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Abstract

Background: We introduce a Knowledge-based Decision Support System (KDSS) in order to face the Protein
Complex Extraction issue. Using a Knowledge Base (KB) coding the expertise about the proposed scenario, our
KDSS is able to suggest both strategies and tools, according to the features of input dataset. Our system provides
a navigable workflow for the current experiment and furthermore it offers support in the configuration and
running of every processing component of that workflow. This last feature makes our system a crossover between
classical DSS and Workflow Management Systems.

Results: We briefly present the KDSS’ architecture and basic concepts used in the design of the knowledge base
and the reasoning component. The system is then tested using a subset of Saccharomyces cerevisiae Protein-
Protein interaction dataset. We used this subset because it has been well studied in literature by several research
groups in the field of complex extraction: in this way we could easily compare the results obtained through our
KDSS with theirs. Our system suggests both a preprocessing and a clustering strategy, and for each of them it
proposes and eventually runs suited algorithms. Our system’s final results are then composed of a workflow of
tasks, that can be reused for other experiments, and the specific numerical results for that particular trial.

Conclusions: The proposed approach, using the KDSS’ knowledge base, provides a novel workflow that gives the
best results with regard to the other workflows produced by the system. This workflow and its numeric results
have been compared with other approaches about PPI network analysis found in literature, offering similar results.

Background
Proteins represent the working molecules of a cell, but to
fully understand cell machinery, studying the functions
of proteins is not enough. The biological activity of a cell
is not defined by the proteins functions per se [1], what it
is really important is the interactions among proteins.
A group of proteins that interact in order to regulate

and support each other for specific biological activities is
called a protein complex. Protein complexes are one of
the functional modules of the cell: an example of this

protein function modules are RNA-polymerase and DNA-
polymerase.
The concerted action of different functional modules is

responsible of major biological mechanisms of a cellular
process such as DNA transcription, translation, cell cycle
control, and so on. Since a protein could have several
binding sites, each protein can belong to more than one
complex and exhibit more than one functionality. The
basic element of these modules is the protein-protein
interaction (PPI). A large amount of PPI data have been
identified for different biological species by using high
throughput proteomic technologies. Of course experi-
mentalists can take advantage of using different online
databases containing a list of PPIs for each species (DIP
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[2], MIPS [3], etc..), but unfortunately available datasets
are still incomplete and contain non-specific (false posi-
tive) interactions [4], in fact only a few of interactions
have been verified with small scale experiments (in vitro)
as real interaction with an emerging function.
Usually, in bioinformatics a collection of these interac-

tions is modelled as an undirected graph, the protein-pro-
tein interaction network (PPIN), where nodes represent
proteins and edges represent pairwise interactions: it allows
us to exploit graph theory methods and solutions.
The task of exploiting biologically relevant modules in

PPINs represents an active research area in bioinformatics,
not only for cell understanding, but also for new drugs
developing; for example, several authors, as [5], are study-
ing the mechanisms that regulate the evolutionary cross-
roads of p53 complex, responsible for different aspects of
animal life, in developing human cancer cells. Then, iden-
tifying protein complexes with emerging function turns
into extracting sub-networks with some emerging proper-
ties. Because of the importance of isolating functionally
coordinated interactions, a lot of models, algorithms and
strategies have been introduced to extract interesting PPI
subnetwork (soft-clustering, greedy heuristics, probabilistic
approaches, etc.), but each of them has proper pros and
cons.
A number of clustering-based approaches have been

proposed to solve the protein complex prediction problem.
A well know algorithm introduced by [6], the Molecular
Complex Detection Algorithm (MCODE), makes use of
local graph properties and it is aimed at finding densely
connected regions in protein interaction networks.
Another algorithm based on local search is the Restricted
Neighbourhood Search Clustering Algorithm (RNSC)
developed by [7]. This algorithm searches for a low-cost
clustering by first composing an initial random clustering,
then reducing the clustering cost by a near-optimal strat-
egy. A different strategy is adopted by the Markov Cluster-
ing Algorithm (MCL) [8], that divides the graph by means
of flow simulation. In facts, it separates the graph into dif-
ferent segments, with an iteration of simulated random
walks within a graph.
It is possible to increase the reliability of the PPI data by

means of preprocessing techniques. Some preprocessing
strategies are aimed at eliminating false positive (FP) inter-
actions from dataset obtained by online DBs. For example
[9] notices that the interactions not part of dense subnet-
works, are more likely to be interactions that do not exist.
To identify these false positives, authors combined two
topological metrics named Cluster Coefficient [10] and
Centrality [11]. Also [12] uses the same algorithms, but
adopting a different methodology, integrating individual
topological measures into a combined measure by com-
puting their geometrical mean. A different approach to
improve the quality of PPI datasets is adopted by [13], that

attempts to detect those interactions that are missed by
large-scale experiments or, in other words, aiming at pre-
dicting false negative by means of a topological analysis.
Obviously, the best combination of the proposed techni-

ques depends on the problem and many researchers
[12,14-16] have proposed different workflows.
Our approach differs from the previous ones since

we face Protein Complex Extraction problem using a
Knowledge-based Decision Support System (KDSS). Our
KDSS, combining the knowledge extracted from
research papers covering a lot of different strategies and
methodologies, is able to suggest and run a novel work-
flow of tasks for the presented issue.
As it will be highlighted in Results and Discussion

