.247

ATM 0.370

Bipolar disorder KLF12 RORA 0.636

RORB 0.759

ARNTL 0.636

HTR2A 0.301

Given two scenarios of different disorders, the table shows the similarities, computed using the Wang metrics score, among genes that are known to be
associated with the pathologies and the ontologically enriched output gene lists.
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rank SNPs and compute final scores. It relies on the iden-
tification of a set of crucial features characterizing SNPs
related to a list of input genes. This represents the a
priori knowledge that employing our data mining
approach allows the assessment of a final score for each
SNP, which can be tuned by users according to their pre-
ferences. By employing a genetic algorithm we created a
supervised classifier, which estimates the optimal weights
of the SNP features. Using these parameters, SNPranker
2.0 provides a scored list of variations, which can be sta-
tistically analysed to verify its enrichment about particu-
lar pathways or diseases genes. Concrete scenarios of
usage are the identification of the most important SNPs
in population genetics studies, in order to create custom
genotyping chips, and GWAS output re-scoring for inter-
preting top ranked SNPs in a specific biological context.

Additional material

Additional File 1: SNPranker 2.0 features set. All the available SNP
features at SNPranker 2.0 web site, grouped in semantic sections.

Additional file 2: The OMIM diseases employed for the machine
learning approach. The table shows the list of diseases employed for
training the scoring algorithm, providing information about the
genomics regions, the disease names, the OMIM disease IDs, and the
involved genes, summarized as gene symbols and Entrez IDs.

Additional file 3: Results of the genetic algorithm optimization
process. For each disease of the training set, the table summarizes SNP
counts, sensitivity, specificity and accuracy achieved with the optimal
feature weights found with the genetic algorithm.

Acknowledgements
This work has been supported by the Italian Ministry of Education and
Research (MIUR) through the Flagship (PB05) “InterOmics”, ITALBIONET
(RBPR05ZK2Z), HIRMA (RBAP11YS7K) and the European “MIMOMICS” projects.

Author details
1Consiglio Nazionale delle Ricerche - Istituto di Tecnologie Biomediche
(CNR-ITB), Via F.lli Cervi 93, 20090 Segrate (MI), Italy. 2San Raffaele Telethon
Institute for Gene Therapy (HSR-TIGET), Via Olgettina 58, 20132 Milano, Italy.
3Parco Tecnologico Padano, Via Einstein - Loc. Cascina Codazza, 26900 Lodi,
Italy.

Authors’ contributions
IM conceived the study, developed the reference database, and drafted the
manuscript. AC conceived of the study, developed the web interface,
designed the scoring algorithm, and drafted the manuscript. PC
implemented the machine learning algorithm, provided the results of the
analysis and optimized system performances. FV developed the reference
database, identified the test cases, and drafted the manuscript. EM
participated in the design of the study, formalized the optimization problem,
and worked at the enrichment analysis. LM coordinated the project, granted
access to the computational facilities and maintained the bioinformatics
resources. All authors read and approved the final manuscript.

Declarations
The publication costs for this article were funded by the Italian Ministry of
Education and Research (MIUR) through the Flagship (PB05) “InterOmics”
project.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 1, 2013: Computational Intelligence in Bioinformatics and
Biostatistics: new trends from the CIBB conference series. The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/14/S1.

Competing interests
The authors declare that they have no competing interests.

Published: 14 January 2013

References
1. de Bakker PIW, Yelensky R, Peter I, Gabriel SB, Daly MJ, Altshuler D:

Efficiency and power in genetic association studies. Nature Genet 2005,
37(11):1217-1223.

2. Goldstein DB, Cavalleri GL: Genomics: understanding human diversity.
Nature 2005, 437(7063):1241-1242.

3. Botstein D, Risch N: Discovering genotypes underlying human
phenotypes: past successes for mendelian disease, future approaches
for complex disease. Nature Genet 2003, 33(Suppl):228-37.

4. Kruglyak L, Nickerson DA: Variation is the spice of life. Nature Genet 2001,
27:234-236.

5. Zhang H, Liu L, Wang X, Gruen JR: Guideline for data analysis of genome-
wide association studies. Cancer Genomics Proteomics 2007, 4(1):27-34.

6. Sham PC, Cherny SS, Purcell S: Application of genome-wide snp data for
uncovering pairwise relationships and quantitative trait loci. Genetica
2009, 136(2):237-243.