Section, the suggested workflow, using a test dataset, gives
the best results with regard to the other, not suggested,
workflows produced by the system and moreover it pro-
vides comparable results with respect to some of the com-
mon workflows found in literature. From this point of
view, our KDSS represents a valid and powerful instru-
ment that can help an experimentalist to face and solve
the problem of extracting protein complexes from a PPIN,
supporting him in the choice, configuration and running
of proper tasks.

Methods
Knowledge-based DSS is a category of DSS built using an
expert system [17]. These systems have their own exper-
tise based on knowledge on many aspects of the problem:
the application domain, the definitions of problems within
that domain and the necessary skill to solve them [18].
The knowledge of the system is often coded as a set of
rules by one or more human experts: this kind of systems
are often referred to as rule-based expert systems.
Examples of DSS in Bioinformatics are ProCKSI [19], a

system that is able to put together various protein similar-
ity measures in order to obtain the comparison of multiple
proteins simultaneously; and INTERPRET [20], a software
that offers support in the analysis of Magnetic Resonance
Spectroscopy (MRS) data.
Along with the development of Expert and Decision

Support Systems, in recent years in bioinformatics a new
type of tools, called Workflow Management Systems
(WFMS) [21], have begun to spread out. WFMSs provide
a simple way to build and run a custom experiment using
the most common bioinformatics resources, like online
databases, software and algorithms.
The most used and famous WFMS for bioinformatics is

Taverna [22]: it is able to automatically integrate tools on
databases available both locally and on the web in order to
build workflows of complex tasks; to run the workflows
and to show results in different formats. The system works
by means of a Graphical User Interface (GUI) or a script
language. A Taverna plug-in, called Taverna Interaction
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Service, was introduced in [23]; it extends the functionality
of Taverna by defining human interaction within a work-
flow, once it is running. More in detail, this plug-in acts as
a mediation layer between the automated workflow engine
and human agents. In facts, it includes a review process,
provided by external collaboration partners, invoked by
sending emails to target users; they, in turns, can sent back
a decision to the workflow produced by Taverna. In this
way, users can interact with a piece of data, such as for
example an annotation of a genomic region, during the
workflow execution.
Other WFMS for bioinformatics are Biowep [24], that

allows the user to search and run a predefined set of
workflows, already tested, validated and annotated; and
BioWMS [25], that is a web-based WFMS built upon an
agent-based middle ware architecture.
Cited WFMSs, however, do not have a knowledge base,

nor make decision like KDSS; the KDSS we present, on
the other hand, offers not only support in the choice of
the proper strategy, tool and algorithm, but it helps the
user to configure and to run them, step by step. For this
reason our system can be seen as an ideal merging point
between classical DSS and emerging WFMS. It provides
both the tools/services needed to resolve a problem, and
also the knowledge necessary to suggest a specific strat-
egy and justify its choice.

System architecture
First basic ideas of the proposed system can be read in
[26,27]: in this Section we will briefly describe its architec-
ture and then we will deepen main concepts at the basis of
our KDSS.
The system core is represented by a rule-based expert

system [28]. The three main components of this system
are the Knowledge Base (KB), the Reasoner and the
Executor: they interact each other as shown in Figure 1.
In the middle part there is the Knowledge Base: it con-

tains all the information, called facts, that encode the
expertise of the system about a certain application domain.
Facts are given a rigorous and organized structure by
means of an ontology of concepts [29].
In order to obtain a well formed Knowledge Base, we

adopt a precise and robust organization which, at the same
time, is shareable and easily expandable, presented in [30].
In facts, with the introduction of a proper ontology, we can
obtain a logical description of a specific problem, share the
information among software agents and reuse the specific
knowledge domain. In other words, we adopt a paradigm
that facilitate the generalization of the application domain
and the modularity and the expandability of the repre-
sented knowledge. This paradigm, called Data-Problem-
Solver (DPS), is able to distinguish and separately model
“’what I need"’ (Data), “’what to do"’ (Problem) and “’how to