7. Hanage WP, Aanensen DM: Methods for data analysis. Methods Mol Biol
2009, 551:287-304.

8. Tam GWC, Redon R, Carter NP, Grant SGN: The role of dna copy number
variation in schizophrenia. Biol Psychiatry 2009, 66(11):1005-1012.

9. Tiwari HK, Barnholtz-Sloan J, Wineinger N, Padilla MA, Vaughan LK,
Allison DB: Review and evaluation of methods correcting for population
stratification with a focus on underlying statistical principles. Hum Hered
2008, 66(2):67-86.

Table 3 SNPranker results comparison with a GWAS for Bipolar Disorder.

Gene SNP ID Chr Position Strand Alleles Function

ARNTL rs900145 11 13250480 13250481 - A/G unknown (intergenic)

HTR2A rs1575891 13 47096716 47096717 + C/T unknown (intergenic)

KLF12 rs9543325 13 72814628 72814629 + C/T unknown (intergenic)

KLF12 rs1886512 13 73418186 73418187 + A/T intron

RORA rs3743266 15 58568804 58568805 - A/G unknown (UTR-3)

RORA rs340029 15 58682256 58682257 + C/T intron

RORA rs3784609 15 58697841 58697842 - A/G intron

RORA rs11071559 15 58857279 58857280 + C/T intron

RORA rs12912233 15 59054387 59054388 + C/T intron

RORA rs809736 15 59117079 59117080 + A/G intron

Given the best results of the GWAS concerning the Bipolar Disorder [53], the table shows the SNPs that have been correctly predicted in our final SNPs table.

Merelli et al. BMC Bioinformatics 2013, 14(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/14/S1/S9