do"’ (Solver), or in other words, I/O data of the problem
(Data), the set o tasks (Problem) and the way to solve these
tasks (Solver). In this way, we aim at using a very general
purpose system based on a KB for rule-based expert sys-
tems, that is independent from a specific domain, reusable
and expandable. As showed in Figure 2, there is another
main element used for solving a specific problem, that is
the Tool concept; in facts, an instance of Solver contains
information about which tool (or which list of tools) satis-
fies the purpose (and/or the paradigm) that could solve a
specific task. Figure also reports the most important rela-
tionship among the tree main branches of the adopted
ontology.
Apart from the facts, KB also has a set of rules, in the

typical form IF <precondition>THEN <action>. The rules,
acting on facts, have to be considered as the coding for
heuristics, guidelines and strategies adopted by an expert
of the domain. Both facts and rules can be provided by
one or more experts of the domain or can be extracted
from experimental and scientific papers, clinical guidelines
and so on.
The Reasoner is an inference engine that uses the facts

and rules of the KB in order to make decision: it selects
the strategies and the related tools that accomplish the
user request according to the actual problem and the
input data.
The decision taken by the Reasoner are suggested to

the User that can either accept them or select other
available strategies and tools. In any case, it is the Execu-
tor that actually runs algorithm, tools and services. It can
be considered as a sort of interface between the Reasoner
and the library of algorithms and processing tools avail-
able locally and over the Internet. The Executor also
updates the KB with the processing results. New re-
sults produce new facts that eventually can trigger other
rules.

Decision making process
Facts and rules of the KB are arranged into a set of deci-
sion-making modules, as reported in [26]. In this Section
we give a brief explanation of key features of decision-
making modules.
The decision-making activity of the system is based on

an organization of facts and rules arranged in functional
modules called decision making modules. Decision mak-
ing activity is task oriented. Each module has knowledge
and skills, takes care of a specific part of the reasoning
process and it is responsible for making decisions about a
well defined task. Facts could be shared among different
modules, whereas each rule belongs to only a module.
Finally, each module can activate a previously defined
solver; the same solver could be activated by different
modules, by using different rules.
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Figure 1 System architecture. The system is built upon a rule-based expert system. KB contains the expertise about the application domain in
the form of facts and rules. The Reasoner, that is an inference engine, according to the user’s requests, input data and available knowledge,
decides what are the strategies to follow and the tools to run, and suggest them to the User. The Executor actually runs all the executable
processing tools and updates the KB with results of processing, that can be used to make new inferences.
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If one module has not the needed knowledge to resolve
a part of its task, it can activate another module with the
proper skill. This activation mechanism defines a tree
structure among decision-making modules, where parent
modules manage global and general tasks and children
modules are responsible of the decision-making process
regarding more specialized tasks.
For example, we can have specialized modules for deal-

ing with preprocessing, visualization, or clustering opera-
tions that can be activated by general modules which
supervise global task execution. The tree structure of mod-
ules can be also represented through a treemap [31]: in a
treemap, modules and sub-modules are shown as nested
boxes.

Implementation details
System implementation is based on Java technology; grace
to its features, such as platform and location indepen-
dence, portability, OS independence, Java represents
agood support for the proposed work. The system also
contains a “Rule-Based System” to manage the knowledge-
base; the rule based engine adopted is Jess [32], the Rule
Engine for the Java Platform. It supports declarative
approach, acting at the decision making level. Jess infer-
ence engine uses RETE algorithm [33] as pattern matcher.
The knowledge base have been modeled using one of the

largest adopted tool for building ontologies, that is Protege’
[34]. Protege’ is useful for represent the knowledge used by
the proposed architecture, because it implements a metho-
dology for creating ontologies based on declarative knowl-
edge representation systems. Finally, in order to generate
and visualize the interactive workflow of the system, we
adopt JGraphX Java Swing library [35], that is a product
family of libraries providing features aimed at applications
that display interactive diagrams and graphs. Among the
amount of applications provided by this library, we exploit

its functionality related to process diagrams, workflow
visualization and flowcharts.

Results and discussion
The application scenario focuses on the complexes
extraction problem, that contains in turns two main
sub-problems: the preprocessing and purifying of PPI
data and the protein complex clustering.
The rest of this Section is organized as follows: in the

next sub-section we introduce the dataset used in the
scenario; then we show how the proposed method sys-
tem integrates aforementioned approaches and how it
helps users to face the protein complexes extraction
problem. Finally in the last sub-section the analysis of
experimental results is discussed.

Experimental dataset
In our experiments, among different available online data-
bases of PPIs network, we use the Database of Interacting
Proteins (DIP). The input dataset used in this scenario is a
subset of Saccharomyces cerevisiae PPI-Network composed
by 34 proteins and 90 interactions, as shown in Table 1.
This table reports a list of 90 PPIs: for each PPI is shown
the uniprotKB ID of the first protein, the uniprotKB ID of
the second protein and the DIP ID of the interaction
between the previous pair of proteins. We chose this very
simple dataset because it has been well studied by [36,37]
with small scale experiments (in vitro) at biological interac-
tion level. DIP also provides a subset of PPIs curated
manually by experts, that are called core PPIs. A well stu-
died small set of PPI allows us to better describe how the
system works, and the choices it takes; obviously we know
this dataset is not representative of a whole PPI Network,
in facts it represents only a pretext for executing the sys-
tem and obtaining some results comparable with the other
papers in literature [36,38] that use the same dataset.

Figure 2 Data-Problem-Solver ontology for knowledge-based expert systems. An overview of the Data-Problem-Solver paradigm used for
building a complete and exhaustive Knowledge Base.
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System running
The experiment begins when the user asks the system to
extract protein complexes from a PPI-Network and
inserts the chosen dataset, the system focuses on deci-
sion making modules responsible for the specific pro-
blem. More in details, there is the parent module, PPI
Complex Extraction, that gives directives to two children
modules: the first one, Complex Preprocessing, contains
expertise about PPIN preprocessing, whereas the second

Table 1 Input dataset.

# Protein_A Protein_B PPI_ID

1 act1 abp1 DIP-10439E

2 app1 abp1 DIP-9959E

3 cla4 abp1 DIP-3499E

4 sla1 abp1 DIP-2452E

5 srv2 abp1 DIP-1139E

6 yor284w abp1 DIP-3500E

7 act1 act1 DIP-1145E

8 bni1 act1 DIP-1155E

9 cof1 act1 DIP-1157E

10 las17 act1 DIP-1158E

11 pfy1 act1 DIP-1143E

12 sla2 act1 DIP-1175E

13 act1 aip1 DIP-1140E

14 srv2 aip1 DIP-3502E

15 hsl7 app1 DIP-3683E

16 rvs167 app1 DIP-3907E

17 sla2 app1 DIP-3966E

18 ysc84 app1 DIP-11282E

19 cdc42 bni1 DIP-1154E

20 cap2 cap1 DIP-3546E

21 gic2 cap1 DIP-3547E

22 cla4 cdc42 DIP-2580E

23 gic2 cdc42 DIP-2583E

24 gic2 cla4 DIP-3639E

25 aip1 cof1 DIP-1346E

26 app1 cof1 DIP-14613E

27 las17 cof1 DIP-1161E

28 app1 crn1 DIP-3604E

29 cof1 crn1 DIP-11816E

30 crn1 crn1 DIP-4127E

31 hsl7 hsl7 DIP-9812E

32 swe1 hsl7 DIP-7787E

33 cap2 las17 DIP-1160E

34 las17 las17 DIP-11092E

35 rvs167 las17 DIP-3699E

36 sla1 las17 DIP-1162E

37 sla2 las17 DIP-15438E

38 ysc84 las17 DIP-11095E

39 bni1 pfy1 DIP-1164E

40 bnr1 pfy1 DIP-1166E

41 srv2 pfy1 DIP-3762E

42 app1 rvs161 DIP-4047E

43 las17 rvs161 DIP-4048E

44 ybr108w rvs161 DIP-1781E

45 abp1 rvs167 DIP-1138E

46 acf2 rvs167 DIP-3900E

47 act1 rvs167 DIP-1146E

48 rvs161 rvs167 DIP-1780E

49 rvs167 rvs167 DIP-3901E

50 sla2 rvs167 DIP-10013E

51 ybr108w rvs167 DIP-3902E

52 ygr268c rvs167 DIP-3903E

Table 1 Input dataset. (Continued)