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1471-2105-14-S1-S9-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S1-S9-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S1-S9-S3.PDF
Efficiency and power in genetic association studiesde BakkerPIWYelenskyRPeterIGabrielSBDalyMJAltshulerDNature Genet200537111217122310.1038/ng166916244653Genomics: understanding human diversityGoldsteinDBCavalleriGLNature200543770631241124210.1038/4371241a16251937Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex diseaseBotsteinDRischNNature Genet200333Suppl2283712610532Variation is the spice of lifeKruglyakLNickersonDANature Genet20012723423610.1038/8577611242096Guideline for data analysis of genome-wide association studiesZhangHLiuLWangXGruenJRCancer Genomics Proteomics200741273417726238Application of genome-wide snp data for uncovering pairwise relationships and quantitative trait lociShamPCChernySSPurcellSGenetica2009136223724310.1007/s10709-008-9349-419127410Methods for data analysisHanageWPAanensenDMMethods Mol Biol200955128730410.1007/978-1-60327-999-4_2019521881The role of dna copy number variation in schizophreniaTamGWCRedonRCarterNPGrantSGNBiol Psychiatry200966111005101210.1016/j.biopsych.2009.07.02719748074Review and evaluation of methods correcting for population stratification with a focus on underlying statistical principlesTiwariHKBarnholtz-SloanJWineingerNPadillaMAVaughanLKAllisonDBHum Hered2008662678610.1159/0001191072803696,280369618382087Genetic mapping in human diseaseAltshulerDDalyMJLanderESScience2008322590388188810.1126/science.1156409269495718988837SNPRanker: a tool for identification and scoring of SNPs associated to target genesCalabriaAMoscaEVitiFMerelliIMilanesiLJ Integr Bioinform20107320375450Combining case-control and case-trio data from the same population in genetic association analyses: overview of approaches and illustration with a candidate gene studyInfante-RivardCMireaLBullSBAm J Epidemiol2009170565766410.1093/aje/kwp18019635737BiostatisticsTaubPJWestheimerEPlast Reconstr Surg20091242200e208e10.1097/PRS.0b013e3181addcd919644245A machine learning information retrieval approach to protein fold recognitionChengJBaldiPBioinformatics200622121456146310.1093/bioinformatics/btl10216547073Unsupervised learning in detection of gene transferHamelLNaharNPoptsovaMSZhaxybayevaOGogartenJPJ Biomed Biotechnol20082008472719228870718509479Machine learning in bioinformaticsLarra�agaPCalvoBSantanaRBielzaCGaldianoJInzaILozanoJAArma�anzasRSantaf�GP�rezARoblesVBrief Bioinform2006718611210.1093/bib/bbk00716761367Gene prioritization through genomic data fusionAertsSLambrechtsDMaitySVan LooPCoessensBDe SmetFTrancheventLCDe MoorBMarynenPHassanBCarmelietPMoreauYNature Biotechnol200624553754410.1038/nbt1203PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional levelCondeLVaquerizasJMSantoyoJAl-ShahrourFRuiz-LlorenteSRobledoMDopazoJNucleic Acids Res200432W242W24810.1093/nar/gkh43844157615215388Target SNP selection in complex disease association studiesWjstMBMC Bioinformatics200459210.1186/1471-2105-5-9248789715248903PolyMAPr: programs for polymorphism database mining, annotation, and functional analysisFreimuthRRStormoGDMcLeodHLHum Mutat20052511011710.1002/humu.2012315643605SNPselector: a web tool for selecting SNPs for genetic association studiesXuHGregorySGHauserERStengerJEPericak-VanceMAVanceJMZuchnerSHauserMABioinformatics2005214181418610.1093/bioinformatics/bti682136128316179360dbSNP: a database of single nucleotide polymorphismsSmigielskiEMSirotkinKWardMSherrySTNucleic Acids Res200028135235510.1093/nar/28.1.35210249610592272The UCSC Genome Browser database: update 2011FujitaPARheadBZweigASHinrichsASKarolchikDClineMSGoldmanMBarberGPClawsonHCoelhoADiekhansMDreszerTRGiardineBMHarteRAHillman-JacksonJHsuFKirkupVKuhnRMLearnedKLiCHMeyerLRPohlARaneyBJRosenbloomKRSmithKEHausslerDKentWJNucleic Acids Res201139Database issueD87682324272620959295SNPper: retrieval and analysis of human SNPsRivaAKohaneISBioinformatics2002181681168510.1093/bioinformatics/18.12.168112490454F-SNP: computationally predicted functional SNPs for disease association studiesLeePHShatkayHNucleic Acids Res200836D820D824223887817986460FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritizationYuanHYChiouJJTsengWHLiuCHLiuCKLinYJWangHHYaoAChenYTHsuCNNucleic Acids Res200634W635W64110.1093/nar/gkl236153886516845089SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association studySacconeSFBolzeRThomasPQuanJMehtaGDeelmanETischfieldJARiceJPNucleic Acids Res201038Web Server issueW201W209289619520529875FitSNPs: highly differentially expressed genes are more likely to have variants associated with diseaseChenRMorganAADudleyJDeshpandeTLiLKodamaKChiangAPButteAJGenome Biology20089R17010.1186/gb-2008-9-12-r170264627419061490A