53 yjr083c rvs167 DIP-3904E

54 ypr171w rvs167 DIP-10016E

55 ysc84 rvs167 DIP-10017E

56 app1 sla1 DIP-10020E

57 rvs167 sla1 DIP-10011E

58 srv2 sla1 DIP-10018E

59 ygr268c sla1 DIP-10019E

60 yor284w sla1 DIP-11232E

61 ypr171w sla1 DIP-3964E

62 abp1 sla2 DIP-2453E

63 cla4 sla2 DIP-3965E

64 sla2 sla2 DIP-3144E

65 act1 srv2 DIP-1144E

66 cof1 srv2 DIP-11822E

67 rvs167 srv2 DIP-3029E

68 srv2 srv2 DIP-1177E

69 trm5 srv2 DIP-4014E

70 crn1 svl3 DIP-3603E

71 app1 swe1 DIP-4050E

72 ygr268c ygr268c DIP-2272E

73 ysc84 ygr268c DIP-2243E

74 las17 yhr133c DIP-3700E

75 yjr083c yjr083c DIP-4186E

76 ysc84 yjr083c DIP-11280E

77 rvs167 ynl086w DIP-3906E

78 rvs167 yor284w DIP-10015E

79 sla2 yor284w DIP-3967E

80 yor284w yor284w DIP-6160E

81 ysc84 yor284w DIP-11283E

82 las17 ypl246c DIP-3702E

83 sla1 ypl246c DIP-11231E

84 cap1 ypr171w DIP-9981E

85 ysc84 ypr171w DIP-11285E

86 abp1 ysc84 DIP-11370E

87 acf2 ysc84 DIP-11277E

88 sla1 ysc84 DIP-2242E

89 sla2 ysc84 DIP-3968E

90 ypl246c ysc84 DIP-11284E

There are 90 PPIs among 34 Proteins for the species Saccharomyces cerevisiae.
Each row contains two PPIs. For each PPI is shown the first protein uniprotKB
ID, the second protein uniprotKB ID and the interaction PID ID between the
previous pair of proteins. The complete set of PPIs for this species is available
in Scere20081014.txt file, provided by PID online database [2].
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one, Complex Clustering, has the skill about clustering
strategies and tools. This relation is shown in Figure 3,
where the decision-making module tree and its treemap
representation are presented. Figure 3 also reports other
three decision-making modules, namely Interaction
Identification, Cluster Comparison and Cluster Identifi-
cation, that however will not be activated during the
proposed experiment so that they are drawn as dashed
boxes. They represent more specialized tasks for
improving Complex Preprocessing and Complex Clus-
tering operations. Some guidelines have been extracted
from papers cited in Background Section, translated into
rules and placed into the appropriate module. The aim
of the parent module is to give focus to one of direct
children, by means of some activation rules; the system
exploits these rules to suggest to the user which strategy
could be adopted.
The first operation of the system is to analyze the input

data, in order to get the properties and parameters neces-
sary to activate the proper rules. In this simple scenario,
we take into account only a few of input features. First of

all, the system compares the PPIs of dataset with a list of
core interactions, provided by DIP for the Saccharomyces
cerevisiae species. In this case 67 of 90 interactions are
reliable, because they are manually curated. Then the sys-
tem creates the undirected graph, the PPIN, and checks if
resulting network is scale-free, that is if its degree distribu-
tion follows a power law, at least asymptotically. In this
scenario the PPIN is not scale-free. Since several authors
[39] demonstrate that most networks within the cell
approximate a scale-free topology, then some of our PPIs
(edges of the network) could be false positives or new PPIs
could be not revealed (false negatives) when DIP dataset
was created. For this reason, a rule that proposes PPIN
preprocessing, in order to change the geometry of the net-
work, is activated.
When the user follows the system advice, according to

previous rule, the PPI Complex Extraction module gives
focus to the child module Complex Preprocessing.
According to the analysis phase, the system knows the

PPIN contains about 74% of core-interactions. Since it has
been estimated that approximately half the interactions

Figure 3 Decision making modules for Protein Complex Extraction scenario. The tree structure among modules is projected into a
treemap representation. Each parent module is responsible for the activation of children modules. In the treemap, this relation is depicted
through a set of nested boxes.
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obtained from high-throughput proteomic techniques may
be false positives [40-42], the rule suggesting to find and
delete false positive PPIs is not activated; in fact, cutting
edges of PPIN could implicate some core-interactions are
deleted and moving core-interactions is lethal for biologi-
cal networks. For this reason, the rule suggesting to add
new PPIs is activated.
When the user agrees to the advice, the system looks for

tools implementing this strategy. In this simple scenario,
the knowledge-base contains only a tool that can find and
add some false negatives (FN) in PPIN: the Detect Defec-
tive Cliques algorithm, created by [13]. When the user
accepts to run the proposed algorithm, then the system
informs that this algorithm requires, as input parameter,
the number of common interactions between two defec-
tive cliques, and suggests to user a considerable value for
the experiment.
When the user accepts the proposed value, the system

executes the algorithm, that finds a new potential FN
interaction between the proteins act1 and sla2. At this
moment, the PPIN is composed by 34 proteins and 91
interactions; the user could either continue the experiment
or execute another preprocessing tool (in cascade or
restarting the preprocessing phase).
If the user wants to try another solution before continu-

ing the experiment and he does not want to accept the
system advices, he could choose to follow the strategy to
find and delete false positive PPIs. In this case, the system
saves results obtained so far and it proposes to run one of
those algorithms that satisfy the selected strategy. The
user selects the Betweenness Centrality algorithm from
among three different tools available into the knowledge-
base, because the system indicated this is the algorithm
with the lowest computational cost. The result of Between-
ness Centrality algorithm is a PPIN with 34 proteins, 88
interactions and 65 core-interactions; then the system
advices the user to change strategy and/or modify para-
meters because two core-interactions have been deleted.
Figure 4 shows the workflow our system built so far.

The treemap representation of decision-making modules
is integrated into the workflow layout. In the figure it is
possible to see how PPI Complex Extraction module con-
tains all the workflow elements; it supervises the main pro-
blem at highest abstraction layer, giving the other
directives to Complex Preprocessing module. The latter is
responsible of some strategies for verifying and purifying
the network and have knowledge about tools used for data
manipulation. At abstraction layer 1, the child module
contains the strategies used in this experiment: in facts the
user tried first to add new PPIs and then to delete false
positive PPIs; obviously, both these strategies have the
same PPIN as input, according to the user choices. All the
tools used for processing data are shown at lower abstrac-
tion layer and their order in the figure follows the

implementation timeline. When the user concludes the
preprocessing phase and chooses the appropriate output
to continue the experiment, then the Complex Preproces-
sing module ends its activity and gives the focus back to
the parent decision module. At this point the PPI Complex
Extraction module knows the data input has been prepro-
cessed and gives focus to the child Complex Clustering.
Also the latter module knows the preprocessing phase is
done, thus it uses this information for suggesting an
appropriate clustering strategy. The authors [12,43]
demonstrated MCODE is sensitive to noise in the PPIN
and the preprocessing phase can increase the algorithm
performance. Other authors [14,15] noticed that MCL and
RNSC work almost in the same manner in terms of preci-
sion and recall, whether PPIN are noisy or purified. Since
MCL algorithm is faster than the other algorithms and it
work well with dense graphs, the system proposes to use
this algorithm based on the flow simulation analysis for
clustering. Moreover MCL algorithm has been widely used
with protein-protein interaction networks belonging to the
species Saccharomyces cerevisiae, so that the system can
suggest standard parameters for this species. When the
user accepts the advice and confirms proposed parameters,
the system runs the MCL algorithm. Now the user can
either end the experiment or execute another clustering
tool, having as input the PPIN obtained through the
preprocessing phase. If the user wants to try another tool,
he can consider descriptions, pros and cons that are avail-
able for each strategy and algorithm contained into the
system.
The whole workflow is shown in Figure 5. At the inter-

mediate abstraction layer, all the strategies within the
boundaries of their respective decision modules are
depicted, whereas at the lowest abstraction layer there
are all the tools implemented in this scenario.
Before concluding the experiment, the system proposes

to visualize the output of MCL algorithm with the well
know Cytoscape tool [44]. Visualization of clustering
results, obtained through Cytoscape, are shown in Figure 6
and reported in Table 2. Finally, the user obtains a solution,
that he can further analyze according to its knowledge
about the protein complex domain and/or using external
evaluation parameters.

Discussion
In order to test the result obtained by the system run-
ning, the biological significance of each protein com-
plexes is validated by means of the Gene Ontology Term
Finder web service [45], that returns, for each complex,
both the corresponding gene ontology term and the
p-value [16]. This statistical measure gives the probability
that a group of protein has been clustered by chance: the
smaller the p-value, the higher the relationship between a
protein complex and the assigned GO term.

Fiannaca et al. BMC Bioinformatics 2013, 14(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/14/S1/S5

Page 8 of 14



Protein complexes obtained by system running are eval-
uated using two different criteria; in facts, some external
and internal evaluation criteria have been analyzed.
The external criterion is based on the comparison

among the results obtained through the proposed system
and two different approaches proposed by [36,38], that
have been previously tested using the best parameter
values for the dataset used in this paper. In particular, [38]
proposes PINCoC, a co-clustering based approach for pro-
tein clustering, whereas [36] introduces UVCLUSTER, an
agglomerative hierarchical clustering method: strategies
implemented by these two research groups could repre-
sent a test-set for the proposed system.
Table 3 reports the comparison among the proposed

system and two external approaches, identified with the
labels PINCoC and UVCLUSTER: these methods are

reported in the first column. The second column shows
the proteins belonging to a complex, whereas the next col-
umn contains the fraction of proteins that have been iden-
tified as responsible of a biological process; finally the last
column reports the p-value measure. All the complexes
extracted by means of each method are classified in five
groups according to related Gene Ontology terms (i.e.,
G2/M transition of mitotic cell cycle, Actin Filament Depo-
lymerization, Actin Cytoskeleton Organization, Actin Poly-
merization or Depolymerization, Rho Protein Signal
Trasduction). Table 3 demonstrates that the system sug-
gests a workflow of operations and the related parameters
that are able to reach considerable results with respect to
the other approaches. More in details, our system works
better than the other methods for the second and the
third complex, in facts the proposed KDSS reaches the