fast algorithm to optimize SNP prioritization for gene-gene and gene-environment interactionsDengWQPar�GGenet Epidemiol20113577293810.1002/gepi.2062421922538A multilevel data integration resource for breast cancer studyMoscaEAlfieriRMerelliIVitiFCalabriaAMilanesiLBMC Syst Biol201047610.1186/1752-0509-4-76290022620525248McKusickVAMendelian Inheritance in Man. A Catalog of Human Genes and Genetic DisordersBaltimore: Johns Hopkins University Press121998myMIR: a genome-wide microRNA targets identification and annotation toolCorradaDVitiFMerelliIBattagliaCMilanesiLBrief Bioinform201112658860010.1093/bib/bbr06222021901Database resources of the national center for biotechnology informationSayersEWBarrettTBensonDABryantSHCaneseKChetverninVChurchDMDiCuccioMEdgarRFederhenSFeoloMGeerLYHelmbergWKapustinYLandsmanDLipmanDJMaddenTLMaglottDRMillerVMizrachiIOstellJPruittKDSchulerGDSequeiraESherrySTShumwayMSirotkinKSouvorovAStarchenkoGTatusovaTAWagnerLYaschenkoEYeJNucleic Acids Res200937Database issueD5D15268654518940862The universal protein resource (uniprot)UniProt ConsortiumNucleic Acids Res200937Database issueD169D174268660618836194The worldwide protein data bank (ww-pdb): ensuring a single, uniform archive of pdb dataBermanHHenrickKNakamuraHMarkleyJLNucleic Acids Res200735Database issueD301D303166977517142228Gene annotation and pathway mapping in keggKanehisaMAokiKKinoshitaFMethods Mol Biol2007396719110.1007/978-1-59745-515-2_618025687Reactome knowledgebase of human biological pathways and processesMatthewsLGopinathGGillespieMCaudyMCroftDde BonoBGarapatiPHemishJHermjakobHJassalBKanapinALewisSMahajanSMayBSchmidtEVastrikIWuGBirneyESteinLD�EustachioPNucleic Acids Res200937Database issueD619D622268653618981052Biogrid: a general repository for interaction datasetsStarkCBreitkreutzBJRegulyTBoucherLBreitkreutzATyersMNucleic Acids Res200634Database issueD535D539134747116381927The gene ontologys reference genome project: a unified framework for functional annotation across speciesThe Gene Ontology ConsortiumPLoS Comput Biol200957e100043110.1371/journal.pcbi.1000431269910919578431Semantic similarity in a taxonomy: An Information-Based measure and its application to problems of ambiguity in natural languageResnikPJournal of Artificial Intelligence Research19991195130Semantic similarity based on corpus statistics and lexical taxonomyJiangJJConrathDWProceedings of 10th International Conference on Research In Computational Linguistics1997A new measure for functional similarity of gene products based on gene ontologySchlickerADominguesFSRahnenfhrerJLengauerTBMC Bioinformatics2006730210.1186/1471-2105-7-302155965216776819A new method to measure the semantic similarity of go termsWangJZDuZPayattakoolRYuPSChenCFBioinformatics200723101274128110.1093/bioinformatics/btm08717344234Pygene libraryhttps://github.com/blaa/PyGeneSimplified Wrapper and Interface Generatorhttp://www.swig.orgKEGG for representation and analysis of molecular networks involving diseases and drugsKanehisaMGotoSFurumichiMTanabeMHirakawaMNucleic Acids Res201038Database issueD35560280891019880382Gene ontology: tool for the unification of biology. The Gene Ontology ConsortiumAshburnerMBallCABlakeJABotsteinDButlerHCherryJMDavisAPDolinskiKDwightSSEppigJTHarrisMAHillDPIssel-TarverLKasarskisALewisSMateseJCRichardsonJERingwaldMRubinGMSherlockGNature Genet200025125910.1038/75556303741910802651Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple TestingBenjaminiYHochbergYJournal of the Royal Statistical Society. Series B (Methodological)1995571289300R: A language and environment for statistical computingR Development Core TeamR Foundation for Statistical ComputingVienna, Austria2005GeneCards: integrating information about genes, proteins and diseasesRebhanMChalifa-CaspiVPriluskyJLancetDTrends in Genetics19971316310.1016/S0168-9525(97)01103-79097728ToppGene Suite for gene list enrichment analysis and candidate gene prioritizationChenJBardesEEAronowBJJeggaAGNucleic Acids Res200937(Web Server issue)W305W311270397819465376Potential etiologic and functional implications of genome-wide association loci for human diseases and traitsHindorffLASethupathyPJunkinsHARamosEMMehtaJPCollinsFSManolioTAProc Natl Acad Sci USA2009106239362710.1073/pnas.0903103106268714719474294Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanismsLe-NiculescuHPatelSDBhatMKuczenskiRFaraoneSVTsuangMTMcMahonFJSchorkNJNurnbergerJIJrNiculescuABAm J Med Genet B Neuropsychiatr Genet2009150B15518110.1002/ajmg.b.3088719025758
Efficiency and power in genetic association studiesde BakkerPIWYelenskyRPeterIGabrielSBDalyMJAltshulerDNature Genet200537111217122310.1038/ng166916244653Genomics: understanding human diversityGoldsteinDBCavalleriGLNature200543770631241124210.1038/4371241a16251937Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex diseaseBotsteinDRischNNature Genet200333Suppl2283712610532Variation is the spice of lifeKruglyakLNickersonDANature Genet20012723423610.1038/8577611242096Guideline for data analysis of genome-wide association studiesZhangHLiuLWangXGruenJRCancer Genomics Proteomics200741273417726238Application of genome-wide snp data for uncovering pairwise relationships and quantitative trait lociShamPCChernySSPurcellSGenetica2009136223724310.1007/s10709-008-9349-419127410Methods for data analysisHanageWPAanensenDMMethods Mol Biol200955128730410.1007/978-1-60327-999-4_2019521881The role of dna copy number variation in schizophreniaTamGWCRedonRCarterNPGrantSGNBiol Psychiatry200966111005101210.1016/j.biopsych.2009.07.02719748074Review and evaluation of methods correcting for population stratification with a focus on underlying statistical principlesTiwariHKBarnholtz-SloanJWineingerNPadillaMAVaughanLKAllisonDBHum Hered2008662678610.1159/0001191072803696,280369618382087Genetic mapping in human diseaseAltshulerDDalyMJLanderESScience2008322590388188810.1126/science.1156409269495718988837SNPRanker: a tool for identification and scoring of SNPs associated to target genesCalabriaAMoscaEVitiFMerelliIMilanesiLJ Integr Bioinform20107320375450Combining case-control and case-trio data from the same population in genetic association analyses: overview of approaches and illustration with a candidate gene studyInfante-RivardCMireaLBullSBAm J Epidemiol2009170565766410.1093/aje/kwp18019635737BiostatisticsTaubPJWestheimerEPlast Reconstr Surg20091242200e208e10.1097/PRS.0b013e3181addcd919644245A machine learning information retrieval approach to protein fold recognitionChengJBaldiPBioinformatics200622121456146310.1093/bioinformatics/btl10216547073Unsupervised learning in detection of gene transferHamelLNaharNPoptsovaMSZhaxybayevaOGogartenJPJ Biomed Biotechnol20082008472719228870718509479Machine learning in bioinformaticsLarra�agaPCalvoBSantanaRBielzaCGaldianoJInzaILozanoJAArma�anzasRSantaf�GP�rezARoblesVBrief Bioinform2006718611210.1093/bib/bbk00716761367Gene prioritization through genomic data fusionAertsSLambrechtsDMaitySVan LooPCoessensBDe SmetFTrancheventLCDe MoorBMarynenPHassanBCarmelietPMoreauYNature Biotechnol200624553754410.1038/nbt1203PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional levelCondeLVaquerizasJMSantoyoJAl-ShahrourFRuiz-LlorenteSRobledoMDopazoJNucleic Acids Res200432W242W24810.1093/nar/gkh43844157615215388Target SNP selection in complex disease association studiesWjstMBMC Bioinformatics200459210.1186/1471-2105-5-9248789715248903PolyMAPr: programs for polymorphism database mining, annotation, and functional analysisFreimuthRRStormoGDMcLeodHLHum Mutat20052511011710.1002/humu.2012315643605SNPselector: a web tool for selecting SNPs for genetic association studiesXuHGregorySGHauserERStengerJEPericak-VanceMAVanceJMZuchnerSHauserMABioinformatics2005214181418610.1093/bioinformatics/bti682136128316179360dbSNP: a database of single nucleotide polymorphismsSmigielskiEMSirotkinKWardMSherrySTNucleic Acids Res200028135235510.1093/nar/28.1.35210249610592272The UCSC Genome Browser database: update 2011FujitaPARheadBZweigASHinrichsASKarolchikDClineMSGoldmanMBarberGPClawsonHCoelhoADiekhansMDreszerTRGiardineBMHarteRAHillman-JacksonJHsuFKirkupVKuhnRMLearnedKLiCHMeyerLRPohlARaneyBJRosenbloomKRSmithKEHausslerDKentWJNucleic Acids Res201139Database issueD87682324272620959295SNPper: retrieval and analysis of human SNPsRivaAKohaneISBioinformatics2002181681168510.1093/bioinformatics/18.12.168112490454F-SNP: computationally predicted functional SNPs for disease association studiesLeePHShatkayHNucleic Acids Res200836D820D824223887817986460FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritizationYuanHYChiouJJTsengWHLiuCHLiuCKLinYJWangHHYaoAChenYTHsuCNNucleic Acids Res200634W635W64110.1093/nar/gkl236153886516845089SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association studySacconeSFBolzeRThomasPQuanJMehtaGDeelmanETischfieldJARiceJPNucleic Acids Res201038Web Server issueW201W209289619520529875FitSNPs: highly differentially expressed genes are more likely to have variants associated with diseaseChenRMorganAADudleyJDeshpandeTLiLKodamaKChiangAPButteAJGenome Biology20089R17010.1186/gb-2008-9-12-r170264627419061490A fast algorithm to optimize SNP prioritization for gene-gene and gene-environment interactionsDengWQPar�GGenet Epidemiol20113577293810.1002/gepi.2062421922538A multilevel data integration resource for breast cancer studyMoscaEAlfieriRMerelliIVitiFCalabriaAMilanesiLBMC Syst Biol201047610.1186/1752-0509-4-76290022620525248McKusickVAMendelian Inheritance in Man. A Catalog of Human Genes and Genetic DisordersBaltimore: Johns Hopkins University Press121998myMIR: a genome-wide microRNA targets identification and annotation toolCorradaDVitiFMerelliIBattagliaCMilanesiLBrief Bioinform201112658860010.1093/bib/bbr06222021901Database resources of the national center for biotechnology informationSayersEWBarrettTBensonDABryantSHCaneseKChetverninVChurchDMDiCuccioMEdgarRFederhenSFeoloMGeerLYHelmbergWKapustinYLandsmanDLipmanDJMaddenTLMaglottDRMillerVMizrachiIOstellJPruittKDSchulerGDSequeiraESherrySTShumwayMSirotkinKSouvorovAStarchenkoGTatusovaTAWagnerLYaschenkoEYeJNucleic Acids Res200937Database issueD5D15268654518940862The universal protein resource (uniprot)UniProt ConsortiumNucleic Acids Res200937Database issueD169D174268660618836194The worldwide protein data bank (ww-pdb): ensuring a single, uniform archive of pdb dataBermanHHenrickKNakamuraHMarkleyJLNucleic Acids Res200735Database issueD301D303166977517142228Gene annotation and pathway mapping in keggKanehisaMAokiKKinoshitaFMethods Mol Biol2007396719110.1007/978-1-59745-515-2_618025687Reactome knowledgebase of human biological pathways and processesMatthewsLGopinathGGillespieMCaudyMCroftDde BonoBGarapatiPHemishJHermjakobHJassalBKanapinALewisSMahajanSMayBSchmidtEVastrikIWuGBirneyESteinLD�EustachioPNucleic Acids Res200937Database issueD619D622268653618981052Biogrid: a general repository for interaction datasetsStarkCBreitkreutzBJRegulyTBoucherLBreitkreutzATyersMNucleic Acids Res200634Database issueD535D539134747116381927The gene ontologys reference genome project: a unified framework for functional annotation across speciesThe Gene Ontology ConsortiumPLoS Comput Biol200957e100043110.1371/journal.pcbi.1000431269910919578431Semantic similarity in a taxonomy: An Information-Based measure and its application to problems of ambiguity in natural languageResnikPJournal of Artificial Intelligence Research19991195130Semantic similarity based on corpus statistics and lexical taxonomyJiangJJConrathDWProceedings of 10th International Conference on Research In Computational Linguistics1997A new measure for functional similarity of gene products based on gene ontologySchlickerADominguesFSRahnenfhrerJLengauerTBMC Bioinformatics2006730210.1186/1471-2105-7-302155965216776819A new method to measure the semantic similarity of go termsWangJZDuZPayattakoolRYuPSChenCFBioinformatics200723101274128110.1093/bioinformatics/btm08717344234Pygene libraryhttps://github.com/blaa/PyGeneSimplified Wrapper and Interface Generatorhttp://www.swig.orgKEGG for representation and analysis of molecular networks involving diseases and drugsKanehisaMGotoSFurumichiMTanabeMHirakawaMNucleic Acids Res201038Database issueD35560280891019880382Gene ontology: tool for the unification of biology. The Gene Ontology ConsortiumAshburnerMBallCABlakeJABotsteinDButlerHCherryJMDavisAPDolinskiKDwightSSEppigJTHarrisMAHillDPIssel-TarverLKasarskisALewisSMateseJCRichardsonJERingwaldMRubinGMSherlockGNature Genet200025125910.1038/75556303741910802651Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple TestingBenjaminiYHochbergYJournal of the Royal Statistical Society. Series B (Methodological)1995571289300R: A language and environment for statistical computingR Development Core TeamR Foundation for Statistical ComputingVienna, Austria2005GeneCards: integrating information about genes, proteins and diseasesRebhanMChalifa-CaspiVPriluskyJLancetDTrends in Genetics19971316310.1016/S0168-9525(97)01103-79097728ToppGene Suite for gene list enrichment analysis and candidate gene prioritizationChenJBardesEEAronowBJJeggaAGNucleic Acids Res200937(Web Server issue)W305W311270397819465376Potential etiologic and functional implications of genome-wide association loci for human diseases and traitsHindorffLASethupathyPJunkinsHARamosEMMehtaJPCollinsFSManolioTAProc Natl Acad Sci USA2009106239362710.1073/pnas.0903103106268714719474294Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanismsLe-NiculescuHPatelSDBhatMKuczenskiRFaraoneSVTsuangMTMcMahonFJSchorkNJNurnbergerJIJrNiculescuABAm J Med Genet B Neuropsychiatr Genet2009150B15518110.1002/ajmg.b.3088719025758
http://www.ncbi.nlm.nih.gov/pubmed/16244653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16251937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11242096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17726238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17726238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19127410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19127410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19521881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19748074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19748074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18382087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18382087?dopt=Abstract