Figure 4 Workflow of the preprocessing phase. This figure depict a state of the system during the preprocessing phase, in facts so far two
decision making modules are used. The child module, “Complex Preprocessing”, reports at “Abstraction Layer 1” the execution of two strategies
("Add FN PPIs” and “Delete FP PPIs”) and at lower abstraction layer the executed algorithms (yellow boxes).
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best values of p-value respectively with 4.92e-10 and
4.65e-08, whereas is not able to find any cluster belonging
to the GO term Rho Protein Signal Trasduction.
With regard to the internal criteria, two different tests

have been executed, aiming at demonstrating the work-
flow suggested by the system is the best than the other
workflows the system could build, according to its knowl-
edge. In particular, the first test reports a comparison
among all the algorithms contained in the knowledge
base of our KDSS for the complex clustering problem:
MCL, RNSC and MCODE. It is worth remembering that
the proposed scenario contains only three of the most
common and high-performance algorithms for protein
complex extraction, because they represent a simple set
of tools able to demonstrate how good the system works.
Results of the first test are shown in Table 4; the struc-
ture of the table is the same as the previous table. It is
possible to see as the tool suggested by the proposed sys-
tem reaches the smallest p-value for all the functional
groups but the last cluster, where the proposed tool with
standard parameters does not exhibit any result. This test
is enough for demonstrating the system suggests the
appropriate algorithm to the best of its knowledge.
The second test aims at investigating about the prepro-

cessing phase suggested by the system. In facts the system,
according to its knowledge, can deal with the complex

extraction problem using a preprocessing of the input
PPI-Network, by means of two strategies: finding the false
negative PPI (adding edges to the network) or the false
positive PPI (removing edges from the network). Since the
MCL algorithm proposed by the system is not sensitive to
all three of the alternative ways related to the network
preprocessing, we test the result of the preprocessing
phase over the MCODE tool, because a comparison of
clustering algorithms for protein-protein interaction net-
works showed that MCODE is sensitive to noise in the
network [43]. For this reason, MCODE is a suitable candi-
date for evaluating the effect of network preprocessing. In
this scenario, the system proposes the first strategy and
suggests to use the “detect defective cliques” tool. Table 5
shows results of this last test. The first column contains
the available preprocessing techniques; the second column
reports the effect of the strategy on the network; next col-
umn reports the set of proteins for each clusters; the
fourth column reports the fraction of proteins that have
been identified as responsible of a biological process and
the last column reports the p-value measure. Table 5
shows the suggested algorithm reaches a smaller p-value
(1.93e-05) in the complex related to the Actin Cytoskeleton
Organization GO term, therefore the system proposes
once again the most appropriate algorithm to the best of
its knowledge.

Figure 5 Workflow of the whole experiment. The system shows all strategies (blue boxes) and algorithms (yellow boxes) have been used
during this scenario. They are arranged in three workflows, one for each abstraction layer. The workflow at “Abstraction Layer 0” reports the
complex extraction process at object level.
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Conclusions
In this paper, we presented a novel approach for the
extraction of the protein complexes based on KDSS.
The system interacts with the user using its expertise

about PPINs. The system suggests to the user what are
the strategies and algorithms suitable for the problem
and, moreover, helps him providing the description,
pros and cons of each available technique. Finally the

Figure 6 Clustering visualization with Cytoscape tool. Cytoscape shows the clustered network arranged in a hierarchical layout. Each
complex is depicted in a different colour.

Table 2 System output.

System Output
Detect Defective Cliques + MCL Clustering

Cluster Proteins

1 app1, swe1, hsl7

2 act1, srv2, bnr1, bni1, cof1, trm5, aip1

3 sla2, abp1, yor284w, rvs167, ysc84, sla1, ynl086w, ypl246c, rvs161, acf2, ybr108w, yjr083c, ygr268c, ypr171w, yhr133c

4 cap2, gic2

5 crn1, svl3

The implemented workflow is composed by two algorithms in cascade: Detective Cliques (network preprocessing) and MCL (network clustering). The system
running with standard parameters gives five protein complexes as result.
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Table 3 Comparison among the proposed approach and some of the other approaches.