10. Altshuler D, Daly MJ, Lander ES: Genetic mapping in human disease.
Science 2008, 322(5903):881-888.

11. Calabria A, Mosca E, Viti F, Merelli I, Milanesi L: SNPRanker: a tool for
identification and scoring of SNPs associated to target genes. J Integr
Bioinform 2010, 7(3).

12. Infante-Rivard C, Mirea L, Bull SB: Combining case-control and case-trio
data from the same population in genetic association analyses:
overview of approaches and illustration with a candidate gene study.
Am J Epidemiol 2009, 170(5):657-664.

13. Taub PJ, Westheimer E: Biostatistics. Plast Reconstr Surg 2009,
124(2):200e-208e.

14. Cheng J, Baldi P: A machine learning information retrieval approach to
protein fold recognition. Bioinformatics 2006, 22(12):1456-1463.

15. Hamel L, Nahar N, Poptsova MS, Zhaxybayeva O, Gogarten JP:
Unsupervised learning in detection of gene transfer. J Biomed Biotechnol
2008, 2008:472719.

16. Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA,
Armañanzas R, Santafé G, Pérez A, Robles V: Machine learning in
bioinformatics. Brief Bioinform 2006, 7(1):86-112.

17. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F,
Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y:
Gene prioritization through genomic data fusion. Nature Biotechnol 2006,
24(5):537-544.

18. Conde L, Vaquerizas JM, Santoyo J, Al-Shahrour F, Ruiz-Llorente S,
Robledo M, Dopazo J: PupaSNP Finder: a web tool for finding SNPs with
putative effect at transcriptional level. Nucleic Acids Res 2004, 32:
W242-W248.

19. Wjst M: Target SNP selection in complex disease association studies.
BMC Bioinformatics 2004, 5:92.

20. Freimuth RR, Stormo GD, McLeod HL: PolyMAPr: programs for
polymorphism database mining, annotation, and functional analysis.
Hum Mutat 2005, 25:110-117.

21. Xu H, Gregory SG, Hauser ER, Stenger JE, Pericak-Vance MA, Vance JM,
Zuchner S, Hauser MA: SNPselector: a web tool for selecting SNPs for
genetic association studies. Bioinformatics 2005, 21:4181-4186.

22. Smigielski EM, Sirotkin K, Ward M, Sherry ST: dbSNP: a database of single
nucleotide polymorphisms. Nucleic Acids Res 2000, 28(1):352-355.

23. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS,
Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR,
Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM,
Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE,
Haussler D, Kent WJ: The UCSC Genome Browser database: update 2011.
Nucleic Acids Res 2011, 39(Database issue):D876-82.

24. Riva A, Kohane IS: SNPper: retrieval and analysis of human SNPs.
Bioinformatics 2002, 18:1681-1685.

25. Lee PH, Shatkay H: F-SNP: computationally predicted functional SNPs for
disease association studies. Nucleic Acids Res 2008, 36:D820-D824.

26. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A,
Chen YT, Hsu CN: FASTSNP: an always up-to-date and extendable service
for SNP function analysis and prioritization. Nucleic Acids Res 2006, 34:
W635-W641.

27. Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, Tischfield JA,
Rice JP: SPOT: a web-based tool for using biological databases to
prioritize SNPs after a genome-wide association study. Nucleic Acids Res
2010, 38(Web Server issue):W201-W209.

28. Chen R, Morgan AA, Dudley J, Deshpande T, Li L, Kodama K, Chiang AP,
Butte AJ: FitSNPs: highly differentially expressed genes are more likely to
have variants associated with disease. Genome Biology 2008, 9:R170.

29. Deng WQ, Paré G: A fast algorithm to optimize SNP prioritization for
gene-gene and gene-environment interactions. Genet Epidemiol 2011,
35(7):729-38.

30. Mosca E, Alfieri R, Merelli I, Viti F, Calabria A, Milanesi L: A multilevel data
integration resource for breast cancer study. BMC Syst Biol 2010, 4:76.

31. McKusick VA: Mendelian Inheritance in Man. A Catalog of Human Genes and
Genetic Disorders. 12 edition. Baltimore: Johns Hopkins University Press;
1998.