Methods Protein complexes Protein fraction p-Value

G2/M transition of mitotic cell cycle

Proposed System app1, swe1, hsl7 2/3 2.17e-03

PINCoC swe1, hsl7 2/2 6.90e-04

UVCluster app1, swe1, hsl7 2/3 2.17e-03

Actin Filament Depolymerization

Proposed System act1, srv2, bnr1, bni1, cof1, trm5, aip1 4/7 4.92e-10

PINCoC bnr1, bni1, pfy1, act1, srv2, aip1, trm5 5/7 1.52e-07

UVCluster act1, srv2, aip1, trm5, cof1 4/5 7.30e-04

Actin Cytoskeleton Organization

Proposed System sla2, abp1, yor284w, rvs167, ysc84, sla1, ynl086w, ypl246c, rvs161, acf2,
ybr108w, yjr083c, ygr268c, ypr171w, yhr133c

7/15 4.65e-08

PINCoC sla2, abp1, yor284w, rvs167, ysc84, app1, rvs161, ynl086w, yjr083c, acf2 6/10 6.72e-08

UVCluster sla2, abp1, yor284w, rvs167, ysc84, sla1, ygr268c 4/7 5.93e-05

Actin Polymerization or Depolymerization

Proposed System crn1, svl3 0/2 > 0.01

PINCoC crn1, svl3, las17, yhr133c, cof1 3/5 9.07e-06

UVCluster crn1, svl3 0/2 > 0.01

Rho Protein Signal Trasduction

Proposed System —— — —

PINCoC cdc42, cla4, gic2 3/3 1.76e-06

UVCluster cdc42, cla4, gic2 3/3 1.76e-06

The table reports a comparison among the proposed approach and two different approaches, called respectively PINCoC and UVCluster, that have been
previously tested with this database. Proposed system outperforms result of the other tools with respect to the complexes Actin Filament Depolymerization and
Actin Cytoskeleton Organization.

Table 4 Comparison among some different clustering strategies for protein complex problem.

Techniques Protein Complexes Protein Fraction P-Value

G2/M TRANSITION OF MITOTIC CELL CYCLE

MCL (suggested) app1, swe1, hsl7 2/3 2.17e-03

RNSC app1, swe1, hsl7 2/3 2.17e-03

MCODE – 2/3 2.17e-03

ACTIN FILAMENT DEPOLYMERIZATION

MCL (suggested) act1, srv2, bnr1, bni1, cof1, trm5, aip1 4/7 4.92e-10

RNSC act1, srv2, aip1, cof1 4/4 2.94e-05

MCODE – – 5.25e-03

ACTIN CYTOSKELETON ORGANIZATION

MCL (suggested) sla2, abp1, yor284w, rvs167, ysc84, sla1, ynl086w, ypl246c, rvs161, acf2, ybr108w, yjr083c, ygr268c,
ypr171w, yhr133c

7/15 4.65e-08

RNSC sla2, yor284w, rvs167, ysc84, sla1, ygr268c, abp1 4/7 5.93e-05

MCODE abp1, app1, rvs167, act1, yor284w, ysc84 4/6 1.93e-05

ACTIN POLYMERIZATION OR DEPOLYMERIZATION

MCL (suggested) crn1, svl3 0/2 > 0.01

RNSC crn1, svl3 0/2 > 0.01

MCODE – 0/2 > 0.01

RHO PROTEIN SIGNAL TRASDUCTION

MCL (suggested) – – –

RNSC cla4, bni1, cdc42, gic2 3/4 1.04e-05

MCODE cla4, cdc42, gic2 3/3 1.76e-06

Table reports a comparison among three clustering techniques contained into the knowledge base of the system: MCL, RNSC and MCODE. The suggested tool
allows the system to reach the smallest p-values for all the complexes, but the Rho Protein Signal Trasduction cluster.
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system also runs the selected tools, suggesting to the user
what are the most common parameters for the specific
situation and, during the experiment it builds a workflow
of executed operations, enabling the chance of backtrack-
ing for exploring alternative paths. The presented results
show that the workflow suggested by the system gives the
best results with regards to the other workflows pro-
duced by the system itself and, furthermore, that work-
flow offers similar results when compared to other PPI
extraction methodologies found in literature.

Future work
In the near future, we will give research community free
access to our system, thanks to the migration towards a
web service. Moreover we are working in order to enrich
the Knowledge Base with skill regarding the proposed
scenario and, at the same time, we will use our system
architecture for facing other bioinformatics issues. Finally
we will give support to the developer community in
order to provide a simple editor so that it will be possible
to insert into the system further knowledge and expertise.
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No Preprocessing — cla4, gic2, cdc42 3/3 1.76e-06

Betweenness Centrality Remove 3 PPI (2 core PPI) cla4, gic2, cdc42 3/3 1.76e-06

Table reports a comparison among some of the preprocessing tools contained into the knowledge base of the system.The suggested tool allows the system to
reach the smallest p-values for all the complexes.
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