32. Corrada D, Viti F, Merelli I, Battaglia C, Milanesi L: myMIR: a genome-wide
microRNA targets identification and annotation tool. Brief Bioinform 2011,
12(6):588-600.

33. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,
Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W,

Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V,
Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M,
Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E,
Ye J: Database resources of the national center for biotechnology
information. Nucleic Acids Res 2009, 37(Database issue):D5-D15.

34. UniProt Consortium: The universal protein resource (uniprot). Nucleic Acids
Res 2009, 37(Database issue):D169-D174.

35. Berman H, Henrick K, Nakamura H, Markley JL: The worldwide protein data
bank (ww-pdb): ensuring a single, uniform archive of pdb data. Nucleic
Acids Res 2007, 35(Database issue):D301-D303.

36. Kanehisa M, Aoki K, Kinoshita F: Gene annotation and pathway mapping
in kegg. Methods Mol Biol 2007, 396:71-91.

37. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B,
Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S,
May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P:
Reactome knowledgebase of human biological pathways and processes.
Nucleic Acids Res 2009, 37(Database issue):D619-D622.

38. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: Biogrid: a
general repository for interaction datasets. Nucleic Acids Res 2006,
34(Database issue):D535-D539.

39. The Gene Ontology Consortium: The gene ontologys reference genome
project: a unified framework for functional annotation across species.
PLoS Comput Biol 2009, 5(7):e1000431.

40. Resnik P: Semantic similarity in a taxonomy: An Information-Based
measure and its application to problems of ambiguity in natural
language. Journal of Artificial Intelligence Research 1999, 11:95-130.

41. Jiang JJ, Conrath DW: Semantic similarity based on corpus statistics and
lexical taxonomy. Proceedings of 10th International Conference on Research
In Computational Linguistics 1997.

42. Schlicker A, Domingues FS, Rahnenfhrer J, Lengauer T: A new measure for
functional similarity of gene products based on gene ontology. BMC
Bioinformatics 2006, 7:302.

43. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF: A new method to measure
the semantic similarity of go terms. Bioinformatics 2007, 23(10):1274-1281.

44. Pygene library. [https://github.com/blaa/PyGene].
45. Simplified Wrapper and Interface Generator. [http://www.swig.org].
46. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for

representation and analysis of molecular networks involving diseases
and drugs. Nucleic Acids Res 2010, 38(Database issue):D355-60.

47. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nature Genet 2000, 25(1):25-9.

48. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological) 1995, 57(1):289-300.

49. R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing Vienna, Austria; 2005.

50. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D: GeneCards: integrating
information about genes, proteins and diseases. Trends in Genetics 1997,
13:163.

51. Chen J, Bardes EE, Aronow BJ, Jegga AG: ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res
2009, 37((Web Server issue)):W305-W311.

52. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA: Potential etiologic and functional implications of genome-
wide association loci for human diseases and traits. Proc Natl Acad Sci
USA 2009, 106(23):9362-7.

53. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT,
McMahon FJ, Schork NJ, Nurnberger JIJr, Niculescu AB: Convergent functional
genomics of genome-wide association data for bipolar disorder:
comprehensive identification of candidate genes, pathways and
mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009, 150B:155-181.

doi:10.1186/1471-2105-14-S1-S9
Cite this article as: Merelli et al.: SNPranker 2.0: a gene-centric data
mining tool for diseases associated SNP prioritization in GWAS. BMC
Bioinformatics 2013 14(Suppl 1):S9.

Merelli et al. BMC Bioinformatics 2013, 14(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/14/S1/S9

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/18988837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20375450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20375450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19635737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19635737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19635737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19644245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16547073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16547073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18509479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16761367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16761367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15248903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15643605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15643605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16179360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16179360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20959295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17986460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17986460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16845089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16845089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21922538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21922538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22021901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22021901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18836194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17142228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17142228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18981052?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16776819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16776819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344234?dopt=Abstract
https://github.com/blaa/PyGene
http://www.swig.org
http://www.ncbi.nlm.nih.gov/pubmed/19880382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19880382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19880382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9097728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9097728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19474294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19474294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19025758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19025758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19025758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19025758?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Related works

	Methods
	Data integration
	Ontological expansion
	Features weight definition
	Scoring computation through web interface
	Dataset enrichment analysis

	Results
	System input and features selection
	Ontological expansion
	Features set
	SNP ranking

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	Competing interests
	References

